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Abstract—The use of machine learning to automate the detec-
tion of refactoring candidates is a rapidly evolving research area.
The majority of work in this direction uses source code metrics
and commit messages to predict refactoring candidates and do
not exploit the rich semantics of source code. This paper proposes
a new approach for extract method refactoring candidates identi-
fication. First, we propose a novel mechanism to identify negative
samples for the refactoring candidate identification task. We
then employ a self-supervised autoencoder to acquire a compact
representation of source code generated by a pre-trained large
language model. Subsequently, we train a binary classifier to
predict extract method refactoring candidates. Experiments show
that our new approach outperforms the state of the art by 30%
in terms of F1 score. The proposed work has implications for
researchers and practitioners. Software developers may use the
proposed automated approach to predict refactoring candidates
better. This study will facilitate the development of improved
refactoring candidate identification methods that the researchers
in the field could use and extend.

Index Terms—extract method refactoring, deep learning, code
representation

I. INTRODUCTION

Refactoring is a process and a set of techniques to improve
source code’s structure and quality without impacting the
behavior and functionality of the software, thus making the
software more maintainable [1], [2]. It is a widely used
technique among software developers as it improves code
readability, testability, flexibility, and adaptability to introduce
changes to meet new requirements [3].

One of the critical questions that a developer answers during
software development is whether a source code entity (e.g., a
method or a class) requires refactoring and if yes, what is
the most appropriate refactoring in the context. Practitioners
decide what to refactor according to their intuition and expe-
rience. They can also use automated tools to calculate code
quality metrics and code smells [4]. However, metrics and
smells focus on the problem aspect and provide little help to
decide whether and what refactoring technique must be applied
to remove the smell or improve the metrics.

To overcome this challenge, many studies propose tech-
niques to predict refactoring candidates by analyzing source
code properties [S], [6], [7]. However, existing efforts in
this direction suffers from several deficiencies. Currently, the
state-of-the-art research in detecting refactoring candidates,
such as Aniche et al. [5], follows a metric-based approach,
i.e., it collects code quality and process metrics, and trains
a machine learning model using the collected metrics as

features. Similarly, Xu et al. [8], use variable accesses in
addition to code quality metrics. These approaches fail to
capture the hidden contextual and syntactical characteristics
of code that might contribute to better refactoring candi-
date identification. To overcome the issue, researchers have
used code embeddings [7], [6] extracted from Code2Vec [9].
However, existing studies in this domain do not capture rich
contextual and syntactical characteristics of code [10f]; such
information could significantly improve the performance of
the identified refactoring candidates. Secondly, existing studies
lack an appropriate mechanism to define and identify negative
samples for their dataset in this context. A code snippet is
considered a negative sample if it is not a candidate for
the specific refactoring. Typically, studies use tools such as
RefactoringMiner [[11]], [12]] to identify positive code samples.
However, to identify negative samples, researchers define
unsound rule-based heuristics resulting in a low-quality noisy
dataset [13]. Finally, most of the previous research in this field
fails to consider the real-world ratio of positive and negative
samples while evaluating the predictive models. Ignoring this
guideline results in a model that works well in an experimental
study but performs poorly when deployed in a real-world
context [14], [15].

In this paper, we address the aforementioned deficiencies.
We present an automated Deep Learning (DL)-based technique
to identify candidates for extract method refactoring. The
extract method refactoring isolates a code block from a larger
method and generates a new method based on the extracted
code snippet [2]. We kept our focus on extract method because
it is one of the most commonly used refactoring [16]. We
create our dataset from open-source Java repositories and
prepare an effective code representation capturing syntactic
and semantic properties of methods by combining GraphCode-
BERT [1']] and Autoencoder [[18]]. The representation is then
used to identify extract method refactoring candidates.

Contributions of the study: We propose a novel mechanism
to properly identify positive and negative samples for extract
method refactoring. The mechanism helps us create a dataset
containing 55, 430 positive and negative samples that serves as
a benchmark for automated refactoring candidate identification
approaches properly. To study the effectiveness of the method
representation generated using GraphCodeBERT in a binary
classification task, we propose an Autoencoder-based approach
to identify latent features.

Replication package: We made our code [19] publicly



available with our training data [20] for easier replication and
use.

II. APPROACH

This section describes the experimental approach followed
to investigate the potential of Large Language Models (LLMs)
in determining the suitability of a method for extract method
refactoring.

A. Overview

The study aims to develop a DL-based extract method refac-
toring candidate identification technique that addresses the de-
ficiencies in the existing studies. Figure[I] presents an overview
of our approach. We first pick a set of repositories to prepare
our dataset. We use existing tools RefactoringMiner [[11] and
PyDiriller [21], to segregate methods into positive and negative
samples. Our approach utilizes GraphCodeBERT to generate
embeddings for each sample. We employ a DL model based
on Autoencoder [18] that is used for feature extraction and
dimensionality reduction. We utilize the encoder component
of the trained Autoencoder to generate a lower-dimensional
latent space representation from the initially high-dimensional
embedding input. The representation obtained from the bot-
tleneck layer of Autoencoder is then used as a feature vector
to train a Random Forest (RF) classifier on the extract method
identification task. We formulate the following research ques-
tions.

RQ1 How does our proposed approach perform compared to
the state-of-the-art?
By answering this research question, we intend to evaluate
and validate the performance of the proposed approach as
compared to the state of the art.
RQ2 How effectively does the autoencoder extracts features for
the classification task?
In this research question, we aim to evaluate the effectiveness
of the employed autoencoder-based model by extracting the
learned features and using them for the classification task.

B. Dataset preparation

We utilized a subset of repositories (5%) from the 11,149
open-source Java repositories used by Aniche et al. [3, as
working with the entire set required extensive computing
infrastructure. This initial selection yielded 558 repositories,
from which we excluded repositories that were no longer
available on GitHub or lacked any instances of extract method
refactoring throughout their history. After filtering, we ob-
tained 410 repositories with at least one extract method refac-
toring performed. To leverage a trained autoencoder and using
the trained encoder of the autoencoder for the classification
task without data leakage, we divided this dataset into two
parts: one for autoencoder pipeline with 208 repositories and
the remaining 202 for the classification pipeline.

As shown in step @ of Figure [l| we use RefactoringMiner,
a state-of-the-art refactoring detection tool [11], [12]] to prepare
our dataset. This tool reports performed refactorings, if any,
in each commit within a Java repository’s history. It provides

essential metadata such as the code component involved (e.g.,
method start line and end line in the case of extract method
refactoring) and the associated commit hash. Leveraging this
information, we utilize PyDriller [21] to iterate through the
identified commits and extract source code of the involved
methods.

We identify positive samples where extract method refac-
toring has been applied following the mechanism described
above. Identifying negative samples for extract method refac-
toring is a challenging task. Merely excluding methods not
reported by RefactoringMiner is insufficient since the ab-
sence of refactoring does not guarantee a method is not a
refactoring candidate. Previous work have proposed heuristics-
based approaches to address this challenge. For instance,
Aniche et al. [5] used a criterion based on the method’s
modification history, while Yamanaka et al. [22] selected code
portions that differ from actual extractions. However, these
heuristics may introduce noise and create sub-optimal datasets
by misclassifying potential extract method candidates.

We propose a new mechanism to identify negative samples
for the study. A method is considered a negative sample in
commit C,, if it underwent extract method refactoring in its
parent commit C,_;. The rationale behind this idea is that it
is highly unlikely that a method that underwent extract method
refactoring will again go through the same refactoring. This
reduces the risk of false negative detection and ensures a high
quality dataset. The aforementioned approach of identifying
positive and negative samples, resulted in 27,634 and 27,796
samples for training and evaluating the Autoencoder, and
binary classifier respectively.

C. Data representation

In step 9, we use GraphCodeBERT to capture both syn-
tactic and semantic information of code, providing a compre-
hensive representation of code snippets by using graph-guided
masked attention function to incorporate the code structure.
The initial step in processing the input code through the
GraphCodeBERT model involves tokenization and encoding.
To accomplish this, we utilize the pre-trained GraphCode-
BERT tokenizer. To ensure the token sequence adheres to the
model’s maximum length of 512, we truncate it if it surpasses
this limit. Subsequently, we perform batch encoding on the
token sequence, generating input_ids which represent the
tokens numerically for the model.

To extract the embeddings, we pass this encoded input
to GraphCodeBERT. During the forward propagation of the
input, each of the 12 hidden layers of the model generates
individual token embeddings based on the surrounding context.
To get the condensed representation of the sequence of tokens,
we use mean pooling. We conducted a pilot study and we
found that this approach performs better than taking the
embedding of the [SEP] token alone. This results in a single
embedding vector of size 768 for each of the input sample.
We consider this as our feature vector for the classification
task.
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Fig. 1. Overview of the proposed approach

D. Model training and classification

1) Autoencoder: We use the generated embeddings from
GraphCodeBERT as the input for training the autoencoder
model (step e). The architecture of the autoencoder that we
trained consists of an encoder with three fully connected linear
layers and ReLU activation to learn the hidden representation
that reduces the input dimension to a bottleneck layer of
size 128. The decoder reverses this process to reconstruct the
original input of size 768. The autoencoder model is trained on
70%. The rest 30% is used to validate the model. We calculate
the reconstruction loss using Mean Squared Error (MSE) loss.

2) Binary classifier: After training the autoencoder, in
step @), we take the encoder part of the trained model and use
it as our feature extractor for the binary classification dataset.
We train two classifiers—a traditional machine learning model
Random Forest and a DL-based feed forward neural network,
and compare their performance. We chose to use Random
Forest due to its ensemble learning method for classification
and its ability to learn the non-linear relationship between
the features, Random Forest has shown to perform very well
in different software engineering tasks [15[], [23] including
refactoring identification [3], [24].

To train our models, we first split the 27,796 samples into
train, validation, and test sets in 70 : 10 : 20 ratio using
stratified sampling. We use GridSearchCV to select the optimal
hyper-parameters for Random Forest. The optimal set of hyper-
parameter values along with their search space is reported in
Table [] The neural network classifier consists of two fully
connected layers with ReLU activation and a final sigmoid
activation layer.

3) Evaluation: To evaluate our models, we calculate the
accuracy, precision, recall, and F1 score.

Initially, the test split of our classification dataset, contains
positive and negative samples in equal proportion. However, it
has been argued [14]], [[15] that a test set not representative of
the real-world may show good performance while experimen-
tation but do poorly when deployed in a real-world scenario.
To address this issue, we identify the ratio of positive and

TABLE I
OPTIMAL HYPER-PARAMETER VALUES FOR RANDOM FOREST
Parameter Search space  Best value
Number of trees [100, 200, 300, 1000] 1000
Minimum samples split [8,10,12] 10
Minimum leaf node samples (3,4, 5] 3
Maximum features [2,3] 2
Maximum tree depth [80,90, 100, 110] 80

negative samples in the following manner. First, we sample
20 repositories from our dataset randomly. For each of the
selected repositories, we identify the commits in which extract
method refactoring has been applied using RefactoringMiner
along with the count of such methods (posCount). Using
PyDiriller, we identify the count of total methods present
in the source code for that commit (fotalCount). Then we
compute the ratio % and take the mean across all
identified commits to find a real-world ratio of extract method
refactoring candidates. We modify the test set to represent the
computed ratio (85 : 15) and then perform the evaluation.

III. EXPERIMENTAL RESULTS

RQ1: How does our proposed approach perform compared to
the state-of-the-art?

In this research question, we compare our two approaches
M1 (i.e., neural network-based classification) and M2 (i.e., Ran-
dom Forest-based classification), where both the models utilize
GraphCodeBERT and Autoencoder to generate latent repre-
sentation. We compare the results from our models against
state-of-the-art approach from Aniche et al. [5]. Though the
baseline study compare many machine learning techniques, we
chose to compare our models with only their Random Forest
model because it reported the best results in that study. All of
the models we tested using the same test split.

Table || presents results of our experiments. From the results
it is evident that our M2 model outperforms the baseline
as well as the M1 model. We observe that both M1 and
M2 outperform the baseline. Specifically, we see that M2



TABLE II
EXPERIMENTAL RESULTS FOR RQl

Models Accuracy Precision Recall F1-
score

M1 (GraphCodeBERT + 0.57 0.71 0.57 0.63

Autoencoder + Neural

Network)

M2 (GraphCodeBERT + 0.87 0.90 0.87 0.88

Autoencoder + Random

forest)

Baseline (with random 0.84 0.44 0.87 0.58

forest)

outperform the Random Forest used by Aniche et al. by nearly
50% in terms of precision. At the same time, our model M2
exhibits a good recall rate of 0.87. Consequently, we see that
our model performs significantly better than the considered
baseline model by approximately 30% in terms of F1 score.

RQ1 Summary: Our results show that our Random
Forest-based model outperforms the baseline model
significantly (by 30%, in terms of F1 score). The
results indicate that our code representation is suc-
cessfully capturing syntactic and semantic character-
istics of code necessary to identify extract method
refactoring candidates.

RQ2: How effectively does the autoencoder extracts features
for the classification task?

We train an autoencoder model and use the trained encoder
part of it as a feature extractor. We do so to reduce the
vectors’ dimensionality and extract relevant features from the
embeddings generated from GraphCodeBERT .

Fig. 2. Class separation with embed- Fig. 3. Class separation with encoded
dings (from GraphCodeBERT) embeddings (from Autoencoder)

To measure the performance and usefulness of the trained
autoencoder model as a feature extractor, we first analyze the
t—-SNE [25] plots of the embeddings generated by Graph-
CodeBERT and those generated by the combination of Graph-
CodeBERT and Autoencoder. We do so to study the class
separability. The distinguishability of classes in the t—SNE
space is assessed through a clear separation and quantified
by calculating the Euclidean distance between the centroids
of each class. Figure [3] shows a reasonably clear bifurcation
between the classes with an euclidean distance of 0.367
as compared to 0.122 for Figure 2] We can infer that a

classification model trained on the encoded embedding will
perform better than the one trained on embeddings alone.

To further investigate the effectiveness of these repre-
sentations, we perform an ablation study where we train
classifier with and without the autoencoder representation
of the embeddings. We report the performance results in
Table The Random Forest classification model, when
trained with the encoded representation of the embedding
provided by Autoencoder, outperforms the one trained with
only the GraphCodeBERT embedding vector as features.
These findings support our claim that the autoencoder extracts
features and reduces dimensionality effectively in the context
of refactoring candidate identification.

RQ2 Summary: Autoencoder-encoded code repre-
sentations from GraphCodeBERT significantly im-
prove classification performance compared to Graph-
CodeBERT representations alone.

TABLE III
ENCODED EMBEDDING PERFORMANCE
Models Accuracy Precision Recall F1-
score
Embeddings 0.57 0.71 0.57 0.63
Encoded embeddings 0.87 0.90 0.87 0.88

IV. RELATED WORK

A. Refactoring candidate identification using traditional tech-
niques

Software developers can manually decide what to refactor
according to their intuition and past experiences [26]]. Often,
they use automated tools to calculate code quality metrics
and code smells to identify refactoring candidates [3[], [26].
Another method to identify refactoring candidates is to define
a set of preconditions or compliance rules. If a code did
not follow these rules, it was considered a candidate for
refactoring. Studies by Bois et al. [27]] and Kataoka ef al. [28]
used such compliance rules.

Another technique considers creating clustering algorithms
to identify if code needs refactoring. Czibula et al. [29]] and
Serban et al. [30]], created clusters based on the distance
between methods and attributes within and outside of classes
to identify numerous refactoring candidates. Similarly, Bavota
et al. [31] suggest a graph-based approach that uses weighted
graphs instead of abstract syntax trees to identify methods that
can be extracted. Finally, Tsantalis et al. [32] used code slices
to identify extract method candidates.

B. Detecting refactoring with Machine Learning techniques

Many studies have explored ways to identify refactoring
candidates automatically using machine learning. Typically,
such studies use source code metrics or commit messages to
train a model. For example, Aniche et al. [3]] predict 20 kinds
of refactorings at the method, class, or variable level. They



use a large number of code, process, and ownership metrics
to train six supervised machine learning algorithms. The study
reports that Random Forest model performs the best among the
compared models. Gerling [33] conducted an empirical study
as an extension of Aniche er al’s study. They focused on
improving the data collection process in Aniche et al.’s study
to create a high quality large-scale refactoring dataset.

Similarly, Van Der Leij et al. [24] analyze five machine
learning models to predict extract method refactoring and
compare the results with industry experts. They collect 61
code metrics and analyze Random Forest, Decision Tree,
Logistic Regression, Linear SVM, and Gaussian Naive Bayes
algorithms. They found Random Forest as the best performing
model. Kumar et al. [34] perform a study to predict method-
level refactoring and analyze 10 machine learning classifiers.

Sagar et al. [35] considers the problem of refactoring
candidate prediction as a multi-class classification problem.
Their study uses source code quality metrics and commit
messages as features to predict six method-level refactorings.
They compare two machine learning models: a text-based
model that analyses keywords from commit messages and a
source code-based model that analyses 64 code quality metrics.
Kurbatova et al. [7] use code embeddings generated from
Code2Vec [9] to train their machine learning model to predict
the move method refactoring.

V. THREATS TO VALIDITY

Construct validity: Construct validity measures the degree to
which tools and metrics actually measure the properties that
they are supposed to measure. It concerns the appropriateness
of observations and inferences based on measurements taken
during the study. The quality of positive and negative samples
extracted from RefactoringMiner and PyDriller poses a threat
to validity. Though RefactoringMiner and PyDriller are state-
of-the-art tools that are widely used and considered accurate,
to mitigate the threat, we randomly picked up a subset of the
identified negative samples and manually evaluated the quality
of the samples.

Our approach uses a significantly smaller dataset (approxi-
mately 5%) compared to the dataset used in the state-of-the-
art approach. Though the chosen repositories are representa-
tive, it can be considered a threat to validity. We chose the
smaller dataset because of the computing resources required
for the full-size dataset. Additionally, in this study, we aimed
to explore the feasibility and effectiveness of the proposed
approach. In the future, we aim to repeat the experiment with
a larger dataset.

External validity: External validity concerns the general-
izability and repeatability of the produced results. One of
the threats to validity in this paper is that the approach
proposed is exclusive to extract method refactoring. Using
our approach for another kind of refactoring is challenging
and requires extensive reworking of the approach used. For
example, move method refactoring moves a method to an
appropriate class [2]. We cannot apply the same approach
that we adopted to create extract method dataset for move

method refactoring because we will not have the code to
collect in the refactored commit since the method would have
moved to another class. A similar challenge is expected when
considering other refactoring types, such as pull up method and
push down method. In the future, we would like to address this
challenge and propose an effective and generic dataset-creation
approach for different refactoring types.

VI. CONCLUSION AND FUTURE WORK

To summarize, in this paper, we presented a technique for
identifying extract method refactoring candidates using source
code representation generated using GraphCodeBERT. We
proposed a new technique for preparing an effective dataset
for the refactoring candidate identification problem. Our ex-
perimental results demonstrated that our approach, that use
source code embeddings, outperforms state-of-the-art machine
learning-based technique trained on source code metrics.

In the future, we would like to extend the scope of our
approach in terms of other kinds of refactorings, programming
languages, and industry-based codebases. We also aim to in-
crease the dataset size for extensive evaluation. In addition, our
future studies will explore diverse code embeddings techniques
to measure their effectiveness in this context.
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