
Mining and Fusing Productivity Metrics with Code
Quality Information at Scale

Harsh Mukeshkumar Shah, Qurram Zaheer Syed, Bharatwaaj Shankaranarayanan, Indranil Palit,
Arshdeep Singh, Kavya Raval, Kishan Savaliya, Tushar Sharma

Dalhousie University
Halifax, Canada

{harsh.shah, qurram.syed, bharatwaaj, indranil.palit, singh.arsh, kv286760, ks317715, tushar}@dal.ca

Abstract—Productivity in software development is a complex,
multi-faceted concept expressed as a combination of effectiveness
and efficiency. From a quantitative lens, productivity is often
interpreted from a collection of activities and metrics such as
the number of commits, lines of code added and removed,
and the number of issues closed. Software development team
managers often seek to track developers’ activity and productivity
for short-term planning and medium-term team performance
measurement. Existing tools and platforms analyze and visu-
alize individual aspects of developers’ activity, productivity, or
quality. However, a tool that fuses multiple information streams
representing productivity and quality aspects is missing. The
proposed tool QConnect fills the gap by mining, analyzing, and
fusing information from software development-relevant streams.
QConnect, on the one hand, mines the repository and issue
tracking metadata from GITHUB and Jira issue tracking system;
on the other hand, it gathers information related to code
quality using external tools Designite and RefactoringMiner. By
tying-in productivity measures with code quality information,
stakeholders can assess not only how fast but also how well the
project is progressing.
Demo: tool website and demo video.

Index Terms—Developer activity, repository mining, productiv-
ity, software quality, dashboard, software project management.

I. INTRODUCTION

Productivity in software engineering is far from a simple
ratio between output and input; it is a complex multi-faceted
concept expressed as the combination of effectiveness and
efficiency [1]. When it comes to concrete metrics, software
engineering community no longer considers Lines of Code
(LOC) alone as a good metric for software productivity [2],
[3]. Jaspan et al. [4] argues that there is no single metric
that can be used universally to measure productivity. Despite
that, software project managers often seek to track developers’
activity and productivity [4]. Tracking teams’ activities and
productivity is used for short-term planning and measuring
performance of the team [5], [6]. Software development or-
ganizations use metrics such as LOC, function points, and
velocity [1]. In addition, such organizations seek other data
points (such as repository metrics including open and closed
issues) as well as code quality and quality assurance measures
to gain further insights about their development effort.

There has been some attempts from academic researchers
and commercial tool vendors to capture project development

activities and metrics of productivity. Axosoft [7] offers a
dashboard to track progress for an agile project. Jira dashboard
from Atlassian tool suite [8] also allows tracking progress
based on Jira tickets. Similarly, Bitergia’s analytics platform
[9] and DueCode [10] generate reports covering various as-
pects of productivity and contributions. On the other hand,
there has been various tools and platforms such as SonarQube
[11], CodeScene [12], and Designite [13] to analyze source
code and provide code quality information. However, the
present set of tools target either effectiveness or efficiency
aspect of a software development effort. In other words, the
present set of tools offer, with varying degree of support,
either project activity and productivity metrics or code quality
reports; they do not provide a quality-aware development
status where software code quality information is presented in
the context of project activities and productivity measures. Due
to this, a project manager can observe only a partial picture
of the ongoing effort in a software development project.

QConnect aims to fill the gap by offering a quality-aware
dashboard for developers’ activity and productivity. The goal
of the tool is to mine information from multiple relevant
sources within the software development domain and fuse them
together to reveal insights that are visible only when multiple
information streams are fused. The tool offers a comprehensive
set of development activity and productivity metrics such as
commit frequency for all repositories, code churn (by team,
user, and by file), pull-request frequency and time to close pull-
requests, commits against Jira tickets, and Jira tickets closing
frequency. In addition, QConnect provides detailed information
about the evolving code quality with development activities.
The information includes detected smells at architecture, de-
sign, implementation, and test granularity over time, smell
density by smell type over time, and refactoring frequency
(by team and by commit) along with specific refactoring types.
Tying-in productivity measures with code quality information
from multiple sources, a project manager as well as the entire
development team can assess not only how fast but also
how well the project is progressing. Furthermore, QConnect
can also be used to infer data-driven insights about potential
bottlenecks and issues.

https://qconnect.dev
https://youtu.be/MFqYVQnWxgQ

II. RELATED WORK

There have been many attempts to build dashboards target-
ing team-level and personal developer workspace. RescueTime
[14] allows developers to set personal software development
goals and provides a productivity score. WakaTime [15] inte-
grates with IDEs and provides a dashboard with metrics such
as programming language used. Codealike [16] also integrates
itself with Visual Studio IDE and offers features for developers
to retain their focus. QScored [17] analyzes GITHUB open-
source repositories and offers code quality metrics and code
smells in the form of a dashboard.

A set of tools and platforms offers a dashboard for software
project activities and productivity. GITHUB provides a basic
set of plots such as commit and contribution frequency to
visualize project activity. One may use Atlassian tool suite
[8] to track progress based on their Jira dashboard. Similarly,
Axosoft [7] offers a sprint dashboard to track progress for
an agile project. Finally, Bitergia [9] developed an analytics
platform to compute project metrics and to generate reports
covering various aspects of productivity and contributions.

A set of tools focus on quality analysis such as Code-
Scene [12] and Code Climate [18]; these tools integrate with
GITHUB directly and are also available via the GITHUB
Marketplace. CodeScene offers a behavioral quality analysis
of the tool to keep the code maintainable. Apart from them,
there are variety of tools that work independently i.e., without
integration with IDEs or code hosting platforms, but provide
dashboard containing comprehensive code quality information.
These tools include SonarQube [11] and Designite [13].

Insights lie in combining relevant information streams
within software development. To the best of our knowledge, the
present set of tools provide standalone pieces of information
and do not combine the information originating from multiple
tools, processes, and artifacts within a development context.
Therefore, the existing tools do not offer insights that can
be seen only by combining the information. QConnect aims
to cover the gap by fusing detailed productivity metrics with
code quality information.

III. THE PROPOSED TOOL—QCONNECT

A. Architecture

Figure 1 presents an overview of the tool’s architecture.
The implementation is divided into two major modules—front-
end and back-end. The front-end is developed using React;
the back-end is written in Python using Django framework.
The front-end provides a set of interactive visualizations cat-
egorized into three dashboards — summary, productivity, and
quality. The tool offers a set of filters (i.e., repository, time-
frame, and user) to customize the view wherever applicable.

In the back-end, repository processors carry out the heavy-
weight functionality. Bootstrap repository processor takes
one repository and fetches all the required information from
GITHUB and Jira with the help of back-end services when
the repository is freshly added to the tool. Periodic repository
processor fetches the needed information since the last time

• Summary dashboard
• Developers’ Activity and productivity

dashboard
• Quality dashboard

Filter options: by repository,
timeframe, and user

Jira wrapper

GitHub wrapper

• Bootstrap Repo.
Processor

• Periodic Repo.
Processor

Repository queue
GitHub

Jira

User interface

Backend

Fig. 1. Overview of the QConnect architecture

it was analyzed. The repository processors rely on micro-
services implementing GITHUB and Jira wrappers to extract
the required information from these platforms. GITHUB wrap-
per uses GITHUB APIs to get metadata about branches and
pull requests. Jira SDK APIs are used to get information about
epics, assignee, issues, and sprints. Each incoming request to
analyze a GITHUB repository is first put on a repository queue.
The queue helps the tool manage its workload and analyze
the repositories one by one based on the available hardware
infrastructure. All the obtained information is stored in a
MongoDB database. The repository processors use external
tools to gather code quality information. For example, De-
signite and DesigniteJava [19] generate comprehensive code
quality information (in the form of smells and metrics) for
C# and Java projects respectively. The processors also use
RefactoringMiner [20] to identify the carried out refactorings
in each commit.

The back-end of the tool is realized using multiple micro-
services. Figure 2 presents the workflow at the services level.
The Bootstrap repository processor in Figure 1 is realized by
the workflow manager service. When a repository is added for
analysis, the main application i.e., QConnect service invokes
workflow manager service that in turn calls knows the steps
and sequence of the repository mining. For majority of Version
Control System (VCS) operations are performed locally by
using PyDriller [21]. For the rest of the information (such
as pull-request metadata), the application uses GITHUB APIs.

B. Features

We summarize below the features and functionality sup-
ported by QConnect.
a. Summarized view of developers’ activity and quality:

The summary dashboard shows key metrics and metadata
of all the repositories that the logged-in user have. These
metrics and metadata includes active contributors, total num-
ber of commits, total code churn (number of LOC added and
removed) as well as smell density across all the repositories in
the selected time-frame. The tool also presents a set of graph-
ical visualizations summarizing the development activity and

Fig. 2. Adding a repository workflow among QConnect micro-services

productivity using various measures. The tool’s visualizations
include the total number of refactorings and smell counts by
day, and lines of code added or deleted over time during the
selected time-frame. In addition, the tool includes a plot on
the top contributors in terms of the total amount of commits
made across all repositories. By-default, time dimension of all
the plots take two weeks as the duration; however, the tool
allows the user to change the time-frame.

Fig. 3. Summary dashboard of QConnect

b. Developers’ activity and productivity dashboard:
The productivity dashboard comprises a number of plots to

visualize various metrics associated with developers’ activity
and productivity. To show quantified contributions, the tool
includes a plot showing total contributions in terms of total
number of commits by users. Another plot shows active
branches by number of commits. Furthermore, the tool also
provide a chart showing total and active contributors in
the selected time-frame. The dashboard also includes a plot
showing active and new pull requests in a repository.

Many software development organizations maintain a sepa-
rate Jira board as their issue tracking system while maintaining
their repository on GITHUB. The tool integrates Jira issue

tracking system and produces plots to generate insights by
consolidating information from Jira board and GITHUB repos-
itory. For example, the dashboard provides the most active
set of issues by number of commits by the team. Such a
plot reveals the effort spent by the team on specific issues.
Similarly, the tool offers a finer-grained plot showing average
time taken to close issues by users. Furthermore, the dashboard
also provides plots on average time to close issues, and a ratio
of closed and open issues in a given time-frame.
c. Code churn and code quality dashboard: The dashboard
includes code churn in terms of lines of code added or removed
in the selected time-frame. In addition, a treemap shows the
changed files where the size of churn reflects in the size of
the rectangle for the file. The tool uses DesigniteJava [19] to
analyze Java repositories and to produce a comprehensive code
quality report including architecture, design, implementation,
testability, and test smells along with code quality metrics.
The dashboard uses the code quality information and fuse
it with repository metrics. The dashboard includes a plot
showing evolution of smell density by the granularity (i.e.,
architecture, design, and implementation) and scope (i.e.,
testability and test) of the detected smells. Another plot shows
added smells by specific smell type. Furthermore, QConnect
integrates RefactoringMiner tool [22] to identify the performed
refactorings per commit. The dashboard shows a plot exhibit-
ing the total number of specific refactoring techniques applied
in a given time-frame. These plots provide a comprehensive
understanding of code quality in the context of changes made
in the source code.

IV. PRELIMINARY EVALUATION AND CASE STUDY

We carried out a preliminary evaluation of the developed
tool. As a subject system, we required an open-source software
with significantly long commit history that is written either in
Java. We also needed access to Jira issue tracking board of the

subject system. We selected Apache Maven1 as our subject
system; at the time of analyzing the project, the project had
more than 11.8 thousand commits starting from the year 2003.
The project is written in Java programming language and the
Jira issue tracking can be accessed online2.

Property Value
of analyzed commits 11,829
Lines of code analyzed 403,237,410
of Jira issues 6,288
of PRs fetched 712

We analyzed all the commits of the repository in the
main branch using DesigniteJava and RefactoringMiner. We
obtained commit metadata (such as commit author, date, and
code churn), and fetched pull-request and Jira issue metadata
from GITHUB and Jira respectively. We randomly selected ten
commits and manually verified the extracted or computed data
from GITHUB, Jira, DesigniteJava, and RefactoringMiner.
In the rest of the section, we take four specific use-cases
in the context of the selected subject system to discuss the
applicability of the tool.

Use-case 1: How a stakeholder can learn about the progress
of the project in a quick glance? — The summary dash-
board provides a consolidated summarized view of all the
repositories analyzed with the tool for a user. Figure 3 shows
the key summary metrics such as code churn, smell density,
and total commits in the selected time-frame. Refactoring and
smell count plot shows the total number of new smells and
refactorings. For example, the figure shows significant number
of smells introduced in the project during the Jul-Aug 2004
period. At the same time, we can observe that the code churn
plot also shows high activity in the same period.

Use-case 2: How productive the team was during the selected
period? — Various measures and plots exhibit different aspects
of team productivity. First, one can learn about the top
contributors of the team in terms of number of commits from
the summary dashboard. The number of active and total con-
tributors can be learned from productivity dashboard. Figure
4 shows that the average rate of closing issues fluctuating
in the selected period. Similarly, the average rate of closing
pull-requests touched 80 days during the selected time-frame.
Resolved and new pull request (PR) plot exhibits the amount of
pending work in the repository. The figure shows the number
of active PRs reached up to 90 but subsequently came down
to zero in the selected duration.

Use-case 3: What is the effect of code churn on code smells
and refactoring? — Code churn plot along with smell density
and detailed smell count plots as well as with refactoring plot
can help us understand the code changes and their effects.
The code churn plot (not included in the text due to space)
shows a contributor made significant changes on Mar 19. The
refactoring plot in the same figure shows that the changes

1https://github.com/apache/maven
2https://issues.apache.org/jira/projects/MNG/issues/MNG-7316

Fig. 4. Developers’ activity and productivity dashboard of QConnect

introduced eight refactorings. Similarly, a rise in smell density
on Mar 23 is visible both in smell density and smells details
plots. Furthermore, the changed files and their corresponding
change size can be observed in churn per file plot. This plot
includes data from three sources viz. version control system
i.e., GITHUB, RefactoringMiner, and DesigniteJava.

Use-case 4: Which issues are consuming significant effort in
a given duration? — One of the most insightful plots is the
number of commits per issue that shows the specific issues
against which the contributors are putting their efforts. The
figure reveals that most of issues received one commit each
to solve them; one of the issues required up to 22 commits.
The plot pool-in data from issue-tracking system (Jira in our
case) and version control system.

V. CHALLENGES AND LIMITATIONS

We faced various engineering challenges. For example,
despite we collect the majority of the VCS metadata locally, the
tool depends on GITHUB APIs to collect metadata about pull-
requests and contributors. It is challenging to ensure metadata
collection due to the maximum limit (currently 5, 000 calls per
hour) on the API calls imposed by GITHUB. The challenge

https://github.com/apache/maven
https://issues.apache.org/jira/projects/MNG/issues/MNG-7316

Fig. 5. Code quality dashboard of QConnect

was to ensure not only to restart the metadata collection
once we regain our API limit but also to fairly allocate the
resources to all the repositories in the queue. To mitigate
the challenge, we implement a resource handler for the API
that keeps track of the current limit, pauses the API calls to
GITHUB when the application is nearing limit exhaustion,
restarts the metadata collection when the limit replenishes, and
allocates the metadata collection resources to other repositories
in round-robin fashion.

A limitation of the tool is the availability of limited
hardware resources. We intend to analyze each commit with
code quality analysis tools that takes considerable hardware
resources. As the number of repositories to be analyzed
increases, the need of scalable hardware infrastructure also
rise. We aim to extend the tool as a native cloud application
so that the tool can spawn the required number of attainable
virtual machines to analyze the new analysis requests. Another
limitation of the tool is the supported languages for code qual-
ity analysis. Currently, we use Designite tools for C# and Java
languages; however, tool support to generate a comprehensive
code quality report for other languages is presently lacking.

VI. CONCLUSIONS AND FUTURE WORK

QConnect bridges developer activity and productivity met-
rics with code quality analysis. The tool mines, combines, and
presents the information from multiple sources to provide a
consolidated and comprehensive perspective of software de-

velopment progress. The tool enables a software development
team and its management to ensure that the team is progressing
w.r.t. their business goals while keeping a focus on technical
excellence. The visualization aids offered by the tool helps
the team understand fine-grained analysis of the activities
that could be used for performance evaluation and bottleneck
identification. We identify many opportunities to improve. For
example, we would like to make the tool a truly scalable cloud-
native application to handle the varying hardware resource
requirements. We are working to improve the user interface
and user experience. We aim to extend the platform to cover
other code hosting platform apart from currently supported
GITHUB, such as GitLab. We also would like to explore the
possibility of integrating additional external tools to enrich the
information with the focus on integrating the data that tells a
cohesive story.

REFERENCES

[1] S. Wagner and F. Deissenboeck, Defining Productivity in Software
Engineering. Berkeley, CA: Apress, 2019, pp. 29–38.

[2] T. C. Jones, “Measuring programming quality and productivity,” IBM
Systems Journal, vol. 17, no. 1, pp. 39–63, 1978.

[3] Boehm, “Improving software productivity,” Computer, vol. 20, no. 9,
pp. 43–57, 1987.

[4] C. Jaspan and C. Sadowski, No Single Metric Captures Productivity.
Berkeley, CA: Apress, 2019, pp. 13–20.

[5] T. Kanij, J. Grundy, and R. Merkel, “Performance appraisal of software
testers,” Information and Software Technology, vol. 56, no. 5, pp. 495–
505, 2014, performance in Software Development.

[6] R. M. Parizi, P. Spoletini, and A. Singh, “Measuring team members’
contributions in software engineering projects using git-driven technol-
ogy,” in IEEE Frontiers in Education Conference (FIE), 2018, pp. 1–5.

[7] “Axosoft,” https://www.axosoft.com/, online; accessed May 26, 2023.
[8] “Atlassian tool suite,” https://www.atlassian.com/blog/agile/

jira-software-agile-dashboard, online; accessed May 26, 2023.
[9] “Bitergia’s analytics platform,” https://bitergia.com/about/, online; ac-

cessed May 26, 2023.
[10] DueCode, “DueCode,” https://duecode.io/, online; accessed May 26,

2023.
[11] “SonarQube,” https://www.sonarqube.org/, online; accessed May 26,

2023.
[12] A. Tornhill, “CodeScene,” https://codescene.com, online; accessed May

26, 2023.
[13] T. Sharma, “Designitejava (enterprise),” Sep. 2019,

http://www.designite-tools.com/designitejava. [Online]. Available: https:
//doi.org/10.5281/zenodo.3401802

[14] “RescueTime,” https://www.rescuetime.com/, online; accessed May 26,
2023.

[15] “WakaTime,” https://wakatime.com/, online; accessed May 26, 2023.
[16] “Codealike,” https://marketplace.visualstudio.com/items?itemName=

Codealike.Codealike, online; accessed May 26, 2023.
[17] V. Thakur, M. Kessentini, and T. Sharma, “QScored: An Open Platform

for Code Quality Ranking and Visualization,” in IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2020,
pp. 818–821.

[18] B. Helmkamp, “Code Climate,” https://codeclimate.com, online; ac-
cessed May 26, 2023.

[19] T. Sharma, “DesigniteJava,” Dec. 2018,
https://github.com/tushartushar/DesigniteJava. [Online]. Available:
https://doi.org/10.5281/zenodo.2566861

[20] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and efficient refactoring detection in commit history,” in Pro-
ceedings of the 40th International Conference on Software Engineering,
ser. ICSE ’18, 2018, pp. 483–494.

[21] D. Spadini, M. Aniche, and A. Bacchelli, PyDriller: Python Framework
for Mining Software Repositories, 2018.

[22] N. Tsantalis, A. Ketkar, and D. Dig, “Refactoringminer 2.0,” IEEE
Transactions on Software Engineering, 2020.

https://www.axosoft.com/
https://www.atlassian.com/blog/agile/jira-software-agile-dashboard
https://www.atlassian.com/blog/agile/jira-software-agile-dashboard
https://bitergia.com/about/
https://duecode.io/
https://www.sonarqube.org/
https://codescene.com
https://doi.org/10.5281/zenodo.3401802
https://doi.org/10.5281/zenodo.3401802
https://www.rescuetime.com/
https://wakatime.com/
https://marketplace.visualstudio.com/items?itemName=Codealike.Codealike
https://marketplace.visualstudio.com/items?itemName=Codealike.Codealike
https://codeclimate.com
https://doi.org/10.5281/zenodo.2566861

	Introduction
	Related work
	The proposed tool—QConnect
	Architecture
	Features

	Preliminary evaluation and case study
	Challenges and limitations
	Conclusions and Future Work
	References

