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Abstract9

The opinions and perspectives of software developers are highly regarded in software10

engineering research. The experience and knowledge of software practitioners are frequently11

sought to validate assumptions and evaluate software engineering tools, techniques, and12

methods. However, experimental evidence may unveil further or different insights, and in some13

cases even contradict developers' perspectives. In this work, we investigate the correlation14

between software developers' perspectives and experimental evidence about testability smells15

(i.e., programming practices that may reduce the testability of a software system). Specifically, we16

first elicit opinions and perspectives of software developers through a questionnaire survey on a17

catalog of four testability smells, we curated for this work. We also extend our tool DesigniteJava18

to automatically detect these smells in order to gather empirical evidence on testability smells.19

To this end we conduct a large-scale empirical study on 1, 115 Java repositories containing20

approximately 46 million lines of code to investigate the relationship of testability smells with test21

quality, number of tests, and reported bugs. Our results show that testability smells do not22

correlate with test smells at the class granularity or with test suit size. Furthermore, we do not23

find a causal relationship between testability smells and bugs. Moreover, our results highlight24

that the empirical evidence does not match developers' perspective on testability smells. Thus,25

suggesting that despite developers' invaluable experience, their opinions and perspectives might26

need to be complemented with empirical evidence before bringing it into practice. This further27

confirms the importance of data-driven software engineering, which advocates the need and28

value of ensuring that all design and development decisions are supported by data.29

30

Keywords: Software testability; software test quality; testability smells; developers' opinions and31

perspectives; software quality.32

1. Introduction33

The opinions and perspectives of software developers matter significantly in software engineer-34

ing research. The research in the domain relies on the experience and knowledge of software35

practitioners to validate assumptions and evaluate the tools, techniques, and methods address-36

ing software engineering problems. Numerous studies reveal the importance of the practitioners'37

perspectives [14, 55, 53, 1]. However, empirical evidence may not always agree with developers'38

perspective, opinions, or beliefs. For example, Devanbu et al. [13] show that software developers39
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have very strong beliefs on certain topics, but are often based on their personal experience; such40

beliefs and corresponding empirical evidence may be inconsistent. Similarly, despite developers'41

fairly common negative perspectives about code clones, Rahman et al. [54] did not find sufficient42

empirical evidence to prove a strong correlation between code clones and bug proneness; how-43

ever, there could be effects of code clones other than bugs. Along the similar lines, a study by44

Murphy et al. [43] casts doubts on practitioners' and researchers' assumptions related to refactor-45

ing. Finally, Janes et al. [28] challenge the practitioners' perspective on agile process by bringing46

out the dark side of agility. In this paper, we present a case study of testability smells, i.e., program-47

ming practices that may negatively affect testability of a software system, to investigate whether the48

software developers' perspectives about testability smells is backed up by empirical evidence .49

Researchers and practitioners have proposed various, yet inconsistent, definitions of software50

testability [21]. The most common definition refers to the degree to which the development of test51

cases can be facilitated by the software design choices [9, 73, 7]. Specifically, several researchers [9, 73,52

50] define testability as the ease of testing. In addition, some researchers [9, 7, 75] emphasized that53

testability is not a binary concept but must be expressed in degree or extent. Additionally, other54

researchers [9, 75, 52] explicitly connect software design choices with the definition of software55

testability. Furthermore, some studies [9, 50, 75] identify the degree of effectiveness by which test56

development is facilitated as another characteristic of testability definition.57

There has been a significant amount of work on test smells and their effects [30, 60, 4]. Test58

smells are bad programming practices in test code that negatively affect the quality of test suites59

and production code [23]. Though looks similar, practices that affect testability are completely60

different than test smells. Test smells occur in test code while issues affecting testability arise in61

production code. Also, test smells indicate the poor quality of test caseswhereas testability impacts62

the ability to write tests.63

Several researchers have proposed frameworks for measuring and empirically evaluating soft-64

ware testability by considering (1) software design choices, including programming language fea-65

tures [71, 59], (2) software quality metrics, including cohesion, depth of inheritance tree, coupling,66

and propagation rate of methods [39], metrics including the number of method calls, dependen-67

cies, and attributes of a class with testability [41], and other software metrics [32, 59, 8], as well as68

(3) testing effort [64]. However, there are still various aspects related to software testability that69

remain unexplored, including the extent to which specific programming practices (e.g., handling of70

dependencies, coding style, and access of modifiers) impact software testability.71

The goal of this study is to find experimental evidence to validate current practitioners' perspec-72

tives about testability smells. To achieve this goal, we first curate a catalog of four programming73

practices which can affect software testability, referred to as testability smells. We then gather soft-74

ware developers' perspectives through a questionnaire survey on testability in general, and our75

proposed testability smells in particular. Finally, we conduct a large-scale empirical study guided76

by three research questions to explore the effect of testability smells on test cases, their quality,77

and on reported bugs at different granularity levels. To support the detection of testability and78

test smells, we develop a tool named DesigniteJava. To answer the research questions, we curated79

a dataset of 1, 115 Java software projects which are publicly available in GitHub, and analyzed them80

using our DesigniteJava tool.81

Our survey shows that software developers consider testability as a factor that impedes soft-82

ware testing and overwhelmingly acknowledged the proposed testability smells. Our results sug-83

gest that testability smells show a low positive correlation with test smells at the repository granu-84

larity; however, at the class-level, testability smells and test smells do not correlate. Our explo-85

ration of the relationship between testability smells with test density reveals no correlation at86

repository and class granularity. Finally, our observations from our experiment indicate that testa-87

bility smells do not contribute to bugs. Therefore, developers' opinions and perspectives might88

need to be complemented with empirical evidence before bringing it into practice.89

This study makes the following contributions to the field.90
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1. We investigate the extent to which developers' perspectives is in line with the empirical evi-91

dence we found in the context of i.e., testability smells.92

2. We consolidate a set of programming practices that affect testability of a software system in93

the form of a catalog of testability smells. This catalog provides a vocabulary for researchers94

and practitioners to discuss specific programming practices potentially impacting the testa-95

bility of software systems.96

3. We extend DesigniteJava to detect the proposed testability smells and eight test smells. The97

tool facilitates further research on the topic of testability smells. Also, interested software98

developers may use this tool to detect testability smells in their source code to better under-99

stand the impact of design choices on testing.100

4. We explore the relationships between testability smells and several aspects relevant to test101

development and bugs. Such an exploration improves our understanding, both as software102

developers and researchers, of testability and lays the groundwork for devising new tools103

and techniques to improve test development.104

We have made publicly available our DesigniteJava to identify testability smells as well as a105

replication package at https://github.com/SMART-Dal/testability. We hope this facilitate other re-106

searchers to replicate, reproduce and extend the presented study.107

The rest of this paper is organized as follows. First, we present related work in Section 2. Sec-108

tion 3 provides overview of the methods. Section 4 presents the initial catalog of testability smells,109

our questionnaire survey targeting to software practitioners and obtained results, and tool imple-110

mentation to detect testability and test smells. We present the mechanism followed to select and111

download repositories from GitHub in Section 5. We discuss results in Section 6 and their implica-112

tions in Section 7. Threats to validity are discussed in Section 8. Finally, we conclude in Section 9.113

2. Related work114

Software testability. From existing studies, we found that testability was initially considered for115

hardware design [36, 72, 37]. The concepts of hardware testability were then used for software116

testability [44, 34]. Afterwards, a great deal of studies has been conducted exploring various as-117

pects of software testability. To measure testability for data-flow software, Nguyen et al. [45] sug-118

gested an approach that uses the satan method, which transforms the source code into a static119

single assessment form. The form is then fed into a testability model to detect source code parts120

with testability weaknesses. Bruntink et al. [8] collected a large number of source code metrics121

(e.g., depth of inheritance tree, fan out, and lack of cohesion of methods) and test code metrics122

to explore the relationship with testability. The analysis focused on open-source Java applications.123

The results suggest that there is a significant correlation between class-level metrics (most notably124

fan out, loc per class, and response for class) and test-level metrics (loc per class and the num-125

ber of test cases). Vincent et al. [69] investigated software components testability written in C++126

and Java in workstations and embedded systems. Moreover, the authors have suggested an ap-127

proach named built-in-test for run-time-testability which can provide more testable, reliable, and128

maintainable software components. Filho et al. [18] used ten testability attributes, proposed in pre-129

vious studies, to examine their correlation with source code metrics and test specification metrics130

(e.g., number of test cases, test coverage) on two Android applications. They found that testability131

attributes are correlated with several source code metrics and test specification metrics. Chowd-132

hary [9] presented experiences while applying testability concepts and introduced guidelines to133

ensure that testability is taken under consideration during software planning and testing. Based134

on these findings, the authors introduced a testability framework called shock. Furthermore, var-135

ious resources [27, 75] discussed their interpretation of testability and impact of smells affecting136

testability.137

Assessing testability. Voas [29] surveyed the factors that affect software testability, arguing that138

a piece of software that is likely to reveal faults within itself during testing is said to have high139
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testability. According to this work, information loss is a phenomenon that occurs during program140

execution and increases the likelihood that a fault will remain undetected. Finally, Voas [71] com-141

pared the testability of both object-oriented and procedural systems, as well as whether testability142

is affected by programming language characteristics.143

Surveys on testability. Various literature surveys on testability have been carried out. Freed-144

man [19] investigated the testability of software components. Freedman argued that the concept145

of domain testability of software is defined by applying the concepts of observability and control-146

lability to software. Garousi et al. [21] examined 208 papers on testability (published between147

1982 and 2017) and also found that the two most commonly referred factors affecting testabil-148

ity are observability and controllability. Furthermore, their survey argues that common ways to149

improve testability are testability transformation, improving observability, adding assertions, and150

improving controllability. Similarly, Hassan et al. [25] conducted a systematic literature review on151

software testability to investigate to what extent it affects software robustness. Results show that152

a variety of testability issues are indeed relevant, with observability and controllability issues be-153

ing the most researched. They also found that fault tolerance, exception handling, and handling154

external influence are prominent robustness issues.155

Test smells. A wide variety of studies explored test smells and their effect and relationship on156

various aspects of software development, including change and bug proneness [60], maintainabil-157

ity [5, 33, 67], and test flakiness [16]. Specifically, Spadini et al. [60] investigated the relationship158

between the presence of test smells and the change-and defect-proneness of test code, as well159

as the defect-proneness of the tested production code. Among their findings, they observed that160

tests with smells are indeed more change- and defect-prone. Regarding maintainability, Bavota et161

al. [5] presented empirical studies on test smells, and showed that test smells have a strong nega-162

tive impact on program comprehension and maintenance. They, also, found that comprehension163

is 30% better in the absence of test smells. Furthermore, Kim et al. [33] conducted an empirical164

study to study the evolution and maintenance of test smells. They found that the number of test165

smells increases as a system evolves, and through a qualitative analysis they revealed that most166

test smell removal is a maintenance activities. Additionally, Tufano et al. [67] showed that test167

smells are usually introduced when the corresponding test code is committed in the repository for168

the first time. Then, those test smells tend to remain in a system for a long time, hindering soft-169

ware maintenance. Fatima et al. [16] developed an approach called Flakify, which is a black-box,170

language model-based predictor for flaky test cases.171

Despite extensive work on testability, the existing literature does not translate high-level prin-172

ciples such as observability and controllability into actionable programming practices. Due to that173

though the high-level testability principles have been known to the community for a long time,174

there has been no tool support to detect them. We provide a tool that supports the detection of175

testability smells. Furthermore, we explore the relationship between testability practices and test176

quality and size, which is our other contribution.177

3. Overview of the Methods178

In the pursuit of weighing developers' perceptions with empirical evidence in the context of testa-179

bility smells, we formulate the following research questions.180

RQ1. To what extent do testability smells and test smells correlate?181

Testability smells refer to bad programming practices that are believed to make test case182

design and development difficult. Developers may choose to follow non-optimal practices183

when it is not easy to write tests, leading to poor-quality test cases. Test smells refer to bad184

programming practices in unit test code, compromising test code quality by violating the best185

practices recommended for writing test code [12]. This research question explores whether186

and to which extent testability smells and test smells correlate.187
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RQ2. Do testability smells correlate with test suite size?188

By definition, testability smells make the design and development of test cases difficult. With189

this research question, we aim to empirically evaluate whether the presence of testability190

smells can hinder test development and consequently lead to a fewer number of test cases.191

By answering this research question, we can inform developers about testability smells that192

might impede a smooth test development.193

RQ3. Do testability smells cause more bugs?194

Testability smells make it harder for developers to test a software system. This implies that195

the software under test lacks appropriate testing, leaving more bugs uncovered during soft-196

ware development. This research question aims to investigate whether and to which extent197

testability smells can lead to a higher number of reported bugs.198

RQ1: Testability smells and test quality
RQ2: Testability smells and number of tests
RQ3: Testability smells and reported bugs

Java

Proposed 
testability smells

Accepted 
testability smells

Developers’ 
survey

1115 repositories Detected smells Analysis

DesigniteJava

Literature

Figure 1. Overview of the study

Towards the goal of the study, as outlined in Figure 1, we first prepared a set of potential testa-199

bility smells based on the available literature and recommended practices. We then carried out200

an online survey to understand developers' perspectives on software testability and to gauge the201

extent to which they agree that those smells really impact testability negatively. We extended our202

tool (DesigniteJava) to detect testability and test smells. We analyzed 1, 115 Java repositories down-203

loaded from GitHub. After identifying the smells, we reported our observations and findings with204

respect to each research question.205

4. Testability smells206

We define testability smells as the programming practices that reduce the testability of a software207

system. This section presents an initial catalog of testability smells, validates them by carrying out208

an online developers' survey, and discusses the implementation details of our tool.209

4.1 Initial Catalog of Testability Smells210

In order to identify specific programming practices that negatively affect testability, we carried out211

a light-weight multi-vocal literature (mlr) review, which surveys writings, views, and opinions in212

diverse form and format [22]. The review process has three main stages: search, selection, and213

information extraction.214

In the search stage, two of the co-authors searched for a set of search terms (including testa-215

bility, ease of testing, and software design+test) on Google Scholar and Google Search. For each216
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search term, we manually searched minimum seven pages of search results. After the minimum217

threshold of seven pages, we continued the search until we get two continuous search pages with-218

out any new and relevant articles. Adopting this mechanism avoided missing any relevant articles219

in the context of our study.220

We applied inclusion and exclusion criteria to filter out irrelevant sources. The main inclusion221

criterion was that the source's content must relate to testability. Examples of exclusion criteria222

include dropping gray literature that is too short, written in language other than English, or pre-223

sented without objectivity in presentation. These examples map to the Objectivity requirement of224

mlr process guidelines [22].225

In the last stage, we read or observed the selected resources and extracted information rele-226

vant to our study. Specifically, we strived for concrete recommendations in terms of programming227

practices that influence testability from the selected sources. We grouped the practices based on228

similarity and assigned an appropriate name reflecting the rationale. We identified four potential229

testability smells discussed by more than one selected source. We present the consolidated set of230

smells below. It is the first attempt, to the best of our knowledge, to document specific program-231

ming practices as testability smells. It is by no means a comprehensive list of testability smells; we232

encourage the research community to further extend this initial catalog of testability smells.233

4.1.1 Hard-wired dependencies234

This smell occurs when a concrete class is instantiated and used in a class resulting in a hard-wired235

dependency [9, 75, 26]. A hard-wired dependency creates tight-coupling between concrete classes236

and reduces the ease of writing tests for the class [9]. Such a hard-wired dependency makes the237

class difficult to test because the newly instantiated objects are not replaceable with test doubles238

(such as stubs and mocks). Hence, the test will check not only the cut (class under test) but also its239

dependencies, which is undesirable.240

In Listing 1, the parse1 method creates an object of the BindingOperation class (line 4) and241

calls a few methods (lines 6 and 7). The object cannot be replaced at testing execution due to the242

concrete object creation and its use within this method. Hence, the hard-coded dependency is243

reducing the ease of writing tests for the class.244

1 private void parse(String name, String namespace , WsdlParser parser) throws WsdlParseException245

{246

2 if (WSDL_NS.equals(namespace)) {247

3 if (OPERATION.equals(name)) {248

4 BindingOperation operation = new BindingOperation(definitions);249

5 operation.read(parser);250

6 operations.put(operation.getQName(), operation);251

7 }252

8 }253

9 //rest of the method254

10 }255

Listing 1. Example of hard-coded dependency

4.1.2 Global state256

Global variables are, in general, widely discouraged [40, 63]. This smell arises when a global vari-257

able or a Singleton object is used [26, 62, 17, 65]. Global variables create hidden channels of258

communication among abstractions in the system even when they do not depend on each other259

explicitly. Global variables introduce unpredictability and hence make tests difficult to write by260

developers.261

The Builder2 class in Listing 2 is accessible, and hence can be read/written, within the entire262

project. Such practice makes it difficult to predict the state of the object in tests.263

1https://github.com/forcedotcom/wsc/blob/master/src/main/java/com/sforce/ws/wsdl/Binding.java
2https://github.com/forcedotcom/wsc/blob/master/src/main/java/com/sforce/async/JobInfo.java
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1 public static class Builder {264

2 //class definition265

3 }266

Listing 2. Example of global state

4.1.3 Excessive dependency267

This smell occurs when the class under test has excessive outgoing dependencies. Dependencies268

make testing harder; a large number of dependencies makes it difficult to write tests for the class269

under test in isolation [62, 39, 74]. For example, the Error3 class in the open-source project wsc270

refers to nine other classes within the project --- Bind, BulkConnection, TypeInfo, StatusCode,271

XmlOutputStream, XmlInputStream, ConnectionException, TypeMapper, and Verbose. Such ahigh272

number of dependencies on other classes increases the effort to write tests for this class to be273

tested in isolation.274

4.1.4 Law of Demeter violation275

This smell arises when the class under test violates the law of Demeter i.e., the class is interacting276

with objects that are neither class members nor method parameters [38, 31, 65]. In other words,277

the class has a chain of method calls such as x.getY().doThat(). Violations of the law of Demeter278

create additional dependencies that a test has to take care of. For example, lines 4 and 5 of the279

snippet1 given in Listing 3 call a method to obtain an object that in turn calls another method on280

the obtained object. Such method chains introduce indirect dependencies that reduce the ease of281

writing tests for the class.282

1 public Iterator <Part> getAllHeaders() throws ConnectionException {283

2 HashSet <Part> headers = new HashSet <Part >();284

3 for (BindingOperation operation : operations.values()) {285

4 addHeaders(operation.getInput().getHeaders(), headers);286

5 addHeaders(operation.getOutput().getHeaders(), headers);287

6 }288

7 return headers.iterator();289

8 }290

Listing 3. Example of the law of Demeter violation

4.2 Developer Survey291

We carried out an anonymous online questionnaire survey targeting software developers to under-292

stand their perspectives on software testability. Specifically, we aimed to consolidate developers'293

perspectives w.r.t. the definition of testability as well as the relevance of our identified testability294

smells. We divided our survey into three sections. In the first section, we collected information295

about developers' experience. In the second section, we asked developers how they define testa-296

bility. The final section presented our initial catalog of testability smells and asked the respondents297

whether and to what extent they agree that the presented practices negatively affect testability. All298

the questions in this section were Likert-scale questions. The questionnaire that we used is avail-299

able online [57].300

Before rolling out the survey to a larger audience, we ran a pilot for the survey, collected feed-301

back, and improved the survey. We shared the survey on all online professional social media chan-302

nels (such as Twitter, LinkedIn, and Reddit) and sought participation from the software develop-303

ment community. We kept the survey open for six weeks. We received 45 complete responses.304

4.2.1 Findings from the survey305

Figure 2 presents the demographic distribution of participants in terms of years of experience306

classified by their roles. We asked them to check all applicable roles and hence the total number307

3https://github.com/forcedotcom/wsc/blob/master/src/main/java/com/sforce/async/Error.java
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of responses shown in the figure is more than the number of participants. It is evident that most308

of the participants belong to the “software developer” role; a significant number of the participants309

belong to the highly experienced group (11-20 years).310

Figure 2. Demographics (role and experience in number of years) of participants

Definition of software testability: We asked the participants a question to elicit the definition of311

software testability. Most of the responses point to the degree of ease with which automated312

tests can be written. Some of the actual responses are: “The extent to which a software component313

can be tested”, “software testability is the degree that software artifacts support testing”, “easy testing”,314

and “a measure of how easy it is for the code to be tested through automated tests”. An interested315

reader may look at the raw anonymized responses in our replication package [57].316

Figure 3. Respondents’ perspective of considered testability smells

Programming practices affecting testability: The next set of questions presented four pro-317

gramming practices corresponding to each potential testability smell and asked the respondents318

whether and to what extent these practices negatively affect software testability. We also asked319
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about the rationale for their choice. Figure 3 presents the consolidated responses for all four con-320

sidered smells. A very large percentage (84%, 87%, 78%, and 73% respectively for the four considered321

smells) of the responses agreed (either completely or somewhat agree) tomark the presented prac-322

tices as testability smells.323

We looked into the rationale provided by respondents for other options (i.e., neither agree nor324

disagree, somewhat and completely disagree). Specifically, for hard-wired dependency, one of the325

respondents who marked completely disagree did not offer any justification; another respondent326

suggested to use mocking. One respondent with a somewhat disagree option for the same smell327

basing his/her answer on the assumption that dependencies are trivial (i.e., internal class or trivial328

class from a library) most of the time. Respondents who opted for the option “neither agree nor329

disagree” either expressed their ignorance about the specific question or left the rationale question330

unanswered.331

The respondents of “somewhat disagree” option for global state smell justify their selection by332

providing a workaround to test a unit with global variables; for example, one of the respondents333

provided the following rationale: “Logging where and when the global state is altered is usually334

good enough for testing the code I work with”.335

Whereas, those who chose the “completely disagree” option for the excessive dependency smell,336

seem, however, to agree that it is difficult to test source code containing this smell based on their337

open answers (for example, one such an answer states “If designed properly then testing won't be338

difficult but yes more dependencies need extra setups”).339

For the law of Demeter violation smell, a considerable number of respondents chose the “nei-340

ther agree nor disagree” option; however, they did not provide any fruitful rationale towards this341

testability smell.342

Additional programming practices affecting testability: We also enquired about other pro-343

gramming practices that may negatively influence the testability of a software system. The re-344

sponses provided us with additional practices such as poor separation of concern (mixing ui and345

non-ui aspects), interaction with external resources, such as sockets, files, and databases, time de-346

pendencies, asynchronous operations, reflection, invoking command line from code, methods that347

do not return anything but changes internal state, and requirements for authentication credentials348

that hinder testability. In addition, the respondentsmentioned spaghetti code, highly tangled code,349

large methods, and non-standard environments as practices that reduce testability. Some of the350

indicated practices are covered by the proposed smells. For example, interaction with external351

resources has been captured by the hard-wired dependency smell since external resources such as352

a network connection need to be instantiated.353

The results from the survey not only suggest that the investigated smells are indeed considered354

practices that affect testability negatively but also provide indicators for the community to extend355

the proposed catalog.356

4.3 The DesigniteJava Tool357

We extended our tool DesigniteJava [56], to support for testability and test smells detection.4 We358

select DesigniteJava to extend because the tool detects a variety of code smells and it has been359

used in various studies [46, 58, 15, 68, 2]. Architecturally, DesigniteJava is structured in three layers360

as shown in Figure 4. Eclipse Java Development Toolkit (jdt) forms the bottom layer. DesigniteJava361

utilizes jdt to parse the source code, prepare asts, and resolve symbols. The source model is the362

middle layer. The model invokes jdt and maintains a source code model from the information363

extracted from an ast with the help of jdt. The top layer of the tool contains the business logic364

i.e., the smell detection and code quality metrics computation logic. The layer accesses the source365

model, identifies smells and computes metrics, and outputs the generated information in either366

.csv or .xml files. Due to the existing support to detect smells and compute metrics, various fea-367

4https://www.designite-tools.com/blog/understanding-testability-test-smells
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tures (such as the sourcemodel) can be reused in our context. To support testability and test smell368

detection, we added code in the code smell detection layer. We also modified the source model369

layer to extract additional information required for our purpose. The extended version of the tool370

can be downloaded from its website.5371

Figure 4. Architecture of DesigniteJava tool

Existing explorations have proposed a few tools to detect test smells. We first tried to utilize372

existing tools, specifically JNose [70] and TsDetect [51]. We were able to use JNose after taking help373

from its authors and developing a wrapper to use the tool as a console application. However, a374

quick analysis of the produced results showed a considerable number of false positive and false375

negative smell instances. Similarly, we were unable to use TsDetect because it is not suitable to376

analyze a large number of repositories due to a manual step requiring a mapping of test files and377

corresponding production files. Finally, we decided to develop our own test smell detector to iden-378

tify the following eight test smells---Assertion roulette, Conditional test logic, Constructor initialization,379

Eager test, Empty test, Exception handling, Ignored test, and Unknown test. We selected these smells380

because these were commonly known test smells and both the tools, i.e., TsDetect and JNose, sup-381

port them. We implemented the support to detect test smells inDesigniteJava along with testability382

smells.383

4.3.1 Detection rules for testability smells384

We summarize below the detection strategies used for the testability smells.385

Hard-wired dependency: We first detect all the objects created using the new operator in a class.386

Then, if the functionality of the newly created object is used (i.e., at least one method is called) in387

the same class, we detect this smell.388

Global state: If a class or a field in a class is declared with public static modifiers, we detect this389

smell.390

Excessive dependency: Wecompute fan-out (i.e., total number of outgoing dependencies) of a class.391

If the fan-out of the class is more than a pre-defined threshold, we detect the smell. The literature392

[47, 48, 76] suggests a threshold value for fan-out between 5 and 15 with a varying compliance rate.393

We adopted 7 as the threshold value as suggested by Arar et al. [76]. We ensure that the threshold394

value is configurable; hence, future studies may change any of the thresholds used.395

Law of Demeter violation: We detect all the method invocation chains of the form aField.get-396

Object().aMethod(). We detect this smell when method calls are made on objects that are not397

directly associated with the current class.398

4.3.2 Detection rules for test smells399

The tool uses the definition of test smells and their detection strategies from existing studies [70,400

51, 3]. We present a summary of the detection strategies for the considered test smells below.401

5https://www.designite-tools.com/designitejava/
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Assertion roulette: We detect this smell when a test method contains more than one assertion402

statement without giving an explanation as a parameter in the assertion method.403

Conditional test logic: We detect this smell when there is an assertion statement within a control404

statement block (e.g., if condition).405

Constructor initialization: We detect this smell when a constructor of a test class initializes at least406

one instance variable.407

Eager test: We detect this smell when a test method calls multiple production methods.408

Empty test: We detect this smell when a test method does not contain any executable statement409

within its body.410

Exception handling: Wedetect this smell when a testmethod asserts within a catch block or throws411

an exception, instead of using Assert.Throws().412

Ignored test: We detect this smell when a test method is ignored using the Ignore annotation.413

Unknown test: We detect this smell when a test method does not contain any assert call or ex-414

pected exception.415

4.3.3 Validation416

We curated a ground truth of smells in a Java project to manually validate the tool, as explained417

below.418

Subject system selection: We used the RepoReapers dataset [42] and applied the following criteria419

to select a subject system.420

1. The repository must be implemented mainly in the Java programming language421

2. The repository must be of moderate size (between 10𝐾 and 15𝐾) to avoid toy projects on one422

side and excessive manual effort on the other423

3. The repositorymust have a unit-test ratio > 0.0 (number of sloc in the test files to the number424

of sloc in all source files)425

4. The repository must have a documentation ratio > 0.0 (number of comment lines of code to426

the number of non-blank lines of source code)427

5. The repository must have a community size > 1 (more than one developer).428

We applied the criteria and sorted the list by the number of stars. We obtained j256/ormlite-429

jdbc, paul-hammant/paranamer, and forcedotcom/wsc as the top three projects satisfying our criteria.430

The majority of the source code belonging to j256/ormlite-jdbc and paul-hammant/paranamer was431

in test cases. Hence, we selected j256/ormlite-jdbc,6 as our subject system for test smells valida-432

tion. However, such repositories were not suitable for validating testability smells, since we detect433

testability smells in non-test code. Hence, we selected forcedotcom/wsc,7 a project that offers a434

high performance web service stack for clients, as our subject system for the manual validation of435

testability smells.436

Validation protocol: Two evaluators manually examined the source code of the selected subject437

systems and documented the testability and test smells that they found. Both the evaluators hold a438

PhD degree in computer science and havemore than 5 years of software development experience.439

Before carrying out the evaluation, they were introduced to testability and test smells. They were440

allowed to use ide features (such as “find”, “find usage” (of a variable) and “find definition” (of a class)441

and external tools to collect code quality metrics to help them narrow their search space. Both442

evaluators carried out their analyses independently. It took approximately three full work days443

to complete the manual analysis. After their manual analysis was complete, they matched their444

findings to spot any differences. We used Cohen’s Kappa [6] to measure the inter-rater agreement445

between the evaluators. The obtained result, 89% and 93% respectively for testability and test446

smells, shows a strong agreement between the evaluators. The evaluators discussed the rest of447

their findings and resolved the conflicts.448

6https://github.com/j256/ormlite-jdbc
7https://github.com/forcedotcom/wsc
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Table 1. Results of manual validation for testability smells

Testability Smells Manually

Verified

Instances

TP FP FN

Hard-wired dependencies 64 63 2 1

Global state 22 22 0 0

Excessive dependencies 20 19 0 1

Law of Demeter violation 66 57 0 9

Total 172 161 2 11

Table 2. Results of manual validation for test smells

Testability Smells Manually

Verified

Instances

TP FP FN

Assertion roulette 214 212 0 2

Conditional test logic 11 11 0 0

Constructor initialization 0 0 0 0

Eager test 13 13 0 0

Empty test 0 0 0 0

Exception handling 3 2 0 1

Ignored tests 2 2 0 0

Unknown test 58 58 0 0

Total 301 298 0 3

Validation results: Weused our tool,DesigniteJava, on the subject systems and identified testability449

and test smells. Wemanuallymatched the ground truth prepared by the evaluators and the results450

produced by the tool. We classified each smell instance as true positive (tp), false positive (fp), and451

false negative (fn). We computed precision and recall metrics using the collected data.452

Table 1 presents the results of the manual evaluation for testability smells. The tool identified453

161 instances of testability smells out of a total of 172 manually verified smell instances. The tool454

produced two false positive instances and eleven false negative instances. The false positive in-455

stances were detectedmainly because the tool identified the hard-wired dependency even when an456

object was instantiated in a method call statement. Similarly, the tool reported false negatives due457

to an improper resolution of enumeration types; we traced back the inconsistent behavior to the458

jdt parser library. The precision and recall of the tool for testability smells based on the analysis459

is 161/(161 + 2) = 0.99 and 161/(161 + 11) = 0.94, respectively. Similarly, Table 2 shows the results460

of the manual evaluation carried out for test smells. Out of 301 test smells in 428 test methods,461

the tool correctly detected 298 smell instances. The cause of three instances of false negative is462

traced back to inconsistent behavior of the parser library. The precision and recall of the tool for463

test smells based on the analysis is 298/(298 + 0) = 1.0 and 298/(298 + 3) = 0.99, respectively. An464

interested reader may find the detailed manual analysis in our replication package [57].465

466

Generalizability of conclusions: The above validation shows that the tool produces reliable results467

in almost all cases. Given that the tool has been used by many researchers and practitioners,468

occasional issues reported by them were promptly fixed, thus further improving the reliability of469

the tool. A few known issues and limitations of the tool remain. First, due to a symbol resolution470

issue in jdt, in some very peculiar cases, the tool cannot resolve the symbol that leads to issues471

such as inability to identify the type of a variable. Also, the tool can identify test smells only when472

the tests are written in the JUnit framework.473
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Table 3. Characteristics of the analyzed repositories

Characteristics Count

Total number of repositories 1,115

Total lines of code 46,176,914

Total number of classes 691,481

Total number of methods 4,031,216

Total number of test cases 415,527

Total number of testability smells 637,118

5. Mining GitHub repositories474

We use the following mechanism to select and download repositories from GitHub.475

1. We use RepoReapers [42] to filter out low-quality and too small repositories on GitHub. We476

use quality characteristics provided by the RepoReapers to define a suitable criteria for reposi-477

tory selection. RepoReapers assesses repositories on eight characteristics and assigns a score478

typically between 0 and 1. We select all Java repositories in the RepoReapers dataset where479

architecture (as evidence of code organization), community and documentation (as evidence480

of collaboration), unit tests (as evidence of quality), history and issues (as evidence of account-481

ability) scores are greater than zero. Further, we filter out repositories containing less than482

1, 000 lines of code (loc) and having less than 10 stars.483

2. We obtain 1, 500 repositories after applying the above selection criteria.484

3. We analyze all the selected repositories using the DesigniteJava tool that we developed to485

identify testability and test smells.486

Table 3 presents the characteristics of the analyzed repositories. We attempted downloading487

and analyzing all the selected repositories; however, we could not download (either due to deleted488

or made private) and analyze (due to missing tests developed using JUnit framework) some of the489

repositories. Specifically, we did not find JUnit tests in 300 repositories. We successfully analyzed490

1, 115 repositories containing approximately 46 million loc. Our replication package [57] includes491

the initial set of repositories, the names of all the successfully analyzed repositories along with the492

raw data generated by the employed tool, DesigniteJava.493

6. Results494

6.1 RQ1. To what extent do testability smells and test smells correlate?495

6.1.1 Approach496

The goal of this RQ is to explore the degree of correlation between test smells and testability smells497

in a repository. To achieve the above-stated goal, we first detect all the considered testability and498

test smells using DesigniteJava in the selected repositories. We calculate the sum of all testabil-499

ity smells and test smells per repository. Then, we compute smell density [58] to normalize the500

total number of smells to eliminate the potential confounding factor of project size. Testability501

smell density is defined as the total number of testability smells per one thousand lines of code502

(i.e., (number of testability smells × 1,000)/total lines of code). Test smell density is defined as the503

total number of test smells in each test method (i.e., number of test smells/total number of tests).504

We use the Spearman's correlation coefficient [61] to measure the degree of association between505

these two smell types.506

Furthermore, we explore the relationship at the class-level. By the fine-grained analysis, we aim507

to see whether a class C that suffers from testability smells shows a high number of test smells in508

the test cases that primarily test the class C, and vice-versa. Testability smells occur in production509

(non-test) code and test smells arise in test code. Hence, we require amechanism tomap a produc-510

tion class with corresponding test classes that test the production class. We implemented the logic511
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of identifying the production class under test for each test case in DesigniteJava. For the analysis,512

we first find out all the method calls in each test case. Then, we identify the classes of the methods513

that are called from the test case. It is possible that a test case calls methods belonging to multiple514

classes; in that case, we attempt to identify the primary class that is being tested by the test case.515

To do so, wematch the name of the test class and the names of candidate primary classes; typically,516

a test class is named by appending Test in the class name that the test class is testing. If the test517

class name does not follow the specified pattern and there are multiple candidate classes to be518

designated as the primary production class, then we pick the first candidate class whose method519

is called from the test case. Using the above information, we prepare a reverse index mapping to520

obtain a list of test cases corresponding to each production class. We use the mapping to retrieve521

the number of test smells corresponding to each production class. As explained above, we com-522

pute the testability smell density and test smell density at the class level. Finally, we compute the523

Spearman's correlation coefficient between testability smell density and test smell density.524

6.1.2 Results525

Figure 5 shows the scatter plot between testability smell density and test smell density in the soft-526

ware systems under examination. We obtain the Spearman's correlation coefficient 𝜌 = 0.246527

(p-value < 2.2𝑒 − 16); the coefficient indicates that testability and test smells share a low positive528

correlation.529
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Figure 5. RQ1. Correlation between testability and test smell density

We extend our analysis by computing the correlation between the density of individual testabil-530

ity smells and the test smell density per repository. We observe that law of Demeter violation shows531

the highest correlation 𝜌 = 0.358 (p-value < 2.2𝑒 − 16) with test smells. On the other hand, the global532

state exhibits the lowest correlation 𝜌 = 0.076 (p-value < 2.2𝑒 − 16). Hard-wired dependency and ex-533

cessive dependency show correlation 𝜌 = 0.328 (p-value < 2.2𝑒−16) and 𝜌 = 0.248 (p-value < 2.2𝑒−16),534

respectively.535

Wealso investigate the relationship at the class-level. We identify the test cases and correspond-536

ing test smells for each production class and compute the Spearman's correlation between the nor-537

malized values of testability smells and test smells. We obtain 𝜌 = 0.050 (p-value = 2.903𝑒 − 08). The538

results indicate that testability smells and test smells do not share any correlation at the class-level539
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granularity.540

Answer to RQ1. Testability smells show a low positive correlation with test smells. A fine-

grained analysis at the class-level reveals that testability smells and test smells do not cor-

relate with each other.
541

6.2 RQ2. Do testability smells correlate with test suite size?542

6.2.1 Approach543

RQ2 investigates whether and to what extent the presence of testability smells leads to fewer test544

cases. To study this relationship, we first compute the testability smells in all the considered repos-545

itories using DesigniteJava. In addition to smells, we use the tool to figure out the total number of546

test cases in a repository; the tool marks each method as a test method or a normal non-test547

method. For simplicity, we treat each test method (i.e., a method with a @Test annotation) as a548

test case. Next, we compute the testability smell density as described in RQ1 and the test density of549

each repository. Test density is a normalized metric that represents the total number of test cases550

per one thousand lines of code. We compute the Spearman's correlation coefficient between the551

testability smell density and the test density for each repository.552

Similar to RQ1, we explore the correlation at the class-level. For the analysis, as we explain553

in RQ1, we first find out the production classes that a test case is testing. With this information,554

we prepare a mapping between production classes and their corresponding set of test cases. We555

use the mapping to retrieve the number of test smells corresponding to each production class.556

We compute testability smell density and test case density at the class level. We measure the557

correlation between testability smells and the number of test cases using Spearman's correlation558

coefficient.559

6.2.2 Results560

Figure 6 presents a scatter plot between the testability smell density and the test density of the561

selected repositories. We obtain 𝜌 = −0.033 (p-value = 0.308), which is not statistically significant.562

Therefore, testability and test smells do not correlate with each other.563
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Figure 6. RQ2. Correlation of testability smells with test density
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We extend our analysis by segregating the repositories into two categories by size. In the first564

set, we put all the repositories that have less than 50, 000 lines of code and, then, we put the rest565

of the repositories in the second set. We carry out the same analysis on both of these sets. We566

obtain 𝜌 = −0.009 (p-value = 0.789) for the first set and 𝜌 = −0.050 (p-value = 0.492) for the second567

set between testability smells and test density. The obtained results are not statistically significant.568

Furthermore, we observe the relationship between testability smells and the number of tests569

at the class-level granularity. We compute the total number of testability smells for each non-test570

class and figure out the total number of tests written for the class. In the computation, we did not571

include the classes where the number of tests for the entire project is zero indicating that either the572

test cases are not written for the project or the test cases are written using a framework other than573

JUnit. We perform the above step to reduce the noise in the prepared data. We obtain 𝜌 = −0.179574

(p-value < 2.2𝑒 − 16) as the correlation coefficient. The results clearly show that testability smells575

show a very low correlation with the size of the test suite.576

Answer to RQ2. Testability smells do not exhibit any correlation with the test density of a

software system.

577

6.3 RQ3. Do testability smells cause more bugs?578

6.3.1 Approach579

RQ3 aims to investigate whether and to what extent testability smells relate to, and even cause,580

bugs in a given software system. To answer this question, we choose five subject systemsmanually581

and perform a trend analysis by extracting information from multiple commits for each of these582

subject systems.583

We use the following protocol to identify the subject systems for this research question. First,584

we obtain a sorted list of repositories by their number of commits in descending order from our585

selected initial set of repositories (see Section 5) using the GitHub api. The intent here is to choose586

repositories with a rich commit history to facilitate detailed trend analysis. Then, we manually587

check these repositories oneby one to assesswhether a repository usesGitHub issues andwhether588

these issues are labelled as “bugs”. In addition, we execute DesigniteJava on the latest commit of589

each of these repositories to ensure that it does not take too long to run, as, otherwise, it might be590

prohibitive for us to run it to analyze the entire repository containing multiple (hundreds of) com-591

mits. Finally, we select the first five repositories that satisfy the above criteria, which are: Magarena,8592

XP,9 Rundeck,10 MyRobotlab,11 and Ontrack.12593

In order to perform a trend analysis, it is crucial to select a suitable set of commits from each594

of these repositories. One common way is to select commits at a fixed interval either by com-595

mit number (for example, every 100𝑡ℎ commit) or by commit date (for example, one commit per596

month). However, such a mechanism may result in a skewed set of commits where either sig-597

nificant changes in the commits are missed or commits with hardly any change are analyzed. To598

overcome this limitation, Sharma et al. [58] proposed a commit selection algorithmwhere commits599

are selected based on the amount of changes introduced in a commit w.r.t. the previous selected600

commit. In this work, we follow this strategy to select commits for each of the five identified repos-601

itories. Specifically, we first obtain all the commits in a repository in the main branch, and then we602

choose the first and the last commit to get started. Then, we compute five code quality metrics603

(i.e., weighted methods per class (wmc), number of children (NC), lack of cohesion among methods604

(lcom), fan-in, and fan-out) and identify changed classes based on the changes in any of these met-605

rics. If the changed number of classes between two analyzed commits differ by a threshold (set606

8https://github.com/magarena/magarena
9https://github.com/enonic/xp

10https://github.com/rundeck/rundeck
11https://github.com/MyRobotLab/myrobotlab
12https://github.com/nemerosa/ontrack
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to 5%), we consider the commit having significant changes [58]. We then pick the middle commit607

(i.e., the commit between the currently selected two commits) and repeat the process until we find608

commits with non-significant changes [58].609

Oncewe identify the set of commits for the trend analysis, we detect testability smells in each of610

the selected commits for each repository by using our DesigniteJava tool. Also, we identify the total611

number of open and closed issues that has the tag “bugs” when the commit wasmade. The GitHub612

api does not provide a direct way to figure out issues at the time of a specific commit. To identify613

issues at the time of a specific commit, we first fetch the issues that are open (or closed) since the614

time of a commit and subtract them from the total open (or closed) issues at present. It gives us the615

total number of open (or closed) issues at the time of a specific commit. We record this information616

along with the total detected testability smells for each selected commit. Using this information,617

we compute the Spearman's correlation coefficient between the total detected testability smells618

and the total number of issues (i.e., the sum of open and closed for each considered commit).619

We also carry out a causal analysis to figure out whether testability smells cause bugs. We use620

Granger's causality [24] analysis for this purpose. Themethod has been used in similar studies [10,621

49, 58] to explore the causal relationship within the software engineering domain. Equation 1622

presents Granger's method mathematically.623

𝑎(𝑡) =
𝑘

∑
𝑗=1

𝑓(𝑠𝑡−𝑗) +
𝑘

∑
𝑗=1

𝑓(𝑏𝑡−𝑗) (1)

In our context, time series 𝑆 and 𝐵 represent the testability smell density i.e., total number of624

testability smells per one thousand lines of code, and reported bugs computed over a period of625

time. Variables 𝑠𝑡 and 𝑏𝑡 represent testability smell instances and total reported bugs at time 𝑡. If626

the predictions of variable 𝑏 with the past values of both 𝑠 and 𝑏 are better than the predictions627

using only the past values of 𝑏, then testability smells cause the bugs.628

In such analysis, we must ensure the stationary property of a time-series before analyzing it629

and drawing conclusions based on that. A time-series is stationary if its statistical properties, such630

as mean, variance, and autocorrelation, are constant over time [11]. A non-stationary time-series631

shows seasonal effects, trends, and fluctuating statistical properties changing over time. Such632

effects are undesired for the causality analysis and thus a time-series must be made stationary633

before we perform the causality analysis. We carried out the augmented Dickey-Fuller unit root634

test [20] to check the stationary property of our time-series. Initially, our time-series was non-635

stationary. There are a few techniques to make a non-stationary time-series a stationary one [35].636

We addressed this issue by applying a difference transformation, i.e., subtracting the previous ob-637

servation from the present observation for all columns. Techniques such as differencing, that we638

applied, help stabilize the mean of a time series by removing changes in the time series, and there-639

fore eliminate or reduce the non-stationary nature of the series [35]. After the transformation, we640

obtain a stationary time-series that we confirmed by performing the augmented Dickey-Fuller unit641

root test again. Finally, we carry out the causality analysis using Equation 1.642

6.3.2 Results643

Table 4 presents the results of the experiment. The number of analyzed commits ranges between644

38 (for XP) and 180 (for Rundeck). The size of the selected repositories varies between ≈ 71 kloc (for645

Magarena) to ≈ 181 kloc (for XP) as measured for the most recent analyzed commit. We compute646

the total number of testability smells in each selected commit as well as the total reported (open647

and closed) issues marked as bugs at the time of the corresponding commits for each of the se-648

lected repositories individually. The table shows the total number of testability smells detected in649

the most recent analyzed commit. We compute the Spearman correlation coefficient between the650

reported issues and testability smell density. We observe mixed results for the correlation analy-651

sis; two repositories show strong, one repository shows moderate, and one repository shows low652
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Table 4. RQ3. Correlation and causation relationships between testability smell density with the number of

reported bugs

Reposi-

tory

#Com-

mits

LOC Testabil-

ity Smells

Correlation

Coefficient

(p-value)

Causality

p-value

Magarena 66 71, 567 1, 425
0.482(4.4𝑒 − 4) 0.119

MyRobot-

lab

76 118, 532 2, 643
0.761(< 1.4𝑒 − 15) 0.661

Ontrack 107 17, 009 72 0.105(< 0.280)
0.708

Rundeck 180 81, 198 1, 570
0.193(< 0.009) 0.825

XP 38 181, 278 2, 143
0.937(< 2.2𝑒 − 16) 0.249

correlation. We observe that the correlation coefficient is not statistically significant for theOntrack653

repository.654

The last column of Table 4 presents the results of the causality test. Each cell in the column655

shows the p-value computed for the causal relationship of testability smells with the reported bugs.656

The results for all the analyzed repositories show that testability smells do not cause bugs as all657

the obtained p-values are greater than 0.05.658

Answer to RQ3: The causality analysis reveals that testability smells do not cause bugs.

659

7. Implications and Discussion660

The results of our first research question reveal that there is no correlation between testability661

smells and test smells. This suggests that writing good-quality test code is possible even with poor662

testability, at least for all testability smells considered herein. The results also indicate that either663

the difficulty in writing tests due to the considered testability smells is orthogonal to test smells, or664

existing testing frameworks, e.g.,mocking frameworks, make it easier to overcome the challenges665

posed by poor testability. Researchersmay investigate further the influence of tools' features, such666

as mocking, to facilitate testing despite poor testability.667

We explore the effect of testability smells on test suite size, represented by the number of668

test cases, in RQ2. Figure 7 shows box-plots of the categories of testability smell density with test669

density. We divide the repositories into four categoriesC1 toC4 based on the value of the testability670

smell density. For example, repositories with a testability smell density of less than five are put into671

category C1. We observe that themedian test density for the first category is the highest among all672

the categories and the test density dips for the category C2. However, against the common belief673

of developers, test density rises again in categories C3 and C4. The analysis further reaffirms674

that testability smells do not share a linear monotonic relationship with test density.675

Our experiment to investigate the correlation of testability smell density with the number of676

reported bugs does not show a consistent strong relationship. The strong correlation in two repos-677

itories and the moderate correlation in a repository show that the density of testability smell in-678

creases as the size of the software grows since the total number of reported bugs always increases679

with time. Hence, a strong correlation implies that the rate of testability smells increases as the680

software systems grow.681

In the context of our study, one might wonder about the relationship of testability smells with682

traditional code smells. Given the definition and scope, it is likely that some code smells are also683

considered testability smells if they impact testability. However, this interpretation is not uniquely684
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Figure 7. Box-plots of the categories of testability smell density with test density

applicable only in this context. For example, a violation of the ‘single responsibility principle’ may685

introduce incohesive class (or multifaceted abstraction) at design and ‘feature concentration’ smell686

at architecture granularity. Nevertheless, we perform an analysis of testability smell density with687

code smell density not only at the repository-level but also at a fine-grained granularity of class-688

level (where we compute the total number of smells for each class of the considered repositories).689

We use the DesigniteJava tool to detect code smells and testability smells. We compute the Spear-690

man's correlation coefficient between the normalized total number of smells. At the repository-691

level, we obtain 𝜌 = 0.851 (p-value < 2.2𝑒 − 16) as the Spearman's correlation coefficient. Similarly,692

we get 𝜌 = 0.857 (p-value < 2.2𝑒−16) when we compute the correlation at the class-level. The strong693

correlation indicates that the presence of a large population of code smells is associated with the694

presence of a large number of testability smells and vice versa.695

The elicited developers' perspective clearly emphasizes the importance of testability smells and696

the potential negative impact on testing aspects. However, the empirical evidence observed in697

the study does not agree with the perspective. We observed that testability smells, at the class-698

level fine-grained granularity, do not correlate with test smells. Also, the smells do not show any699

influence on test density. Furthermore, the results show that testability smells do not contribute700

to a higher number of bugs. The results suggest that despite developers' invaluable experience,701

their opinions and perspectives might need to be complemented with empirical evidence before702

bringing it into practice.703

8. Threats to Validity704

This section discusses the potential threats to the validity (construct, internal, and external) of our705

reported results.706

Construct validity. Construct threats to validity are concerned with the degree to which our707

analyses measure what we claim to analyze. In our study, we used our DesigniteJava tool to iden-708

tify the four testability smells. However, the strategies used to identify testability smells may not709

capture all testability cases. To mitigate this threat, we thoroughly tested the tool using different710

cases for each smell, and also fine-tuned the tool based on testing. Then, we performed a manual711

analysis of the four testability smells on a complete project, namely wsc. The results of the man-712
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ual validation show a very high recall and precision. Similarly, we also implemented support to713

detect test smells by following detection strategies proposed in the existing literature to identify714

test smells.715

Internal validity. Internal threats to validity are concerned with the ability to draw conclusions716

from our experimental results. We carried out an online anonymous survey targeting develop-717

ers by posting our survey on social media professional channels (Twitter, LinkedIn, and Reddit).718

Given the anonymity of the survey, we do not have any mechanism to verify the level of experi-719

ence claimed by the participants. However, based on the quality of the responses provided by the720

participants, we believe that such a threat is mild. In addition, software developers participated in721

our online survey were not selected based on the repositories we analyzed. As a result, opinions of722

developers could be influenced by the repositories they usually contribute to and might not agree723

with our empirical results. To mitigate this, we did not target developers from specific repositories724

but rather expanded our participation range by posting invitations on online professional social725

media channels.726

Agreement bias (or acquiescence bias) refers to the participants' tendency to agree with a state-727

ment rather than disagreeing with it [66]. We design our questionnaire in a neutral tone and pro-728

vide options by using a Likert-scale to mitigate this threat. A similar threats to validity is partic-729

ipants' acquaintance to the authors. To avoid this threat, we did not circulate the survey in our730

internal organization groups. Also, we restricted the sharing to professional social media channels731

and hence did not sharing the survey on our, for example, Facebook profiles or groups.732

RQ3 investigates causality between testability smells and the number of reported bugs; the733

analysis reveals that the testability smells do not cause bugs. There are two possible threats to the734

conclusion. First, it is possible that the testability smells other than those considered in the study735

have a larger impact on bugs. However, though there could be many other testability smells, the736

considered smells are representative as shown by our developers' survey. Second, the study only737

considered reported known bugs. It is possible that there are many more unknown bugs that may738

influence the results and conclusion of the experiment.739

External validity External threats are concerned with the ability to generalize our results. The740

1, 115 GitHub repositories analyzed in this paper were selected using well-defined criteria from the741

RepoReapers dataset. However, some repositories might have switched from public to private or no742

longer exist on GitHub, which might affect the criteria used to select repositories in this paper. In743

addition, all the selected repositories contain softwarewritten in Java, whichmight affect the gener-744

alizability of our findings. The major reason for focusing on Java is that the majority of research on745

software quality analysis has been done on Java code, and hence we can leverage existing tools to746

achieve the goals of our study. Along the same lines, the implemented test smell detection works747

only if the tests are written using JUnit. The rationale behind this decision is that JUnit is the most748

commonly used testing framework for Java. We encourage future research to expand the analyses749

conducted in this paper to software written in different programming languages.750

9. Conclusions751

This study explores practitioners' perspectives about testability smells as well as experimental ev-752

idence gathered via a large-scale empirical study on 1, 115 Java repositories containing approxi-753

mately 46 million lines of code in order to better understand the relationship of testability smells754

with test quality, number of tests, and reported bugs.755

Specifically, the study surveyed software developers to elicit their opinions and perspectives756

about testability smells. The survey showed that software developers consider testability a factor757

that impedes software testing; the survey also revealed their strong agreement with the proposed758

testability smells. Then, we conducted an extensive empirical evaluation to observe the relation-759

ship between testability smells and test-related aspects such as test smells and test suit size. Our760

results show that testability smells do not correlate with test smells at the class granularity and761

Sharma et al. 2023 | Investigating Developers’ Perception on Software Testability | 20 of 25



with test suit size. Furthermore, we did not find evidence that testability smells cause bugs.762

Our study has implications for both the research and industrial communities. Software de-763

velopers often have strong opinions about software engineering concepts; however, experimental764

evidencemay not support them in general. Specifically, this study shows that developers' opinions765

about testability do not concur with the experimental evidence. Hence, opinions and perspectives766

must be complemented with empirical evidence before bringing into practice. This also highlight767

the importance of data-driven software engineering, which advocates the need and value of adopt-768

ing design and development decisions supported by data. Researchers can use our tool to detect769

testability smells to further evaluate and confirm our observations. Also, researchers may pro-770

pose additional testability smells and investigate their collective impact on other relevant testing771

aspects, such as testing efforts.772
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