
Code Smell Detection by Deep Direct-learning and
Transfer-learning

Tushar Sharma1, Vasiliki Efstathiou2, Panos Louridas2, and Diomidis Spinellis2

1Siemens Technology, Charlotte, USA
2Athens University of Economics and Business, Athens, Greece

Abstract—Context: An excessive number of code
smells make a software system hard to evolve and
maintain. Machine learning methods, in addition to
metric-based and heuristic-based methods, have been
recently applied to detect code smells; however, current
methods are considered far from mature.
Objective: First, explore the feasibility of applying deep
learning models to detect smells without extensive
feature engineering. Second, investigate the possibility
of applying transfer-learning in the context of detecting
code smells.
Method: We train smell detection models based on
Convolution Neural Networks and Recurrent Neural
Networks as their principal hidden layers along with
autoencoder models. For the first objective, we perform
training and evaluation on C# samples, whereas for the
second objective, we train the models from C# code
and evaluate the models over Java code samples and
vice-versa.
Results: We find it feasible to detect smells using
deep learning methods though the models’ perfor-
mance is smell-specific. Our experiments show that
transfer-learning is definitely feasible for implementa-
tion smells with performance comparable to that of
direct-learning. This work opens up a new paradigm
to detect code smells by transfer-learning especially for
the programming languages where the comprehensive
code smell detection tools are not available.

Keywords: Code smells, Smell detection tools, Deep
learning, transfer-learning.

I. Introduction

The metaphor of code smells is used to indicate the
presence of quality issues in source code [1], [2]. A large
number of smells in a software system is associated with
a high level of technical debt [3] hampering the system’s
evolution. Given the practical significance of code smells,
software engineering researchers have studied the concept
in detail and explored various aspects associated with it
including causes, impacts, and detection methods [2].

A large body of work has been carried out to detect
smells in source code. Traditionally, metric-based [4], [5]
and rule/heuristic-based [6], [7] smell detection techniques
are commonly used [2], [8]. In recent years, smell detec-
tion techniques based on machine-learning [9], [10] have
emerged as a potent alternative as they not only have the
potential to bring human judgment in the smell detection
but also provide the grounds for transferring results from

one problem to another. Researchers have used Bayesian
belief networks [11], [12], support vector machines [13], and
binary logistic regression [14] to identify smells.

The resilience of machine learning models renders them
appropriate for reuse beyond the bounds of tasks they
may have been trained on. Transfer-learning refers to
the technique where a learning algorithm exploits the
commonalities between different learning tasks to enable
knowledge transfer across tasks [15]. In this context, it
would be plausible to explore the possibility of leveraging
the availability of tools and data related to code smell
detection in a programming language in order to train
machine learning models that address the same problem
on another language. The cross-application of a machine
learning model could provide opportunities for detect-
ing smells without actually developing a language-specific
smell detection tool from scratch.

Despite the potential prospects, existing approaches for
applying machine learning techniques for smell detection
offer significant room for improvement. In a recent study,
Di Nucci et al. [16] note, after observing practices such
as improper data handling in existing software engineer-
ing literature, that the problem of detecting smells still
requires extensive research to attain a maturity.

Furthermore, machine learning techniques (such as
Bayesian networks, support vector machines, and logistic
regression) that have been applied so far require consid-
erable pre-processing to generate features for the source
code, a substantial effort that hinders their adoption in
practice. Traditionally, researchers use machine-learning
methods that require extracting feature-sets from source
code. Typically, code metrics are used as the feature set for
smell detection purposes. We perceive two shortcomings
in such usage of machine-learning methods for detecting
smells. First, availability of an external tool to compute
metrics for the target programming language on which we
would like to apply the machine learning model becomes
the prerequisite. Second and more importantly, we are
limiting the machine learning algorithm to use only the
metrics that we are computing and feeding as feature-set.
Therefore, the machine learning algorithm cannot observe
any pattern that is not captured by the provided set of
metrics.

In this context, deep learning models, specifically neural



networks, offer a compelling alternative. The Convolution
Neural Network (cnn) and the Recurrent Neural Network
(rnn) are state-of-the-art supervised learning methods
currently employed in many practical applications, includ-
ing image recognition [17], [18], speech recognition [19],
and natural language processing [20]. These advanced
models are capable of inferring features during training
and can learn to classify samples based on these inferred
features.

In this paper, we present experiments with deep learning
models with two specific goals:

• To investigate whether deep learning methods can
effectively detect code smells. In particular, to employ
architectures that include layers of cnns, rnns as
well as autoencoders, inspect how different models
perform on detecting diverse code smells and how
model performance is affected by tweaking the learn-
ing hyper-parameters.

• To investigate whether results on smell detection
through deep learning are transferable; specifically, to
explore whether models trained for detecting smells
on a programming language can be re-used to detect
smells on another language.

Keeping these goals in mind, we define research ques-
tions and prepare an experimental setup to detect four
smells viz. complex method, complex conditional, feature
envy, and multifaceted abstraction using deep learning
models in different configurations. We develop a set of
tools and scripts to automate the experiment and collate
the results. Based on the results, we derive conclusions to
our addressed research questions.

The contributions of this paper are summarized below.
• An extensive study that applies deep learning models

in detecting code smells without carrying out ex-
tensive feature engineering and compares the per-
formance of different methods; to the best of our
knowledge this is the first study of this kind and scale.

• An exploration that not only shows the feasibil-
ity of applying transfer-learning for identifying code
smells but also compares the performance of deep
learning models in the transfer-learning context. This
exploration potentially will open a new paradigm to
detect smells specifically for programming languages
for which mature code smell detection tools are not
available.

• Openly available tools, scripts, and data used in
this experiment1 to promote replication as well as
incremental studies.

• The study identifies and documents challenges that
we perceived and opportunities that the exploration
offered.

The rest of the paper is organized as follows. Section
II sets up the stage by presenting background and related

1https://github.com/tushartushar/DeepLearningSmells

work. We define our research objective in Section III and
research method in Section IV. Section V presents our
findings, discussion, and further research opportunities.
We present threats to validity of this work in Section VI
and conclude in Section VII.

II. Background and Related Work
In this section, we present the background about the

topic of code smells as well as machine learning and
elaborate on the related literature.

A. Code Smells
Kent Beck coined the term “code smell” [1] and defined

it as “certain structures in the code that suggest (or
sometimes scream) for refactoring.” Code smells indicate
the presence of quality problems impacting many facets of
quality [2] of a software system [1], [21]. The presence of
an excessive number of smells in a software system makes
it hard to maintain and evolve.

Smells are categorized as implementation [1], de-
sign [21], and architecture smells [22] based on their
scope, granularity, and impact. Implementation smells are
typically confined to a limited scope and impact (e.g.,
a method). Examples of implementation smells are long
method, complex method, long parameter list, and complex
conditional [1]. Design smells occur at higher granularity,
i.e., abstractions, and hence are confined to a class or a
set of classes. God class, multifaceted abstraction, cyclic-
dependency modularization, and rebellious hierarchy are
examples of design smells [21]. Along similar lines, archi-
tecture smells span across multiple components and have a
system-wide impact. Some examples of architecture smells
are god component [23], feature concentration [24], and
scattered functionality [25].

A plethora of work related to code smell detection
exists in the software engineering literature. Researchers
have proposed methods for detecting smells that can be
largely divided into five categories [2]. Metric-based smell
detection methods [4], [5], [26] take source code as input,
prepare a source code representation, such as an Abstract
Syntax Tree (ast), compute a set of source code metrics,
and detect smells by applying appropriate thresholds [4].
Rule/Heuristic-based smell detection methods [6], [7],
[27], [28] typically take source code representations and
sometimes additional software metrics as input. They
detect a set of smells when the defined rules/heuristics
get satisfied. History-based smell detection methods use
source code evolution information [29], [30]. Such methods
extract structural information of the code and how it
has changed over a period of time. This information is
used by a detection model to infer smells in the code.
Optimization-based smell detection approaches [31]–[33]
apply an optimization algorithm on computed software
metrics and, in some cases, existing examples of smells
to detect new smells in the source code. Further studies
compare different detection methods [34], [35].



B. Deep Learning

Deep learning is a subfield of machine learning that al-
lows computational models composed of multiple process-
ing layers to learn representations of data with multiple
levels of abstraction [36], [37]. Even though the idea of
layered neural networks with internal “hidden” units was
already introduced in the 80s [38], a breakthrough in the
field came in 2006 by Hinton et al. [39] who introduced
the idea of learning a hierarchy of features one level at a
time. Ever since, and particularly during the course of the
last decade, the field has taken off due to the advances in
hardware, the release of benchmark datasets [40]–[42], and
a growing research focus on optimization methods [43],
[44]. Although deep learning architectures often consist
of tens or hundreds of successive layers, much shallower
architectures may also fall under the category of deep
learning, as long as at least one hidden layer exists between
the input and the output layer.

Deep learning architectures are being used extensively
for addressing a multitude of detection, classification,
and prediction problems. Architectures involving layers
of cnns are inspired by the hierarchical organization of
the visual cortex in animals, which consists of alternating
layers of simple and complex cells [45], [46]. cnns have
been proven particularly effective for problems of optical
recognition and are widely used for image classification
and detection [17], [18], [47], segmentation of regions of
interest in biological images [48], and face recognition [49],
[50]. Besides recognition of directly interpretable visual
features of an image, cnns have also been used for pattern
recognition in signal spectograms, with applications in
speech recognition [19]. In these applications the input
data are given in the form of matrices (2d arrays) for
representing the 2d grid layout of pixels in an image.
1d representations of data have been used for applying
1d convolutions in sequential data such as textual pat-
terns [20] or temporal event patterns [51], [52]. However,
when it comes to sequential data, rnns [38] have been
proven superior due to their capability to dynamically
“memorize” information provided in previous states and
incorporate it to a current state. Long Short Term Memory
(lstm) networks are a special kind of rnn that can
connect information spanning long-term intervals, thus
capturing long-term dependencies. lstms have been found
to perform reasonably well within the context of represen-
tative applications that exhibit sequential patterns, such
as speech recognition and music modeling [53], [54]. In
addition, they have been established as state-of-the-art
networks for a variety of natural language processing tasks;
indicative applications include natural language genera-
tion [55], sentiment classification [56], [57] and neural ma-
chine translation [58], among others. Finally, approaches
for addressing problems of both visual and sequential
nature, rely on the use of autoencoders [59]. Autoencoders
have been used in the past for performing dimensionality

reduction and data compression [60], [61]. The basic idea
of an autoencoder is that the input data is encoded into a
compressed bottleneck-like representation which is in turn
reconstructed back to an approximation of the input; the
encoding-decoding process takes place in an unsupervised
manner. Over the last decade, variants of autoencoders
have been widely used as part of deep architectures for
addressing problems of visual recognition [62], [63] and
natural language processing [64], [65]. One of the ad-
vantages of autoencoders is that they have been proven
robust to cross-domain generalisations [66], thus providing
solutions for domains where training data is imbalanced
or scarce. In a similar vein, autoencoders have been used
for discovering patterns that do not conform to some—
otherwise homogeneous—data sample. Following the same
rationale as in using linear dimensionality reduction meth-
ods such as Principal Components Analysis (pca) for
outlier detection, autoencoders have been used as a non-
linear alternative for discovering anomalies in extremely
imbalanced data. Examples of problems where relevant
methods have been used include image processing [67],
and the identification of anomalies in spacecraft telemetry
data [68].

C. Machine Learning Techniques on Source Code
The emergence of online open-source repository hosting

platforms such as GitHub in recent years has led to
an explosion on the volumes of openly available source
code along with metadata related to software development
activities; this bulk of data is often referred to as “Big
Code” [74]. As an effect, software maintenance activities
have started leveraging the wealth of openly available
data, the availability of computational resources, and the
recent advances in machine learning research. In this con-
text, statistical regularities observed in source code have
revealed the repetitive and predictable nature of program-
ming languages, which has been compared to that of nat-
ural languages [75], [76]. To this end, problems of automa-
tion in natural language processing, such as identification
of semantic similarity between texts, translation, text
summarization, word prediction and language generation
have been examined in the context of automating software
development tasks. Relevant problems in software develop-
ment include clone detection [77], [78], de-obfuscation [79],
language migration [80], source code summarization [81],
auto-correction [82], [83], auto-completion [84], genera-
tion [85]–[87], and comprehension [88].

On a par with equivalent problems in natural language
processing, the methods employed for automating several
software engineering tasks are switching from traditional
rule-based and probabilistic n-gram models to deep learn-
ing methods. The majority of the proposed deep learning
solutions rely on the use of rnns which provide sophisti-
cated mechanisms for capturing long term dependencies
in sequential data, and specifically lstms [89] that have
been proved particularly effective for modeling natural



TABLE I: Comparison of code smell detection techniques using machine learning
Study Machine learning

method
Detected smells Feature-set

Foutse et al. [11] Bayesian belief networks Blob Code metrics
Foutse et al. [12] Bayesian belief networks Blob, functional decomposition, spaghetti code Code metrics
Abdou et al. [9], [13] Support vector machine Blog, functional decomposition, spaghetti code,

swiss army knife, Code metrics
Sérgio et al. [14] Binary logistic regression Long method Code metrics
Bardez et al. [69] cnn-based architecture God class, feature envy Code metrics
Fontana et al. [70] 16 machine learning algo-

rithms
Data class, god class, feature envy, long method Code metrics

Kim et al. [71] Neural network Large class, lazy class, data class, parallel inher-
itance hierarchy, god class, feature envy

Code metrics

Liu et al. [72] cnn-based, neural, lstm-
based network

Feature envy, long method, large class, misplaced
class

Code metrics and textual
information

Hadj et al. [73] Neural network and autoen-
coder

God class, data class, feature envy, long method Code metrics

This study cnn, rnn, and autoencoder-
based network

Complex method, complex conditional, feature
envy, multifaceted abstraction

Tokenized source code

language. Relevant methods have been applied on source
code, aiming either to produce improved representations
for encoding semantics of snippets [90], or as part of solu-
tions to downstream tasks. Tasks that involve code edits
have attracted particular interest, due to the practical
implications induced by learning to automate pertinent
maintenance activities. Employed towards this quest have
been methods inspired from research on neural machine
translation, such as the multi-layered lstms sequence-
to-sequence model [91]. Results produced by leveraging
equivalent architectures, with representations of code snip-
pets before and after applying some change, show the
potential that the seq-to-seq model has towards learning
meaningful repairs and refactorings [92], [93]. Simpler
types of networks that have produced promising results
for semantic representations of code are based on the use
of autoencoders [77], [94].

Alternative approaches to mining source code have
employed cnns in order to learn features from various
representations of code. Li et al. [95] have used single-
dimension cnns to learn semantic and structural features
of programs by working at the ast level of granularity
and combining the learned features with traditional hand-
crafted features to predict software defects. This method
however incorporates hand-crafted features in the learning
process and is not proven to yield transferable results.
Similarly, a one-dimensional cnn-based architecture has
been used by Allamanis et al. [96] in order to detect
patterns in source code and identify “interesting” locations
where attention should be focused. The objective of the
study is to predict short and descriptive names of source
code snippets (e.g., a method body) given solely its tokens.
cnns have also been used by Huo et al. [97] in order to
address the problem of bug localization. This approach
leverages both the lexical information expressed in the
natural language of a bug report and the structural in-
formation of source code in order to learn unified features.
A more coarse-grain approach that also employs cnns
has been proposed in the context of program compre-

hension [98] where the authors use imagery rather than
script in order to discriminate between scripts written in
two programming languages, namely Java and Python.
Similarly, Ren et al. [99] use a cnn-based neural network
to identify self-admitted technical debt. Rantala et al.
[100] use NLP techniques to identify technical debt from
comments. cnn-based models along with NLP techniques
are used by Zampetti et al. [101] to identify code patterns
to help pay-back technical debt.

D. Machine Learning on Smell Detection
In recent times, machine learning-based smell detection

methods have attracted software engineering researchers.
Machine learning is a subfield of artificial intelligence that
trains solutions to problems rather than modeling them
through hard-coded rules. In this approach, the rules that
solve a problem are not set a-priori; rather, they are
inferred in a data-driven manner. In supervised learning, a
model is trained by being exposed to examples of instances
of the problem along with their expected answers and
statistical regularities are drawn. The representations that
are learned from the data can in turn be applied and
generalized to new, unseen data in a similar context.

Table I presents a comparison of existing attempts to
detect smells using machine learning techniques. A typi-
cal machine learning smell detection method starts with
a mathematical model representing the smell detection
problem. Existing examples and source code models are
used to train the model. The trained model is used to
classify or predict the code fragments into smelly or non-
smelly instances. Foutse et al. [11], [12] use a Bayesian
approach for the detection of three design smells. Their
study forms a Bayesian graph using a set of metrics and
determines the probability of a class being positive to a
smell. Similarly, Abdou et al. [9], [13] employ support
vector machine-based classifiers, trained using a set of
60 object-oriented metrics for each class to detect design
smells (blob, feature concentration, spaghetti code, and
swiss army knife). Furthermore, Sérgio et al. [14] detect



long method smell instances by employing binary logistic
regression. They use commonly used method metrics, such
as Method Lines of Code (mloc) and cyclomatic complex-
ity as regressors. Bardez et al. [69] present an ensemble
method that combine outcomes of multiple tools to detect
god class and feature envy smells. They identify a set of
key metrics for each smell and feed them to a cnn-based
architecture. Fontana et al. [70] compare performance
of various machine learning algorithms in detecting data
class, god class, feature envy, and long method. Azadi et
al. [102] introduce WekaNose, a semi-automated tool that
learns rules by identifying correlations between code smell
instances and relevant metrics. Fontana and Zanoni [103]
use regression-based methods with extensively engineered
features in order to classify code smell instances according
to their severity. Overall, research on smell detection with
machine learning techniques relies mostly on traditional
methods with decision trees and support vector machines
being the most commonly used algorithms [104]. Recent
approaches that adapt deep learning architectures in the
context of smell detection are limited. These presume sub-
stantial data engineering [71], to the extent of combining
metrics relevant to different features exhibited in code
(e.g., textual and structural features) [72], or hybrid meth-
ods that include a feature learning stage before feeding the
data into the neural network [73].

The performance of a machine learning model primarily
depends on the choice of suitable data representations that
will adequately capture informative features for the task
in hand. Another crucial factor for the performance of a
model is the amount of available training data and the
formation of the evaluation samples. As the proportion of
positive and negative samples becomes more imbalanced,
the classification task of the models becomes harder.
Hence, a model would perform significantly better when
classifying data from balanced datasets. Most of the above-
mentioned approaches do not explicitly mention the ratio
of positive and negative samples used for the evaluation.
Fontana et al. [105] carry out the evaluation using 140
positive and 280 negative samples for each smell which
is considerably balanced compared to a realistic case. We
further discuss this issue and demonstrate the effect of
class imbalance in Section V.

E. The Need of Applying Deep Learning for Smell Detec-
tion

Section II-A describes existing techniques for detecting
code smells. Mainstream tools use rule-based and metric-
based approaches to detect smells [2]. However, context
plays an important role in deciding whether a reported
smell is actually a quality issue for the development
team, and existing tools do not consider the context
while detecting the smells. For example, a method with
a switch-case statement with ten cases, where each case
instance has only a couple of simple statements will be
detected as a complex conditional smell by the mainstream

tools, because the associated rule (cyclomatic complexity
greater than a threshold) will be triggered. However,
the method’s developer might not consider it complex,
because all case phrases share the same structure. When
it comes to the tools’ validation, even manual annotation
is often inadequate for ensuring the validity of the source
code element rules. The main reason is that validation is
typically carried out on open-source projects where the
human validators are viewing the code snippets for the
first time. Therefore, even though the tools are correct
by the defined rules they still lack context-sensitivity.
Deep learning, without specific feature set specification
(such as metrics), could bring the code’s context under
consideration when detecting smells.

The above discussion takes us to the next question:
how to obtain or generate much needed training data
for deep learning? The training data clearly need to be
prepared considering the project’s context, because the
aim is to make smell detection more context-sensitive.
However, to the best of our knowledge, a large training
dataset for training models of this scale is not available.
In this study, we are using training data generated from
existing tools as a first step towards assessing the extent
to which smell detection is feasible via deep learning
techniques. The study is a preliminary evaluation to verify
the extent to which deep learning is suitable to detect
smells that may involve context-sensitivity. This provides
a stepping stone for future studies that will address more
sophisticated problems such as custom context-sensitive
smell detection. Such studies could replace our training
data with manually annotated context-sensitive training
data to achieve context-sensitive smell detection, thus
overcoming the burden of hard coding custom rules into
existing tools.

F. Challenges in Applying Deep Learning on Source Code
Applying deep learning techniques on source code is

non-trivial. In this section, we present challenges that we
face in the process of applying deep learning techniques
on source code.

1) Limits in analogies with other domains: Deep learn-
ing is advancing rapidly in domains that address problems
of image, video, audio, text, and speech processing [36].
Consequently, these advances drive current trends in deep
learning and inspire applications across disciplines. As
such, studies that apply deep learning on source code rely
heavily on results from these domains, and particularly
that of text mining.

Based on prior observations that demonstrate similarity
between source code and natural language [75], the re-
search community has largely addressed relevant problems
on mining source code by adopting latest state-of-the-
art natural language processing methods [79], [81], [87],
[96], [106]. However, besides similarities, there also exist
major differences that need to be taken into consideration
when designing such studies. First of all, source code,



unlike natural language, is semantically fragile; minor
syntactic changes can drastically change the meaning of
code [74]. As an effect, treating code as text by ignor-
ing the underlying formal semantics carries the risk of
not preserving the appropriate meaning. Besides formal
semantics, the syntax of source code obviously presents
substantial differences compared to the syntax found in
text. As a result, methods that perform well on text
are likely to under-perform on source code. Architectures
involving cnn-1d layers, for instance, have been proven
effective for matching subsequences of short lengths [107],
which are often found in natural language where the length
of sentences is limited. This however does not necessarily
apply on self-contained fragments of source code, such as
method definitions, which tend to be longer. In order to
address these shortcomings, currents research invests on
developing appropriate representations for code [90], [108],
[109].

Finally, even though good practices dictate naming
conventions in coding, unlike natural language, there is
no universal vocabulary of source code. This results to a
diversity in the artificial vocabulary found in source code
that may affect the quality of the models learned. Rare
and complex identifiers constantly devised by developers
result to limited repetition of terms, as well as patterns of
locality, that are not common in natural language [110].
The implications of these peculiarities in the quality of
the resulting machine-learned models are acknowledged
by the community, whilst latest research advances aim
towards addressing these shortcomings [111]–[113] and
painstakingly re-examining past results [114].

Approaches that treat code as text mainly focus on the
mining of sequential patterns of source code tokens. Other
emerging approaches look into structural characteristics of
the code with the objective of extracting visual patterns
delineated on code [98]. Even though there are features
in source code, such as nesting, which demonstrate dis-
tinctive visual patterns, treating source code in terms of
such patterns and ignoring the rich intertwined semantics
carries the risk of oversimplifying the problem.

2) Lack of resources: Research employing deep learning
techniques on software engineering data, including source
code as well as other relevant artifacts, is still young. Con-
sequently, results against traditional baseline techniques
are very limited [110], [115] while the debate on whether
deep neural networks are suitable for modeling source
code is still open [110], [116]. Especially when it comes
to processing solely source code artifacts, relevant studies
are scarce and mostly address the problem of drawing out
semantics related to the functionality of a piece of code
[77], [96], [117]–[119]. To the best of our knowledge, our
study is the first to thoroughly investigate the application
of deep learning techniques with the objective of examin-
ing characteristics of source code quality without making
use of derived features. Therefore, a major challenge in
studies of this kind is that there is no prior knowledge

that would guide this investigation, a challenge reflected
on all stages of the inquiry. At the level of designing an
experiment, there exist no rules of thumb indicating a set
up for a deep learning architecture that adequately models
the fine-grained features required for the problem in hand.
Furthermore, at the level of training a model, there is
no prior baseline for hyper-parameters that would lead
to an optimal solution. Finally, at the level of evaluating
a trained model, there exist no benchmarks to compare
against; there is no prior concrete indication on the ex-
pected outcomes in terms of reported metrics. Hence, a
result that would appear sub-optimal in another domain
such as natural language processing, may actually account
for a significant advance in software quality assessment.

Besides challenges that relate to the know-how of ap-
plying deep learning techniques on source code, there
are technical difficulties that arise due to the paucity of
curated data in the field. The need for openly available
data that can serve for replicating data-driven studies in
software engineering has been long stressed [120]. The
release of curated data in the field is encouraged through
badging artifact-evaluated papers as well as dedicated data
showcase venues for publication. However, the software
engineering domain is still far from providing benchmark
datasets, whereas the available datasets are limited to cu-
rated collections of repositories with associated metadata
that lack ground truth annotation that is essential for a
multitude of supervised machine learning tasks. Therefore,
unlike domains such as image processing and natural lan-
guage processing where an abundance of annotated data
exist [40]–[42], [121], in the field of software engineering
the lack of gold standards induces the inherent difficulty
of collecting and curating data from scratch. The need
for curating datasets of reference in software engineering
studies has been recognized in the past [122], however,
the progress in this front has not kept pace with the
increasing volumes of data in the wild. Current efforts
for overcoming this limitation include establishing bench-
marks for evaluating results on semantic code search [123]
and testing [124], and the release of large-scale pretrained
models for programming language vocabularies [125], in
an analogy to the natural language paradigm [126].

III. Research Objectives
The goal of this research is to explore the plausibility

of applying state-of-the-art deep learning methods to de-
tect smells. Furthermore, within the same context, this
work examines the feasibility of applying transfer-learning.
Based on the stated goals, we define the following research
questions that this work aims to explore.

RQ1 Is it possible to detect code smells using
deep learning methods? If yes, which deep
learning method performs superior?

We use cnn, rnn and autoencoder models in this explo-
ration. For the cnn-based architecture, we provide input
samples in 1d and 2d format to observe the difference in



their capabilities due to the added dimension; we refer to
them as cnn-1d and cnn-2d respectively. In the context of
this research question, we define the following hypotheses.

RQ1.H1: It is feasible to detect code smells using deep
learning methods.
The considered deep learning models have demonstrated
high performance in the domain of image processing and
natural language processing [127]. We believe we can
leverage these models in the presented context.

RQ1.H2: cnn-2d performs better than cnn-1d in the
context of detecting smells.
The rationale behind this hypothesis is the added dimen-
sionality in cnn-2d. The 2d model might observe inherent
patterns when input data is presented in two dimensions
that may possibly be hidden in one dimensional format.
For instance, a 2-d variant could possibly identify the
nesting depth of a method easier than its 1-d counterpart
when detecting complex method smell.

RQ1.H3: rnn models perform better than cnn models
in the context of detecting smells.
rnns are considered better for capturing sequential pat-
terns and have the reputation to work well with text. Thus,
taking into account the similarities that source code and
natural language share, rnn models could prove superior
to cnn models.

RQ1.H4: rnn and cnn variants of autoencoder model
exhibit comparable performance to those of rnn and cnn-
1d models.
An autoencoder model could be realized in various ways.
In this work, we experiment with three variants of au-
toencoder models in which the models use fully connected
neural network layers, lstm layers, and convolution layers
respectively. We hypothesize that the performance of the
autoencoder variants follow a pattern similar to that
observed with rnn and cnn-1d models.

RQ2 Is it possible to detect code smells by ap-
plying transfer-learning techniques on sim-
ilar languages? If yes, which deep learn-
ing model exhibits superior performance in
detecting smells when applied in transfer-
learning setting?

Transfer-learning is the capability of an algorithm to
exploit the similarities between different learning tasks and
provide a solution for a task by transferring knowledge
acquired while solving another task. We would like to
explore whether it is feasible to train a deep learning model
from samples of C# and predict the smells using this
trained model in samples of Java programming language
and vice-versa. The feasibility exploration can be termed
positive if the produced results are comparable with the
results obtained from direct learning (RQ1). We derive the
following hypotheses.

RQ2.H1: It is feasible to detect code smells by applying
transfer-learning techniques on similar languages.
Given the high similarity in the syntax between the two

programming languages considered in this study, we be-
lieve that we may train a model on samples of the one
language and use it to classify smelly and non-smelly
fragments on evaluation samples from the other.

RQ2.H2: The performance of transfer-learning is infe-
rior compared to that of direct-learning.
Direct-learning in the context of our study refers to the
case where training and evaluation samples belong to
the same programming language. We expect that the
performance of the models in transfer-learning could be
inferior to that of direct-learning, given that in direct-
learning both training and evaluation samples come from
the same programming language, and hence are expected
to exhibit homogeneous features.

IV. Research Method

This section describes the employed research method
by first providing an overview and then elaborating on
the data curation process. We also discuss the selection
protocol of smells and architecture of the deep learning
models.

A. Overview of the Method
Figure 1 provides an overview of the experiment. We

download 922 C# and 1, 721 Java repositories from
GitHub. We use the Designite and DesigniteJava smell
detection tools to analyze C# and Java code respectively.
We use CodeSplit, a set of utilities, to extract each method
and class definition into separate files from C# and Java
programs. Then the learning data generator uses the
detected smells to bifurcate code fragments into positive
or negative samples for a specified smell—positive samples
contain the smell while the negative samples are free from
that smell. Tokenizer takes a method or class definition
and generates integer tokens for each token in the source
code. As a preprocessing step we remove identical samples
on the Tokenizer’s output, thus ensuring that the effects of
code duplication on the evaluation of the resulting models
are mitigated [128]. The processed output of the Tokenizer
is ready to feed to the neural networks.

C#

C#
C#

Research questions

Positive and negative samples

Tokenized 
samples

Detected smells

Java
Java

Java

--
----
--

--
----
--

--
----
--

--
----
--

--
----
--

--
----
-- --

----
--

--
----
--

--
----
--

--
----
--

--
----
--

23 51
32 200 
11 45 --

----
--

--
----
--

23 51
32 200 
11 45

Learning data 
generatorPreprocess

Tokenizer

</> CodeSplit

Deep learning 
models

Code fragments

Fig. 1: Overview of the proposed method



B. Data Curation
In this section, we elaborate on the process of generating

training and evaluation samples along with the tools used
in the process.

1) Downloading repositories: We use the following pro-
tocol to identify and download our subject systems.

• We download repositories containing C# and Java
code from GitHub. We use RepoReapers [129] to
filter out low-quality repositories. RepoReapers an-
alyzes GitHub repositories and provides scores for
eight dimensions of their quality. These dimensions
are architecture, community, continuous integration,
documentation, history, license, issues, and unit tests.

• We select all the repositories where at least seven out
of eight RepoReapers’ dimensions have suitable scores
for both C# and Java repositories. We consider a
score suitable if it has a value greater than zero.

• We ensure that RepoReapers results do not include
forked repositories [130].

• We discard repositories with fewer than ten stars and
less than 1, 000 loc.

• Following these criteria, we get a filtered list of 922
C# and 1, 721 Java repositories. We select a random
subset of 922 Java repositories (by choosing a seed
from the system clock for the random number gener-
ator) from the filtered Java repository list in order to
mitigate the discrepancy between the volume of C#
and Java code to be analyzed.

• Finally, we download and analyze the selected 922 C#
and 922 Java repositories.

2) Smell detection: We use Designite to detect smells
in C# code. Designite [7], [131] is a software design
quality assessment tool for code written in C#. It supports
detection of 11 implementation, 20 design, and seven
architecture smells by analyzing source code properties
at different granularities (method, class, and component).
It also provides commonly used code metrics and other
features such as trend analysis, code clone detection, and
dependency structure matrix to help developers assess the
software quality.2

Similar to the C# version, we have developed Designite-
Java [132], which is an open-source tool for analyzing and
detecting smells in a Java codebase. The tool supports
detection of 18 design and ten implementation smells.
Both the C# and Java versions implement the same rules
to detect smells.

We use the console version of Designite (version 3.4.0)
and DesigniteJava (version 1.5.0) to analyze C# and
Java code respectively and detect the specified design
and implementation smells in each of the downloaded
repositories.
Manual validation: We conducted a manual validation
to establish the accuracy of the used tools. We chose

2A free academic license of Designite can be requested—http://
www.designite-tools.com/acad-lic-request/

the well-known open-source repository DotNetOpenAuth3

for this purpose. The repository implements OpenAuth
and OpenID protocol in C# and has a long development
history (3, 500 commits at the time of writing this paper).
It has been used by more than 19.6 thousand repositories
and has attracted 742 stars. From this repository,
we selected three projects DotNetOpenAuth.Core,
DotNetOpenAuth.OpenId.RelyingParty.UI and
OAuthClient. The selected projects contain 22, 027
loc and 166 classes. We sought help from two volunteers
to carry out manual validation—one volunteer works in a
software development company (three years of industrial
experience) and another volunteer is a computer science
Ph.D. student with one year of industrial experience.
None of the volunteers has worked on the analyzed
repository before; however, they both have hands-on
experience on complex industrial solutions and have a
fair idea of software architecture and code smells.

We enforced the following protocol for the validation.
• Each volunteer carried out the initial manual analy-

sis individually without discussing it with the other
volunteer.

• Given their industry experience, they were familiar
with the concept of code smell and were aware of com-
monly known smells. Each volunteer was presented
the definition of each of the four considered design
and implementation smells and interviewed to verify
its correct understanding. We also provided additional
material to accelerate their learning.

• Both the individuals went through all source code files
one by one and checked the existence of each smell
following the corresponding definition.

• While identifying smells, they were allowed to use ide
features such as go to definition and list all references
as well as metrics generated from other tools they
wish to use.

• While identifying smells, they were presented with
method/class metrics.

• Once both the volunteers completed the analysis,
we computed Cohen’s Kappa [133] to measure the
mutual agreement between the volunteers’ findings.
We obtained κ = 0.65 as the value of Cohen’s Kappa.

• Once both completed their individual analysis, they
discussed their results, sorted out differences, and
prepared a consolidated mutually agreed report of
results.

• Next, they used Designite and analyzed the con-
sidered project and obtained a list of design and
implementation smells.

• They compared the results obtained from the tool
with their set of smells and tagged them as true-
positive, false-positive, and false-negative.

Both volunteers manually scanned 166 classes for the
two design smells and 280 methods for the two implemen-

3https://github.com/DotNetOpenAuth/DotNetOpenAuth



tation smells. They found that the tool’s result matched
their manual result except two instances of feature envy
design smell. In both the cases, the tool was not counting
the class members (i.e., methods and fields) belonging to
another class when more than one member is referenced
from the class under analysis. We fixed the problem in
the tool before using it in our experiments; hence the tool
shows perfect precision and recall for the smells considered
in the experiment.

3) Splitting code fragments: CodeSplit is a set of two
utility programs, one for each programming language, that
split methods or classes written in C# and Java source
code into individual files. Hence, given a C# or Java
project, the utilities can parse the code correctly (using
Roslyn for C# and Eclipse jdt for Java), and emit the
individual method or class fragments into separate files
following hierarchical structure (i.e., namespaces/pack-
ages become folders). CodeSplit for Java is an open-source
project that can be found on GitHub [134]. CodeSplit for
C# can be downloaded freely online [135].

4) Generating training and evaluation data: The learn-
ing data generator requires information from two sources;
a list of detected smells for each analyzed repository and a
path to the folder where the code fragments corresponding
to the repository are stored. The program takes a method
(or class in case of design smells) at a time and checks
whether the given smell has been detected in the method
(or class) by Designite. If the method (or class) suffers
from the smell, the program puts the code fragment into
a “positive” folder corresponding to the smell otherwise
into a “negative” folder.

5) Tokenizing learning data: Machine learning algo-
rithms require the inputs to be given in a representa-
tion appropriate for extracting the features of interest,
given the problem in hand. For a multitude of machine
learning tasks it is a common practice to convert data
into numerical representations before feeding them to a
machine learning algorithm. In the context of this study,
we need to convert source code into vectors of numbers
honoring the language keywords and other semantics. To-
kenizer [136] is an open-source tool that provides, among
others, functionality for tokenizing source code elements
into integers where different ranges of integers map to
different types of elements in source code. Figure 2 shows
a small C# method and corresponding tokens generated
by Tokenizer. Currently, it supports six programming
languages, including C# and Java.

6) Data preparation: The stored samples are read into
numpy arrays, preprocessed, and filtered. We first perform
bare minimum preprocessing to clean the data—for both
1d and 2d samples—we scan all the samples for each smell
and remove duplicates if any exist.

The data preparation steps are explained below.
• We split the samples in the ratio of 70-30 for training;

i.e., 70% of the samples are used for training a model
while 30% samples are used for evaluation.

public void InternalCallback(object state)
{

Callback(State);
try
{

timer.Change(Period, TimeSpan.Zero);
}
catch (ObjectDisposedException) 
{ }

}

123
2002

40 2003
41

59
474
123
2004

46
2005

40
2006

44
2007

46
2008

41

59
125
329

40 2009
41

123 125

125

Fig. 2: Tokens generated by Tokenizer for an example

• For the training samples, we perform the following
steps.

– We limit the maximum number of positive/neg-
ative samples to 5, 000. Therefore, for instance,
if the number of negative samples is greater
than 5, 000, we keep for the experiment exactly
5, 000 samples and drop the rest i.e., adopting an
under-sampling technique [137].

– We perform model training using balanced sam-
ples, i.e., we balance the number of samples for
training by choosing the smaller number between
the positive and negative sample count; we dis-
card the remaining training samples from the
surplus.

• For the evaluation samples, we perform the following
steps.

– The training and evaluation time depend on
the number of samples. We limit the maximum
number of positive/negative evaluation samples
to 150, 000 and 50, 000 for implementation and
design smells respectively to reduce the process-
ing load. Even with these limits, all the experi-
ments take 298 hours to complete with the best
hardware available to us. The upper limit of the
samples is set way higher than the typical sample
size in studies from the similar domain.

– In the process of removing excess evaluation sam-
ples, we maintain the ratio between positive and
negative samples for evaluation.

Table II presents data preparation process by providing
number of samples in each step for all smells.

Each individual input instance, either a method in the
case of implementation smells, or a class in the case of
design smells, is stored in the appropriate data structure
depending upon the model that will use it. In 1d repre-
sentation, each individual input instance is represented by
a flat 1d array of sequences of tokens, compatible for use
with the rnn, cnn-1d and the autoencoder models. In the
2d representation, each input instance is represented by a
2d array of tokens, preserving the original statement-by-



TABLE II: Number of samples in each step of preparing input data
Initial samples 70-30 split Applying max limit Balancing

cm
Positive Training 24,963 17,474 5,000 5,000

Evaluation 7,489 7,489 7,489
Negative Training 464,866 325,406 5,000 5,000

Evaluation 139,460 139,460 139,460

cc
Positive Training 6,186 4,330 4,330 4,330

Evaluation 1,856 1,856 1,856
Negative Training 484,790 339,353 5,000 4,330

Evaluation 145,437 145,437 145,437

fe
Positive Training 1,800 1,260 1,260 1,260

Evaluation 540 540 528
Negative Training 170,439 119,307 5,000 1,260

Evaluation 51,132 50,000 50,000

ma
Positive Training 293 205 205 205

Evaluation 88 88 85
Negative Training 172,412 120,688 5,000 205

Evaluation 51,724 50,000 50,000

statement delineation of source code thus providing the
grid-like input format that is required by cnn-2d models.
All the individual samples are stored in a few files (where
each file size is approximately 50 mb) to optimize the
I/O operations due to a large number of files. We read
all the samples into a numpy array and we filter out the
outliers. In particular, we compute the mean input size
and discard all the samples with length over one standard
deviation away from the mean. This filtering helps us keep
the training set in reasonable bounds and avoids waste
of memory and processing resources. We pad the input
array with zeros to the extent of the longest remaining
input in order to create vectors of uniform length and
bring the data in the appropriate format for using with
the deep learning models. Finally, we shuffle the array of
input samples along with its corresponding labels array.

C. Selection of Smells

Over the last two decades, the software engineering
community has documented many smells associated with
different granularities, scope, and domains [2]. A compre-
hensive taxonomy of well-established software smells can
be found online.4 For this study, selection of smells is
a crucial decision that needs to balance ambition with
practicality. On the practicality front, the scope of the
higher granularity smells, such as design and architecture
smells, is wide, often spanning to multiple classes and
components. It is essential to provide all the intertwined
source code fragments to the deep learning model to make
sure that the model captures the key deciding elements
from the provided input source code. Hence, it is naturally
difficult to detect them using deep learning approaches,
unless extensive feature engineering is performed before-
hand in order to attain an appropriate representation of
the data. We started with implementation smells because
they can be detected typically just by looking at a method.
To address ambition, we would like to avoid very simple

4http://www.tusharma.in/smells

smells (such as long method) which can be easily detected
by less sophisticated techniques.

We chose complex method (cm—i.e., the method has
high cyclomatic complexity) and complex conditional
(cc—i.e., a condition expression in a conditional state-
ment such as if statement is complex). These two smells
represent two dissimilar cases where neural networks have
to spot specific features. To detect complex conditional,
the neural networks must spot a specific range of tokens
within only conditional blocks. On the other hand, de-
tection of complex method requires looking at the entire
method and the structural property within it (i.e., nesting
depth of the method).

To expand the experiment’s ambition, we also select two
design smells feature envy (fe—i.e., a method seems more
interested in an abstraction other than the one it actually
is in) and multifaceted abstraction (ma—i.e., a class has
more than one responsibility assigned to it). The scope of
these smells is larger (i.e., the whole class) and detection is
not trivial since the neural network has to capture cohesion
and coupling aspects. These smells not only allow us to
compare the capabilities of neural networks in detecting
implementation smells and design smells but also sets the
stage for the future work to build on.

D. Architecture of Deep Learning Models
In this section, we present the architecture of the neural

network models that we use in this study. The Python
implementation of the experiments using the Keras library
can be found online [138].

1) cnn model: Figure 3 presents the architecture of
the cnn model used to detect smells. This architecture
is inspired by typical cnn architectures used in image
classification [17] and consists of a feature extraction part
followed by a classification part. The feature extraction
part is composed of an ensemble of layers, specifically,
convolution, batch normalization, and max pooling layers.
This set of layers forms the architecture’s hidden layers.
The convolution layer performs convolution operations
based on the specified filter and kernel parameters and



computes accordingly the network weights to the next
layer, whereas the max pooling layer effectuates a reduc-
tion on the dimensionality of the feature space. Batch
normalization [139] mitigates the effects of varied input
distributions for each training mini-batch, thus optimizing
training. In order to experiment with different configura-
tions, we use one, two, and three hidden layers.

The output of the last max pooling layer is connected
to a dropout layer. Dropout performs another type of
regularization by ignoring some randomly selected nodes
during training in order to prevent over-fitting [140]. In
our experiments we set the dropout rate for the layer to
be equal to 0.1 which means that the nodes to be ignored
are randomly selected with probability 0.1.

The output of the last dropout layer is fed into a densely
connected classifier network that consists of a stack of
two dense layers. These classifiers process 1d vectors,
whereas the incoming output from the last hidden layer
is a 3D tensor. The tensor corresponds to the height and
width of an input sample and channel; in this case, the
number of channels is one. For this reason, a flatten layer
is used first, to transform the data in the appropriate
format before feeding them to the first dense layer with 32
units and relu activation. This is followed by the second
dense layer with one unit and sigmoid activation. This
last dense layer comprises the output layer and contains
a single neuron in order to make predictions on whether
a given instance belongs to the positive or negative class
in terms of the smell under investigation. The layer uses
the sigmoid activation function in order to produce a
probability within the range of 0 to 1.

Convolution layer

Batch normalization layer

Max pooling layer

Dropout layer

Flatten layer

Dense layer 1

Dense layer 2

Inputs

Output

Repeat this set of hidden 
layers (1, 2, or 3 times) 

according to the 
specified configuration

Fig. 3: Architecture of the employed cnn models

We use dynamic batch size depending upon the size of
samples to train. We divide the training sample size by
512 and use the result as the index to choose one of the
items in the possible batch size array (32, 64, 128, 256).
For instance, we use 32 as batch size when the training
sample size is 500 and 256 when the training sample size
is 2000.

The hyper-parameters are set to different values in order
to experiment with different configurations of the model.
Table III lists all the different values chosen for the hyper-
parameters. Filters is the number of convolutional filters
employed, kernel size controls the size of the convolution
window, and pooling window size governs the size of the
down-sampling window during the pooling operation. We
execute cnn models for 144 configurations that result
from generating combinations of different values of hyper-
parameters and number of repetitions of the set of hidden
layers (4 × 3 × 4 × 3 = 144). We label each configuration
between 1 and 144 where configuration 1 refers to number
of repetitions of the set of hidden layers = 1, number of
filters = 8, kernel size = 5, and pooling window size = 2.
Similarly, configuration 144 refers to number of repetitions
of the set of hidden layers = 3, number of filters = 64,
kernel size = 11, and pooling window size = 5. Both the
1d and 2d variants use the same architecture replacing
the 2d version of Keras layers for their 1d counterparts.

TABLE III: Chosen values of hyper-parameters for the
cnn model

Hyper-parameter Values
Filters in convolution layer {8, 16, 32, 64}
Kernel size in convolution layer {5, 7, 11}
Pooling window size in max pooling layer {2, 3, 4, 5}
Maximum epochs {50}

We ensure the best attainable performance and avoid
over-fitting by using early stopping5 as a regularization
method. This implies that even though the model is
allowed to reach a predetermined maximum of 50 epochs
during training, it may be forced to stop earlier. If there is
no improvement in the validation loss of the trained model
for five consecutive epochs (since patience, a parameter
to early stopping mechanism, is set to five), the training
is interrupted. Along with this, we also use model check
point to restore the best weights of the trained model. We
chose a maximum of 50 after carrying out a preliminary
experiment which indicated that the majority of models
would converge within this threshold. Among 386 total
individual experiments for all four smells in RQ1 for cnn-
1d, the models reached the maximum epoch only four
times. In those cases, we stop the training and evaluate
the model based on the weights at the last epoch.

For each experiment, we compute the following per-
formance metrics: precision, recall, f1 score, and average
precision score. We also record the actual epoch count
where the models stopped training (due to early stopping).
After we complete all the experiments with all the chosen
hyper-parameters, we choose the best performing config-
uration and the corresponding number of epochs used by
the experiment and retrain the model and record the final
and best performance of the model.

5https://keras.io/callbacks/



2) rnn model: Figure 4 presents the architecture of the
employed rnn model which is inspired by state-of-the-art
models in natural language modeling that employ an lstm
network as a recurrent layer [141]. The model consists of an
embedding layer followed by the feature learning part —
a hidden lstm layer. It is succeeded by the regularization
(realized by a dropout layer) and classification (consisting
of a dense layer) part.

Embedding layer

LSTM layer

Dropout layer

Dense layer

Inputs

Output

Repeat the hidden layer (1, 2, 
or 3 times) according to the 

specified configuration

Fig. 4: Architecture of the employed rnn models

The embedding layer maps discrete tokens into compact
dense vector representations. One of the advantages of
the lstm networks is that they can effectively handle
sequences of varying lengths. To this end, in order to avoid
the noise produced by the padded zeros in the input array,
we set the mask zero parameter to True in the Keras
embedding layer. Thus the padding is ignored and only the
meaningful part of the input data is taken into account.
We set dropout and recurrent dropout parameters of lstm
layer to 0.1. The regular dropouts mask (or drop) network
units at inputs and/or outputs whereas recurrent dropouts
drop the connections between the recurrent units along
with dropping units at inputs and/or outputs [142]. The
output from the embedding layer is fed into the lstm
layer, which in turn outputs to the dropout layer. As in the
case of the cnn model, we experiment for different depths
of the rnn model by repeating multiple instances of the
hidden layer.

The dropout layer uses a dropout rate equal to 0.2,
which we empirically found effective for preventing over-
training, yet conservative enough for avoiding under-
training. The dense layer, which comprises the classifica-
tion output layer, is configured with one unit and sigmoid
activation as in the case of the cnn model. Similarly to the
cnn model, we use early stopping (with maximum epochs
= 50 and patience = 2) and model check point callbacks.
Also, we use the dynamic batch size selection as explained
in the previous section.

We try different values for the model hyper-parameters;
Table IV lists the values selected for experimentation. The
dimensionality of the embedding layer represents the size
of each embedding vector; lstm units is the number of
units in each lstm layer. We measure the performance
of the rnn model in 18 configurations by forming the
combinations produced by the different chosen values of

hyper-parameters and the number of repetitions of the
hidden lstm layer (2× 3× 3 = 18).

TABLE IV: Chosen values of hyper-parameters for the
rnn model

Hyper-parameter Values
Dimensionality of embedding layer {16, 32}
lstm units {32, 64, 128}
Maximum epochs {50}

As described earlier, we pick the best performing hyper-
parameters and number of epochs and retrain the model
to obtain the final and best performance of the model.

3) Autoencoder model: Autoencoders are neural net-
works that can learn meaningful representations of the
data in an unsupervised way. There exist diverse variants
of autoencoders, however, in practice the purpose of all
variants is to learn to reconstruct a representative copy of
the given input. To this end, a bottleneck-like part between
the input and the output layers encodes the input in a
compressed representation which is in turn decompressed
by a decoding part. The underlying principle is that the
encoded representation captures salient features which are
reflected in the reconstructed output and discards other,
less important, thus providing dimensionality reduction
and de-noising capabilities [62].

A typical autoencoder model has essentially two sets
of layers—encoding and decoding layers—symmetrically
built across the compression pipeline. The model produces
an approximate, compressed representation of the input,
which then attempts to reconstruct with some loss L.
In its simplest architectures an autoencoder consists of
dense layers where the input is compressed by limiting
the number of units in the intermediate hidden layers.
Compression can also be implemented by imposing spar-
sity constraints on the hidden units that are being ac-
tivated [143]; this is effectuated by some regularization
technique that adds a penalty term to the loss function.
Besides autoencoder models implemented with dense lay-
ers, more complex architectures involve rnn and cnn
hidden layers.

In the context of smell detection we experiment with a
variety of autoencoder architectures, ranging from simple
models built with dense layers, to more sophisticated
models involving rnn and cnn hidden layers. We build
the simple sparse autoencoder models with dense layers
where we reduce the number of units in the intermediate
layers and penalize the loss function through the L1-
regularization procedure [144]. We build more complex
models by interpolating lstm or cnn layers with reduced
dimensions between the input and the output. We use all
variants of the autoencoders as classifiers of anomalies.
We train the models to learn to represent patterns of
non-smelly samples by using only negative (i.e., non-
smelly) examples. We test the trained models on data that
include both positive and negative samples. We use the
reconstruction loss as a proxy for classifying an instance



as smelly [145]–[147]. If for some instance the output of
the model shows high loss, we accept that this example
does not follow the pattern learnt by the model, which
in turn implies classification of a positive instance of the
smell under investigation.

Inputs

Output

Convolution layer

Inputs

Output

Encoder – repeat x 
(1 or 2) times

Upsampling layer

Decoder – repeat x 
(1 or 2) times

Output

Inputs

(a) (b) (c)

Convolution layer

LSTM layer Convolution layer

Max pooling layer

Dense layer

Bottleneck
layer

Upsampling layer

LSTM layer

LSTM layer

Dense layer Dense layer

Dense layer

Dense layer

Dense layer

Fig. 5: Architecture of the employed Autoencoder models

As Figure 5 shows, we have employed three variants
of autoencoder models; the first variant uses dense, the
second uses rnn, and the last variant mainly uses cnn-
1d layers as the fundamental component that forms the
model’s encoder and decoder layers. The convolution vari-
ant uses max pooling and upsampling layers with convo-
lution layers in encoder and decoder respectively. Table V
lists the hyper-parameters used for the autoencoder model.
The number of units in the dense layer is the dimension
of the output space of the layer, lstm units is the number
of units in each lstm layer, and filters in the convolution
layer is the number of convolutional filters applied. Kernel
size controls the size of the convolution window, and
pooling window size governs the size of down/up-sampling
window during the pooling operation. For lstm layers, we
set the values of dropout and recurrent dropout to 0.1.
The encoder and decoder layers are followed by a fully-
connected dense layer. Once the training is complete, we
find out the optimal performance of the trained autoen-
coder model by evaluating the performance at different
values of the threshold.

TABLE V: Chosen values of hyper-parameters for the
Autoencoder model

Hyper-parameter Values
Number of units (Dense) {256, 512, 1024}
lstm units {8, 16, 32}
Filters in convolution layer {8, 16, 32, 64}
Kernel size in convolution layer {5, 7, 11}
Pooling window size in max pooling {2, 3, 4, 5}
and upsampling layer
Epochs {20}

E. Hardware Specification
We perform all the experiments on the super-computing

facility offered by grnet (Greek Research and Technology
Network). The experiments were run on gpu nodes (8x
NVidia V100). Each gpu incorporates 5120 cuda cores.
We requested 1 gpu node with 64 gb of memory for most
of the experiments while submitting the job to the super
computing facility. Some rnn experiments require more
memory to perform the training; we requested 128 gb of
memory for these.

V. Results and Discussion

As elaborated in this section, we found that it is feasi-
ble to detect smells using deep learning models without
extensive feature engineering. Our results also indicate
that performance of deep learning models is highly smell-
specific. Furthermore, we found that it is feasible to apply
transfer-learning in the context of code smells detection.
In the rest of the section, we discuss the results in detail.

A. Results of RQ1
RQ1 Is it possible to detect code smells using

deep learning methods? If yes, which deep
learning method performs superior?

1) Approach: We prepare the input samples as de-
scribed in Section IV-B. Table VI presents the number
of positive and negative samples used for each smell
for training and evaluation; cnn-1d, rnn, and ae use
1d samples and cnn-2d uses 2d samples. As mentioned
earlier, we train our models with the same number of
positive and negative samples (except in the case of ae
where we use only negative samples to train the model).
The one-dimensional sample counts are different from their
two-dimensional counterparts because we apply additional
constraint for outlier exclusion, on permissible height, in
addition to the width.

TABLE VI: Number of positive (P) and negative (N)
samples used for training and evaluation for RQ1

cnn-1d, rnn, and ae cnn-2d
Training Evaluation Training Evaluation
p and n p n p and n p n

cm 5,000 7,489 139,460 5,000 5,822 125,807
cc 4,330 1,856 145,437 3,374 1,446 129,933
fe 1,260 528 50,000 1,194 512 38,963
ma 205 85 50,000 189 82 39,071

2) Results: Figure 6 presents the performance (i.e., f1
score) of the models for the considered smells for all the
configurations that we experimented with. The results
from each model show that performance of the models
varies depending on the smell under analysis. Another
observation from the trendlines shown in the plots is that
performance of all the models remains more or less stable
and unchanged for different configurations except for the
rnn model with the complex method smell. This implies



that despite the variability in the combinations of hyper-
parameters that we experimented with, the effect on the
particular models appears to be minor.

Table VII presents the results of Mann-Whitney U test
that we perform to ensure that each model performs differ-
ently than the other models. We also compute Hedges’ g
[148] to figure out the effect size of the difference between
each pair of deep learning models. Hedges’ g is similar
to Cohen’s d [149] except the Hedges’ metric takes into
account different sample sizes. The results in the Table
show that almost all the model pairs are different and their
effect size is significant.

Figure 7 presents the box plots comparing for each
smell, the performance of all trained models, under all
configurations. For all the analyzed smells, autoencoders
outperform all of the other models. The f1 score values
produced by all three variants of the autoencoder model
are highly concentrated. The figure also shows that the
variations in hyper-parameters do not affect the perfor-
mance of the chosen autoencoder model. We also observe
that the performance of individual model architectures
vary from smell to smell; for instance, rnn shows small
variance for feature envy smell but quite large for complex
method smell.

Equipped with experiment results, we attempt to val-
idate the hypotheses. We present precision, recall, and
f1 score to show the performance of the analyzed deep
learning models. We attempt to validate each of the
addressed hypotheses in the rest of the section.

RQ1.H1: It is feasible to detect code smells using deep
learning methods.

Table VIII lists performance metrics (precision, recall,
f1 score, mcc (Matthews Correlation Coefficient)) for the
optimal configuration for each smell, comparing all four
deep learning models. We present mcc also along with
other accuracy metrics because mcc covers true negative
instances as well which is not covered by the f1 score [149].
The table also lists the hyper-parameters associated with
the optimal configuration for each smell. Figure 8 presents
the performance (f1 score) of the deep learning models
corresponding to each smell considered in this exploration.
We use fully-connected neural network variant for ae in
this experiment.

As regards implementation smells, for the complex
method smell, even though autoencoders and rnn perform
superior than the convolution models, the performance of
all models under consideration is comparable. On the other
hand, none of the models could identify complex condi-
tional smell with a reasonable accuracy. This implies that
the models could identify a smell that is exhibited through
the structure of a method but could not successfully spot
the smell characterized by micro-structure representing
the conditional statements.

The autoencoder models with a simple dense layer
(two for feature envy smell) perform superior com-
pared to more complex models based on cnn and
rnn.

Both of the design smells—feature envy and multifaceted
abstraction—are non-trivial smells. Their detection re-
quires analysis of method interactions to observe respec-
tively coupling of a method with other classes, and incohe-
siveness of a class. For feature envy, autoencoders perform
better than the other models; however, for multifaceted
abstraction none of the employed deep learning models
could capture the complex characteristics of the smell,
implying that the token–level representation of the data
may not be appropriate for capturing higher–level features
required for detecting the smell.

It is evident from the above discussion that the
hypothesis exploring the feasibility of detecting
smells using deep learning models holds true; how-
ever, the performance of the employed models differ
significantly depending upon the smells.

RQ1.H2: cnn-2d performs better than cnn-1d in the
context of detecting smells.

Table VIII shows that the performance of cnn-1d and
cnn-2d is comparable for complex method and feature envy
smells. For complex conditional smell, cnn-2d does better
than cnn-1d; probably due to a complex conditional
statement contributes to a longer statement and cnn-2d
could better identify it compared to cnn-1d using its 1-
d form. Neither of the models could detect multifaceted
abstraction smell instances. In summary, there is not
sufficient evidence to conclude that cnn-2d is a superior
model compared to cnn-1d.

Therefore, we reject the hypothesis that cnn-2d
performs overall better than cnn-1d as none of
the models is clearly superior to another in all the
cases.

RQ1.H3: rnn models perform better than cnn models in
the context of detecting smells.

Table IX presents the comparison of rnn with cnn-1d
and cnn-2d by comparing pairwise f1 measure differences
in percentages, where the f1 score values are obtained by
the optimal configuration in each case. Here, the perfor-
mance difference in percentage is calculated by

F1RNN − F1CNN

F1RNN × 100
The rnn performs better for complex method smell against
both convolution models. For complex conditional smell,
cnn-2d performs better than both cnn-1d and rnn prob-
ably due to 2-d input samples could better represent the



0 20 40 60 80 100
Configuration

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225
F1

CC CNN1D
CC CNN2D
CC AE
CC RNN

(a) Performance for complex method

0 20 40 60 80 100
Configuration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1

CM CNN1D
CM CNN2D
CM AE
CM RNN

(b) Performance for complex conditional

0 20 40 60 80 100
Configuration

0.00

0.05

0.10

0.15

0.20

F1

FE CNN1D
FE CNN2D
FE AE
FE RNN

(c) Performance for feature envy

0 20 40 60 80 100
Configuration

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

F1

MA CNN1D
MA CNN2D
MA AE
MA RNN

(d) Performance for multifaceted abstraction

Fig. 6: Scatter plots of the performance (f1 score) exhibited by the considered deep learning models along with their
corresponding trendline

TABLE VII: Results of Mann-Whitney U test and Hedges’ g effect size between the f1 values for all configurations of
each considered model

cnn-2d rnn ae
cnn-1d p=0.972, g=-0.015 p=0.001, g=1.60 p= 4.33e-05, g=-7.12
cnn-2d – p=0.001975, g=1.62 p=4.336e-05, g=-7.52CM
rnn – – p=7.7e-6, g=-2.09
cnn-1d p<2.2e-16, g=-2.34 p=0.01, g=0.84 p=4.33e-05, g=-11.96
cnn-2d – p=2.58e-08, g=3.55 p=4.33e-05, g=-11.86CC
rnn – – p=7.7e-6, g=-15.13
cnn-1d p<2.2e-16, g=-1.56 p=0.002, g=0.8 p=4.31e-05, g=-8.03
cnn-2d – p=1.54e-06, g=2.03 p=4.33e-05, g=-4.57FE
rnn – – p=7.7e-6, g=-24.08
cnn-1d p=4.77e-13, g=1.07 p=4.45e-06, g=1.32 p=6.07e-05, g=-4.97
cnn-2d – p=2.74e-06, g=4.23 p= 4.33e-05, g=-63.98MA
rnn – – p=2.62e-4, g=-27.94

complex nature of conditional statements compared to its
1-d input form. However, the performance of rnn is lower
for feature envy compared to both convolution models.
Also, for complex conditional smell, rnn shows poorer
performance compared to cnn-2d. To detect feature envy
smell, it is required to identify complex relationships

among methods and data members which rnn could not
grasp.



CNN-1D CNN-2D RNN AE
0.0

0.1

0.2

0.3

0.4

0.5

0.6
F1

(a) Complex method

CNN-1D CNN-2D RNN AE
0.05

0.10

0.15

0.20

F1

(b) Complex conditional

CNN-1D CNN-2D RNN AE
0.00

0.05

0.10

0.15

0.20

F1

(c) Feature envy

CNN-1D CNN-2D RNN AE
0.00

0.01

0.02

0.03

0.04

0.05

0.06

F1

(d) Multifaceted abstraction

Fig. 7: Box plots of the performance (f1 score) exhibited by the considered deep learning models for all the four smells

TABLE VIII: Performance (Precision, Recall, f1 score, mcc (Matthews Correlation Coefficient)) of all four models with
configuration corresponding to the optimal performance. l: deep learning layers; f: number of filters; k: kernel size;
mpw: maximum pooling window size; ed: embedding dimension; lstm: number of lstm units; e: number of epochs;
u: number of units; t: threshold.

Performance Configuration
Smell p r f1 mcc l f k mpw ed lstm e u t

cnn-1d
cm 0.46 0.60 0.52 0.54 2 32 5 4 – – 15 – –
cc 0.04 0.68 0.08 0.09 1 32 5 4 – – 15 – –
fe 0.03 0.69 0.06 0.07 1 8 11 2 – – 31 – –
ma 0.01 0.98 0.02 0.02 1 16 11 2 – – 5 – –

cnn-2d
cm 0.40 0.81 0.54 0.58 1 64 11 5 – – 36 – –
cc 0.07 0.60 0.13 0.14 2 64 7 2 – – 22 – –
fe 0.05 0.77 0.09 0.10 2 16 5 3 – – 14 – –
ma 0.01 0.92 0.02 0.02 2 64 11 2 – – 6 – –

rnn
cm 0.61 0.66 0.63 0.67 1 – – – 32 64 24 – –
cc 0.04 0.65 0.08 0.10 1 – – – 32 64 3 – –
fe 0.01 0.85 0.02 0.02 2 – – – 16 64 16 – –
ma 0.00 0.07 0.01 0.01 2 – – – 16 128 11 – –

ae
cm 0.60 0.68 0.64 0.67 1 – – – – – 20 32 319,000
cc 0.20 0.20 0.20 0.21 1 – – – – – 20 16 328,000
fe 0.18 0.24 0.21 0.22 2 – – – – – 20 16 325,000
ma 0.03 0.14 0.05 0.06 1 – – – – – 20 16 328,000

The analysis suggests that performance of the deep
learning models is smell-specific. Therefore, we re-
ject the hypothesis that rnn models perform better
than cnn models for all considered smells.

RQ1.H4: rnn and cnn variants of autoencoder model
exhibit comparable performance to those of rnn and cnn-
1d models.

For complex method, rnn performs better than cnn-1d
(refer to Figure 8); however, within autoencoder model,



0.52 0.54

0.63 0.64

0.08
0.13

0.08

0.20

0.06
0.09

0.02

0.21

0.02 0.02 0.01
0.05

0.00

0.20

0.40

0.60

0.80

CN
N
-1
D

CN
N
-2
D

RN
N AE

CN
N
-1
D

CN
N
-2
D

RN
N AE

CN
N
-1
D

CN
N
-2
D

RN
N AE

CN
N
-1
D

CN
N
-2
D

RN
N AE

CM CC FE MA

F1

Fig. 8: Comparative performance of the deep learning
models for each considered smell

TABLE IX: Performance (f1 score) comparison of rnn
with cnn-1d and cnn-2d

Smell rnn vs cnn-1d rnn vs cnn-2d
cm 16.71% 16.25%
cc 13.38% -86.31%
fe -153.57% -159.62%
ma -31.16% 9.65%

cnn-1d is slightly better than rnn variant. Similarly,
cnn-1d does better compared to rnn for feature envy
smell but cnn-1d and rnn variants of autoencoder model
show same performance. On the other hand, for complex
conditional smell, rnn and cnn-1d both show similar
performance in both configurations.

With this comparison, it is evident that rnn and
cnn-1d variants of autoencoder model do not
exhibit similar performance pattern as shown by
individual rnn and cnn-1d models.

0.64 0.65 0.63

0.21 0.23 0.23 0.21 0.22 0.22

0.04 0.06 0.06

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Dense CNN RNN Dense CNN RNN Dense CNN RNN Dense CNN RNN

CM CC FE MA

Fig. 9: Comparative performance of variants of autoen-
coder models for each considered smell

3) Implications: This is the first attempt in the software
engineering literature to show the feasibility of detecting
smells using deep learning models from the tokenized
source code without extensive feature engineering. It may
motivate researchers and developers to explore this di-
rection and build over it. For instance, context plays an
important role in deciding whether a reported smell is

actually a quality issue for the development team. One
of the future works that the community may explore is to
combine the models trained using samples classified by the
existing smell detection tools with the developer’s feedback
to identify more relevant smells considering the context.

Our results show that, even though both convolu-
tion methods perform superior for specific smells, their
performance is comparable for each smell. This implies
that we may use one-dimensional or two-dimensional cnn
interchangeably without compromising the performance
significantly.

Apart from experimenting with cnn and rnn-based
models in various configurations, we also considered au-
toencoder. The autoencoder model treats a smells as a
rare event; a simple autoencoder with one mid dense layer
performs equally well with the more complex and deeper
autoencoder configurations and better than the rnn and
cnn based models. This observation provides grounds for
further investigation, encouraging the software engineering
community to propose simpler models for smell detection.

The comparative results on applying diverse deep learn-
ing models for detecting different types of smells suggest
that a model is highly dependent on the kind of smells
that it is trying to classify. This result could attract efforts
from the software engineering community to develop smell-
specific smell detection deep learning models.

B. Results of RQ2
RQ2 Is it possible to detect code smells by ap-

plying transfer-learning techniques on sim-
ilar languages? If yes, which deep learn-
ing model exhibits superior performance in
detecting smells when applied in transfer-
learning setting?

1) Approach: In the case of direct-learning, the training
and evaluation samples belong to the same programming
language whereas in the transfer-learning case, the train-
ing and evaluation samples come from two similar but
different programming languages. This research question
examines the feasibility of applying transfer-learning i.e.,
train neural networks by using C# samples and employ
the trained model to classify code fragments written in
Java.

For the transfer-learning experiment (referred to as
TL) we keep the training samples exactly the same as
the ones we used in RQ1. For evaluation, we download
repositories containing Java source code and preprocess
the samples as described in Section IV-B. Similar to
RQ1, evaluation is performed on a realistic scenario, i.e.,
we use all the positive and negative samples from the
selected repositories and when enforcing maximum limit
to samples we maintain the original ratio between positive
and negative samples. This arrangement ensures that the
models would perform as reported if employed in a real-
world application. Table X shows the number of samples



used for training and evaluation for this research question.

TABLE X: Positive (P) and negative (N) number of
samples used for training and evaluation for RQ2

cnn-1d, rnn, and ae cnn-2d
Training Evaluation Training Evaluation
p and n p n p and n p n

cm 5,000 10,244 150,000 5,000 5,818 150,000
cc 4,329 3,440 150,000 3,374 2,724 150,000
fe 1,260 613 50,000 1,194 682 50,000
ma 205 148 50,000 189 158 50,000

2) Results: As an overview, Figure 10 shows the scatter
plots for each deep learning model comparing the perfor-
mance (f1 score) of both the direct-learning and transfer-
learning for all the considered smells for all the configu-
rations. These plots outline the performance exhibited by
the models in both cases with trend lines distinguishing
the compared series. The plots imply that the performance
of the models are comparable in the transfer-learning and
direct-learning cases. In the rest of the section, we report
quantitative results on applying transfer learning between
C# and Java.

RQ2.H1: It is feasible to detect code smells by applying
transfer-learning techniques on similar languages.

Table XI presents the performance of the models for
all the considered smells demonstrating strong evidence
on the feasibility of applying transfer-learning for smell
detection. The performance pattern is in alignment to that
in the direct-learning case; Spearman correlation between
the performance produced by direct-learning and transfer-
learning is 0.88 (with p-value = 6.56× 10−6).

Therefore, we accept the hypothesis that transfer-
learning is feasible in the context of code smells
detection.

Figure 11 presents a comparison among the performance
(i.e., f1 score) exhibited by all the considered deep learn-
ing models for each considered smell. Interestingly, cnn-
2d performs superior to the rest of the models for all smells
except feature envy; for feature envy smell, ae performs
best. As indicated above, in general, the performance of
the models follows a similar trend with the one observed
in the case of direct-learning in RQ1.

RQ2.H2: The performance of transfer-learning is inferior
compared to that of direct-learning.

Figure 12 compares the performance of the models at
their optimal configurations applied in transfer-learning
and in direct-learning. We observe that, in the majority of
cases, direct-learning performs better than the correspond-
ing transfer-learning models. The exceptions are convolu-
tion models for complex conditional, rnn for feature envy,
cnn-2d and ae for multifaceted abstraction smell, where
transfer-learning shows better results.

We perform an additional experiment (referred to as
TLreverse) in which we reverse the direction of transfer-
learning i.e., we train the models using Java samples and
evaluate the trained models on C# samples. We download
Java repositories and perform the data curation operations
mentioned in Section IV-B to compile a set of training
and evaluation samples. Table XII presents the number of
samples that are used for this experiment.

We perform the experiment using the optimal config-
uration identified earlier and presented in Table XI. We
present the obtained results in Table XIII for all the mod-
els with all the smells. We observe that the performance
of the models in tlreverse experiment follows the similar
pattern as we have seen in tl. We carry out Spearman
correlation analysis between the performance of tl and
tlreverse experiments. We found a strong correlation be-
tween the two with ρ = 0.795 (p-value=0.0002).

The ratio of positive and negative samples plays a
significant role in the performance of a deep-learning
model [16], [137] and hence it is not easy to compare
the performance of models trained with heterogeneous
samples. We compute Normalized Performance Difference
(npd) to compare the performance of models from direct-
learning to transfer-learning. Normalized performance dif-
ference between methods i and j is given by the following
equation.

NPD(i, j) = F1i ×Rj − F1j ×Ri

Ri +Rj
(1)

Here, f1i and f1j represent the performance (i.e., f1
score) and ri and rj refer to the ratio between neg-
ative and positive samples of each method. Table XIV
presents the comparison of performance in the terms of
both simple difference and normalized difference. Simple
performance difference (pd) shows that transfer-learning
performs inferior in the majority of instances; however, the
normalized performance difference (npd) that scales the
difference between performance proportionally indicates
that transfer-learning does not have inferior performance
compared to direct-learning.

Therefore, we reject the hypothesis that transfer-
learning performs inferior compared to direct-
learning.

The above discussion leads to another interesting ques-
tion: which deep learning model’s performance is the most
or least sensitive to transfer-learning? We compute the
npd between the performance pairs of direct-learning and
transfer-learning for each considered model. Figure 13
depicts the results; cnn-1d shows the highest difference in
performance and hence cnn-1d is the most sensitive model
to transfer-learning in this experiment. rnn on the other
hand, shows the lowest difference in performance which
renders the model the least sensitive and, consequently, the



0 25 50 75 100
Configuration

0.2

0.3

0.4

0.5
F1

Direct-learning CNN-1D CM
Transfer-learning CNN-1D CM

0 25 50 75 100
Configuration

0.04

0.06

0.08

0.10

0.12

F1

Direct-learning CNN-1D CC
Transfer-learning CNN-1D CC

0 25 50 75 100
Configuration

0.000

0.025

0.050

0.075

0.100

F1

Direct-learning CNN-1D FE
Transfer-learning CNN-1D FE

0 25 50 75 100
Configuration

0.00

0.02

0.04

0.06

F1

Direct-learning CNN-1D MA
Transfer-learning CNN-1D MA

0 25 50 75 100
Configuration

0.35

0.40

0.45

0.50

0.55

F1

Direct-learning CNN-2D CM
Transfer-learning CNN-2D CM

0 25 50 75 100
Configuration

0.08

0.10

0.12

0.14

0.16

F1
Direct-learning CNN-2D CC
Transfer-learning CNN-2D CC

0 25 50 75 100
Configuration

0.00

0.05

0.10

F1

Direct-learning CNN-2D FE
Transfer-learning CNN-2D FE

0 50 100
Configuration

0.005

0.000

0.005

0.010

0.015

F1

Direct-learning CNN-2D MA
Transfer-learning CNN-2D MA

0 5 10
Configuration

0.0

0.2

0.4

F1

Direct-learning RNN CM
Transfer-learning RNN CM

0 5 10
Configuration

0.000

0.025

0.050

0.075

0.100

0.125

F1

Direct-learning RNN CC
Transfer-learning RNN CC

0 5 10
Configuration

0.00

0.02

0.04

0.06

F1

Direct-learning RNN FE
Transfer-learning RNN FE

0 5 10
Configuration

0.005

0.000

0.005

0.010

0.015

F1

Direct-learning RNN MA
Transfer-learning RNN MA

0 2 4 6
Configuration

0.45

0.50

0.55

0.60

0.65

F1

Direct-learning AE CM
Transfer-learning AE CM

0 2 4 6
Configuration

0.125

0.150

0.175

0.200

0.225

F1

Direct-learning AE CC
Transfer-learning AE CC

0 2 4 6
Configuration

0.100

0.125

0.150

0.175

0.200

0.225

F1

Direct-learning AE FE
Transfer-learning AE FE

0 2 4 6
Configuration

0.050

0.055

0.060

0.065

F1

Direct-learning AE MA
Transfer-learning AE MA

Fig. 10: Scatter plots for each model and each considered smell comparing f1 score of direct-learning and transfer-
learning along with corresponding trend-lines

TABLE XI: Performance of all four models with configuration corresponding to the optimal performance. l: deep
learning layers; f: number of filters; k: kernel size; mpw: maximum pooling window size; ed: embedding dimension;
lstm: number of lstm units; e: number of epochs; u: number of units; t: threshold.

Performance Configuration
Smell p r f1 l f k mpw ed lstm e u t

cnn-1d
cm 0.36 0.59 0.44 2 16 5 3 – – 17 – –
cc 0.08 0.18 0.11 2 32 7 2 – – 9 – –
fe 0.02 0.78 0.04 1 16 11 5 – – 49 – –
ma 0.01 0.78 0.01 1 64 11 5 – – 5 – –

cnn-2d
cm 0.36 0.82 0.50 1 16 11 4 – – 30 – –
cc 0.10 0.45 0.16 2 8 7 2 – – 19 – –
fe 0.03 0.37 0.06 2 16 7 3 – – 24 – –
ma 0.04 0.29 0.07 2 64 11 2 – – 17 – –

rnn
cm 0.31 0.57 0.40 1 – – – 16 32 5 – –
cc 0.07 0.55 0.13 1 – – – 32 32 4 – –
fe 0.03 0.64 0.06 1 – – – 32 128 10 – –
ma 0.01 0.02 0.01 1 – – – 32 128 9 – –

ae
cm 0.53 0.44 0.48 2 – – – – – 20 8 328,000
cc 0.09 0.23 0.13 1 – – – – – 20 8 328,000
fe 0.08 0.15 0.10 1 – – – – – 20 8 328,000
ma 0.03 0.20 0.06 1 – – – – – 20 8 328,000

most robust for transfer-learning compared to the other
models of this experiment.

3) Implications: Our results demonstrate that it is
feasible to apply transfer-learning in the context of smell



0.44

0.50

0.40

0.48

0.11
0.16

0.06

0.13

0.04 0.06 0.06
0.10

0.01

0.07

0.01
0.06

0.00

0.10

0.20

0.30

0.40

0.50

0.60

CN
N
-1
D

CN
N
-2
D

RN
N AE

CN
N
-1
D

CN
N
-2
D

RN
N AE

CN
N
-1
D

CN
N
-2
D

RN
N AE

CN
N
-1
D

CN
N
-2
D

RN
N AE

CM CC FE MA

F1

Fig. 11: Comparative performance of the deep learning
models for each considered smell in transfer-learning set-
tings

TABLE XII: Number of positive (P) and negative (N)
samples used for training (Java samples) and evaluation
(C# samples)

cnn-1d and rnn cnn-2d
Training Evaluation Training Evaluation
p and n p n p and n p n

cm 5,000 7,760 150,000 5,000 7,117 150,000
cc 5,000 1,843 150,000 5,000 1,669 150,000
fe 2,183 496 50,000 1,987 624 50,000
ma 545 82 50,000 483 105 50,000

detection. Exploiting this approach can lead to a new
category of smell detection tools, specifically for the pro-
gramming languages where no mature smell detection
tools are available.

C. Discussion
Although it is possible to detect some code smells

using deep learning models, the presented method is by
no means universal, and the outcome is sensitive to the
training set composition and the training time. In the rest
of the section, we elaborate on these observations emerging
from the presented results.

1) Is there a silver-bullet?: In practical setting one
would want to employ a universal model architecture that
performs consistently well for all the considered smells;
this would make the implementation of tools simpler.

rnn has the reputation to perform well with textual
data and sequential patterns while cnn is considered good
for imaging data and visual patterns. Given the similarity
of source code and natural language, it is expected to
obtain good performance from rnn. Our results show that
rnn outperforms both cnn models in the cases of complex
method; however, it does not live up to its reputation for
other smells. ae is considered to be a good mechanism for
learning to create copies of a given input where the key
features are maintained; we observed that it works consid-
erably well compared to other considered models. We have
a uniform architecture for each model and we observed
that the performance of the model differs significantly for

different smells. It suggests that it is non-trivial, if not
impossible, to propose a universal model architecture that
works for all smells. Each smell exhibits diverse distinc-
tive features and hence their detection mechanisms differ
significantly. Therefore, given the nature of the problem,
it is unlikely that one universal model architecture will be
the silver-bullet for the detection of a wide range of smells
with consistently good performance.

2) Performance comparison with baseline: A compari-
son with existing methods and tools is expected from a
study proposing a new method. However, it is not feasible
to compare the results presented in this paper with other
attempts that use machine learning for smell detection [9],
[11]–[14], [69], [105] due to the following reasons. First,
the replication packages of the related attempts are not
available. Second, for most of the existing attempts, the
ratio of positive and negative evaluation samples is not
known; in the absence of this information, we cannot
compare them with our results fairly since the ratio plays
an important role in the performance of machine learning
models. Furthermore, the existing approaches compute
metrics and feed them to machine learning models as
features. Models that only use metrics as the features
can be as good as the metrics themselves. Metrics do not
incorporate the context and hence the machine learning
models based on the metrics do not exploit the power
of machine learning because the models are used merely
for selecting a threshold for the input metrics to classify
smelly code from non-smelly code. This research attempts
to move beyond the use of metrics as the only data source
to detect the smells and bring more context sensitivity to
the smell analysis. To the best of our knowledge, this is
the first attempt to detect smells without using metrics
as the features for the employed machine learning models.
Due to this reason, it would be unfair to compare any ma-
chine learning model that uses metrics with the presented
method. Also, it would be unfair to machine-learning
based methods if we feed the raw tokenized source code
as input because unlike deep learning methods, machine
learning algorithms (such as Bayesian belief networks and
support vector machines), treat each column of input as a
specific feature. This assumption will not hold if tokenized
source code is provided as input and the algorithms will
perform very poorly.

The above discussion indicates two additional aspects.
First, we, as software engineering community, need a
manually validated gold-standard smells dataset for a
wide range of smells. This would make bench-marking
and comparison among different smell detection methods
easy. Second, though this study shows that deep learning
methods can grasp by themselves latent features that are
necessary to identify smells and paves the way to make
the smell detection more context sensitive, it is far from
the level where it can be compared head-to-head with
existing methods and surpass them in performance. In the
future, we would like to explore combining source code in



0.52

0.44

0.53
0.50

0.63

0.40

0.64

0.48

0.07
0.11

0.150.16

0.080.06

0.21

0.13

0.07
0.04

0.070.06
0.03

0.06

0.21

0.10

0.010.010.01

0.07

0.010.01
0.040.06

0.0

0.2

0.4

0.6

0.8

DL TL DL TL DL TL DL TL DL TL DL TL DL TL DL TL DL TL DL TL DL TL DL TL DL TL DL TL DL TL DL TL

CNN-1DCNN-2D RNN AE CNN-1DCNN-2D RNN AE CNN-1DCNN-2D RNN AE CNN-1DCNN-2D RNN AE

CM CC FE MA

F1

Fig. 12: Comparison of performance of the deep learning models between direct-learning (DL) and transfer-learning
(TL) settings

TABLE XIII: Performance of all four models with configuration corresponding to the optimal performance in tlreverse

experiment. l: deep learning layers; f: number of filters; k: kernel size; mpw: maximum pooling window size; ed:
embedding dimension; lstm: number of lstm units; e: number of epochs; u: number of units; t: threshold

.

Performance Configuration
Smell p r f1 l f k mpw ed lstm e u t

cnn-1d
cm 0.06 0.87 0.11 2 16 5 3 – – 17 – –
cc 0.03 0.69 0.05 2 32 7 2 – – 9 – –
fe 0.02 0.83 0.04 1 16 11 5 – – 49 – –
ma 0.00 1.00 0.01 1 64 11 5 – – 5 – –

cnn-2d
cm 0.28 0.93 0.43 1 16 11 4 – – 30 – –
cc 0.01 0.93 0.03 2 8 7 2 – – 19 – –
fe 0.03 0.73 0.06 2 16 7 3 – – 24 – –
ma 0.01 0.18 0.01 2 64 11 2 – – 17 – –

rnn
cm 0.37 0.40 0.38 1 – – – 16 32 5 – –
cc 0.05 0.02 0.03 1 – – – 32 32 4 – –
fe 0.02 0.92 0.04 1 – – – 32 128 10 – –
ma 0.00 0.11 0.01 1 – – – 32 128 9 – –

ae
cm 0.42 0.43 0.43 2 – – – – – 20 8 328,000
cc 0.06 0.26 0.09 1 – – – – – 20 8 328,000
fe 0.04 0.35 0.07 1 – – – – – 20 8 328,000
ma 0.01 0.22 0.01 1 – – – – – 20 8 328,000

tokenized form with more refined features to help deep
learning methods classify the smelly code with superior
performance.

We compare our results with the results obtained from
two baseline random classifiers that do not really learn
from the data but use only the distribution of smells in the
training set to form their predictions. Table XV presents
the comparison. The first random classifier generates pre-
dictions by following the training set’s class distribution:
that is, for every sample in the evaluation set it predicts
whether it is a smell or not based on the frequency of
smells in the training data. We did that for both balanced

and imbalanced evaluation samples to mimic the learning
process of the actual experiment. In the middle three
columns, referred to as “rc (frequency)”, of the table we
show the results for the balanced setting, as they were
better than the results for the imbalanced setting. The
second random classifier predicts that a smell is always
present; this gives perfect recall, but low precision, as
observed in the columns corresponding to “rc (all smells)”
of the table. Overall, our models perform far better than a
random classifier for all but multifaceted abstraction smell
for both baseline variants.



TABLE XIV: Comparison of performance of transfer-
learning with direct-learning. Here, dl and tl refer to
performance of deep learning models in direct-learning and
transfer-learning respectively. pd and npd refer to simple
and normalized performance difference between direct-
learning and transfer-learning respectively. rDL and rT L

refer to the ratio of negative to positive samples for direct-
learning and transfer-learning respectively

Smell dl tl pd rDL rT L npd

cnn-1d
cm 0.52 0.44 0.08 18.62 14.64 -0.02
cc 0.07 0.11 -0.04 78.36 43.60 -0.05
fe 0.07 0.04 0.03 94.70 81.57 0.01
ma 0.01 0.01 0 588.24 337.84 0.00

cnn-2d
cm 0.53 0.5 0.03 21.61 25.78 0.06
cc 0.15 0.16 -0.01 89.86 55.07 -0.04
fe 0.07 0.06 0.01 76.10 73.31 0.00
ma 0.01 0.07 -0.06 476.48 316.46 -0.04

rnn
cm 0.63 0.4 0.23 18.62 14.64 0.05
cc 0.08 0.06 0.02 78.36 43.60 -0.01
fe 0.03 0.06 -0.03 94.70 81.57 -0.02
ma 0.01 0.01 0 588.24 337.84 0.00

ae
cm 0.64 0.48 0.16 18.62 14.64 0.01
cc 0.21 0.13 0.08 78.36 43.60 -0.01
fe 0.21 0.1 0.11 94.70 81.57 0.04
ma 0.04 0.06 -0.02 588.24 337.84 -0.02

C
N

N
-1

D

C
N

N
-2

D

R
N

N A
E

0.00

0.05

0.10

0.15

0.20

Smell
CM
CC
FE
MA

Fig. 13: Difference in performance of the deep learning
models and the sample ratio for two transfer-learning tasks

3) Poor performance in detecting design smells: The
presented neural networks perform very poorly when it
comes to detecting the design smells feature envy and
multifaceted abstraction. We infer the following two rea-
sons for this under-performance. First, design smells such
as feature envy and multifaceted abstraction are inher-
ently difficult to spot unless a deeper semantic analysis
is performed. Specifically, in the case of multifaceted ab-
straction, interactions among the methods of a class as
well as the member fields have to be modeled in order
to observe cohesion among the methods. This is a non-
trivial aspect and the neural networks could not spot
this aspect with the provided representation of the data.

Therefore, we need to provide refined information in the
form of engineered features along with the source code
to help neural networks identify the inherent patterns.
Second, the number of positive training samples were very
low, thus significantly restricting our training set. The low
number severely impacts the ability of neural networks
to infer the responsible aspects that cause the smell. The
future research attempts could address this limitation by
increasing the number of repositories under analysis or by
adopting techniques such as careful formation of artificial
samples.

4) Variation in training-time: As observed in the re-
sults section, performance of the considered deep-learning
models varies depending upon the smells. However, we
also note that the models show considerable difference
in the time consumed for training. We logged the time
taken by each experiment for the comparison. Table XVI
presents the average time taken by each model for each
smell per epoch. The table shows that the rnn is con-
suming exorbitant amount of time compared to cnn and
autoencoders. In the context of this study, this implies
that if the performance of an rnn for a given task is
comparable to that of a cnn or an autoencoder model,
one should decline the rnn-based solution for significantly
faster training time.

5) Exploring other source code representations: In the
recent times, we have witnessed a surge in the research to-
wards alternative source code representations. The thriv-
ing progress on code mining research and specifically
the increasing interest on problems pertinent to seman-
tic code search has recently led to novel code-specific
representations that incorporate structural features of a
program [90], [108], [109]. Such representations have been
proven to perform well on the task they are tailored for,
that is, learning semantics of specific source code frag-
ments. Even though the afore-mentioned representations
have been proven effective for capturing the semantics
of programs, their generalizability to other code mining
downstream tasks is questionable [150]. In our study
we aimed to address the problem of training models
that capture qualitative characteristics in code. These are
mostly manifest through syntactic features in the case of
implementation smells and through class-specific method
interaction in the case of design smells. Consequently,
smell detection is agnostic to the semantics of the program
under investigation. However, as a reference point we
carried out an experiment using the current mainstream
method for code representation, that is, code2vec.

We used the implementation provided by the authors of
code2vec6 and modified it to suit our context. The original
code2vec implementation is tightly coupled with the prob-
lem that its authors address and hence it was a non-trivial
challenge to customize it to the needs of our classification
problem. We changed the implementation to predict the

6https://github.com/tech-srl/code2vec



TABLE XV: Comparison of performance (Precision, Recall, and f1) with a random classifier (rc) following the training
set frequencies or responding always indicating a smell

Performance
Our results rc (frequency) rc (all smells)

Smell p r f1 p r f1 p r f1

cnn-1d
cm 0.48 0.58 0.52 0.05 0.50 0.09 0.05 1 0.09
cc 0.04 0.70 0.07 0.01 0.50 0.02 0.01 1 0.02
fe 0.03 0.69 0.07 0.01 0.50 0.02 0.01 1 0.02
ma 0.01 0.98 0.01 0.00 0.50 0.00 0.00 1 0.01

cnn-2d
cm 0.38 0.83 0.53 0.04 0.50 0.08 0.04 1 0.08
cc 0.08 0.60 0.15 0.01 0.50 0.02 0.01 1 0.02
fe 0.04 0.78 0.07 0.01 0.50 0.02 0.01 1 0.02
ma 0.0 0.94 0.01 0.00 0.50 0.00 0.00 1 0.00

rnn
cm 0.72 0.55 0.63 0.05 0.50 0.09 0.05 1 0.09
cc 0.04 0.65 0.08 0.01 0.50 0.02 0.01 1 0.02
fe 0.01 0.87 0.03 0.01 0.50 0.02 0.01 1 0.02
ma 0.0 0.06 0.01 0.00 0.50 0.00 0.00 1 0.01

ae
cm 0.61 0.67 0.64 0.05 0.50 0.09 0.05 1 0.09
cc 0.21 0.20 0.21 0.01 0.50 0.02 0.01 1 0.02
fe 0.18 0.24 0.21 0.01 0.50 0.02 0.01 1 0.02
ma 0.03 0.12 0.04 0.00 0.50 0.00 0.00 1 0.01

TABLE XVI: Average training-time taken by the models
to train a single epoch in seconds

cnn-1d cnn-2d rnn ae
cm 0.9 1.2 1,155.5 3.8
cc 1.0 1.4 1,575.9 3.3
fe 1.1 1.7 2,284.6 3.5
ma 1.3 1.5 4,997.7 2.6

presence or absence of smells by customizing the training
of the code2vec model. During the training, we replaced the
method names (as in the original implementation) with
either true or false based on whether a smell is present
or not. The trained model then predicted true or false
indicating the presence or absence. The implementation
we used can be found online.7

We preprocess and train the code2vec model using the
same set of samples in the same number that we used
for training all models, for the two implementation smells,
i.e., complex method and complex conditional. Given that
the code2vec model is designed to work at the method
level, we did not use it for design smells that require class-
level treatment. We run the model with the default pa-
rameters as proposed in the original implementation. The
model performed mediocre with f1=0.22 (precision=0.16
and recall=0.35) for complex method and f1=0.06 (preci-
sion=0.03 and recall=0.26) for complex conditional smell.
This performance is significantly lower than the perfor-
mance shown by other models using simple source code
tokenization. This confirms our speculation on the suit-
ability of the afore-mentioned models for smell detection
and agrees with the finding that a state-of-the-art model
for semantic representation of code is not necessarily
appropriate for downstream tasks.

7https://github.com/tushartushar/code2vec

D. Opportunities
This study encourages the research community to ex-

plore deep learning as a viable option for addressing the
problem of smell detection. We showed that the solution is
applicable in two programming languages, namely C# and
Java. This result encourages further experimentation with
additional programming languages of different paradigms.

We used the detection mechanisms of Designite for
obtaining the ground truth to train our models. Relying
on a specific tool does not alleviate the fact that smells
are indeed detectable using deep learning methods—it
rather provides grounds for generalization. A next step
towards extending this work could be to investigate vari-
ations of smell definitions and diverse tool adaptions by
accordingly fine-tuning training. To this end, we release
the full pipeline of our deep learning toolkit and invite
research in this direction. We are positive that this work
will prove robust to extensions, given also the results that
we obtained in the transfer-learning experiment.

We have shown that transfer-learning is feasible in the
context of code smells. This result additionally introduces
new, data-driven directions for automating smell detection
which is particularly useful for programming languages for
which smell detection tools are either not available or not
matured.

Given that we did not consider the context and devel-
opers’ opinion on smells reported by deterministic tools,
it would be interesting to combine these aspects either by
considering the developers’ opinion (by manually tagging
the samples) while segregating positive and negative sam-
ples or by designing models that take such opinions as an
input to the model.

This work shows the feasibility of detecting implementa-
tion smells; however, complex smells such as multifaceted
abstraction and feature envy require further exploration
and present many open research challenges. Design and ar-
chitecture smells typically span across multiple source files



and abstractions. Furthermore, their detection involves
identifying complex semantic features that makes design
and architecture smell detection using machine learning
methods difficult. The research community may build on
the results presented in this study and further explore
optimizations to the presented models, alternative models,
or innovative model architectures to address the detection
of complex design and architecture smells.

Smell samples used for training and evaluation are
highly imbalanced naturally. We observed that in the best
case it could be 15 negative samples per positive sample
while it may go up to as skewed as 588 negative samples
per positive sample (refer to Table XIV). Compared to
other deep-learning models, Autoencoders fit naturally
in this context, because they are more robust to class
imbalance. We anticipate that future research work would
explore the potential of autoencoders in more detail.

Beyond smell detection, proposing an appropriate refac-
toring to remove a smell is a non-trivial challenge. There
have been some attempts [151], [152] to separate refactor-
ing changes from bug fixes and feature additions. One may
exploit the information produced from such tools and the
power of deep learning methods to construct tools that
propose suitable refactoring mechanism.

VI. Threats to Validity

Threats to the validity of our work mainly stem from
possible faults in the employed tools, our assumption
concerning similarity of both the programming languages,
and generalizability and repeatability of the presented
results.

A. Construct Validity

Construct validity measures the degree to which tools
and metrics actually measure the properties that they are
supposed to measure. It concerns the appropriateness of
observations and inferences made on the basis of measure-
ments taken during the study.

In the context of using deep learning techniques for smell
detection, we use Designite and DesigniteJava to detect
smells in C# and Java code respectively and use these
results as the ground truth. Relying on the outcome of
two different tools may pose a threat to validity especially
in the case of transfer-learning. To mitigate the risk, we
make sure that both the tools use exactly the same set of
metrics, thresholds, and heuristics to detect smells. Also,
we ensure the smell detection similarity by employing
automated as well as manual testing.

To address potential threats posed by representational
discrepancies between the two languages we ensure that
Tokenizer generates same tokens for same or similar lan-
guage constructs. For instance, all the common reserved
words are mapped to the same integer token for both the
programming languages.

B. Internal Validity

Internal validity refers to the validity of the research
findings. It is primarily concerned with controlling the
extraneous variables and external influences that may
impact the outcome.

In the context of our investigation, exploring the fea-
sibility of applying transfer-learning for smell detection,
we assume that both programming languages are similar
by paradigm, structure, and language constructs. It would
be interesting to observe how two completely different
programming languages (for example, Java and Python)
can be combined in a transfer-learning experiment.

C. External Validity

External validity concerns generalizability and repeata-
bility of the produced results. The method presented in
the study is programming language agnostic and thus can
be repeated for any other programming language given
the availability of appropriate tool-chain. To encourage the
replication and building over this work, we have made all
the tools, scripts, and data available online [138].

VII. Conclusions

The interest in machine learning-based techniques for
processing source code has gained momentum in the re-
cent years. Despite existing attempts, the community has
identified the immaturity of the discipline for source code
processing, especially when it comes to identifying quality
aspects such as code smells. In this paper, we establish that
deep learning methods can be used for smell detection.
Specifically, we found that cnn, rnn, and autoencoder
deep learning models can be used for code smell detection,
though with varying performance. We did not find a
clearly superior method between 1d and 2d convolution
neural networks. Further, our results indicate that rnn
performance is not consistently better than convolutional
networks. Our experiment on applying transfer-learning
proves the feasibility of practicing transfer-learning in the
context of smell detection.

With the results presented in the paper we encour-
age software engineering researchers to build over our
work as we identify ample opportunities for automating
smell detection based on deep learning models. There
are grounds for extending this work to a wider scope
by including smells belonging to design and architecture
granularities. Furthermore, there exist opportunities for
further exploiting results and coupling with deep learning
methods for identifying suitable refactoring candidates.
From the practical side, the tool developers may induct
the deep learning methods for effective smell detection
and use transfer-learning to detect smells for programming
languages where no appropriate code smell detection tools
are available.



Acknowledgement

This work is partially funded by the seneca project,
which is part of the Marie Sk lodowska-Curie Innova-
tive Training Networks (itn-eid) under grant agreement
number 642954 and by the crossminer project, which
has received funding from the European Union’s Horizon
2020 Research and Innovation Programme under grant
agreement No. 732223.

We would like to thank Antonis Gkortzis, Theodore
Stassinopoulos, and Alexandra Chaniotakis for generously
contributing effort to our DesigniteJava project.

This work was supported by computational time
granted from the National Infrastructures for Research
and Technology s.a. (grnet s.a.) in the National hpc
facility — aris — under project id pa180903-smellsdl.

References

[1] M. Fowler, Refactoring: Improving the Design of Existing
Programs, 1st ed. Addison-Wesley Professional, 1999.

[2] T. Sharma and D. Spinellis, “A survey on software smells,”
Journal of Systems and Software, vol. 138, pp. 158 –
173, 2018. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0164121217303114

[3] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From
metaphor to theory and practice,” IEEE Software, vol. 29,
no. 6, pp. 18–21, 2012.

[4] R. Marinescu, “Measurement and quality in object-oriented
design,” in 21st IEEE International Conference on Soft-
ware Maintenance (ICSM’05), Universitatea Politehnica din
Timisoara, Timisoara, Romania. IEEE, Dec. 2005, pp. 701–
704.

[5] M. Salehie, S. Li, and L. Tahvildari, “A Metric-Based Heuristic
Framework to Detect Object-Oriented Design Flaws,” in ICPC
’06: Proceedings of the 14th IEEE International Conference on
Program Comprehension (ICPC’06), University of Waterloo.
IEEE Computer Society, Jun. 2006, pp. 159–168.

[6] N. Moha, Y. Guéhéneuc, L. Duchien, and A. L. Meur,
“DECOR: A method for the specification and detection of code
and design smells,” IEEE Trans. Software Eng., vol. 36, no. 1,
pp. 20–36, 2010.

[7] T. Sharma, P. Mishra, and R. Tiwari, “Designite — A Soft-
ware Design Quality Assessment Tool,” in Proceedings of the
First International Workshop on Bringing Architecture Design
Thinking into Developers’ Daily Activities, ser. BRIDGE ’16.
ACM, 2016.

[8] G. Rasool and Z. Arshad, “A review of code smell mining tech-
niques,” Journal of Software: Evolution and Process, vol. 27,
no. 11, pp. 867–895, 2015.

[9] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y.-G.
Guéhéneuc, G. Antoniol, and E. Aı̈meur, “Support vector ma-
chines for anti-pattern detection,” in ASE 2012: Proceedings of
the 27th IEEE/ACM International Conference on Automated
Software Engineering, Polytechnic School of Montreal. ACM,
Sep. 2012, pp. 278–281.

[10] G. Czibula, Z. Marian, and I. G. Czibula, “Detecting software
design defects using relational association rule mining,” Knowl-
edge and Information Systems, vol. 42, no. 3, pp. 545–577, Mar.
2015.

[11] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui,
“A Bayesian Approach for the Detection of Code and Design
Smells,” in QSIC ’09: Proceedings of the 2009 Ninth Inter-
national Conference on Quality Software. IEEE Computer
Society, Aug. 2009, pp. 305–314.

[12] ——, “BDTEX: A GQM-based Bayesian approach for the
detection of antipatterns,” in Journal of Systems and Software.
Ecole Polytechnique de Montreal, Montreal, Canada, 2011, pp.
559–572.

[13] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y.-G.
Guéhéneuc, and E. Aı̈meur, “SMURF: A SVM-based incre-
mental anti-pattern detection approach,” in Proceedings -
Working Conference on Reverse Engineering, WCRE, Ptidej
Team. IEEE, Dec. 2012, pp. 466–475.

[14] S. Bryton, F. Brito E Abreu, and M. Monteiro, “Reducing
subjectivity in code smells detection: Experimenting with the
Long Method,” in Proceedings - 7th International Conference
on the Quality of Information and Communications Technol-
ogy, QUATIC 2010, Faculdade de Ciencias e Tecnologia, New
University of Lisbon, Caparica, Portugal. IEEE, Dec. 2010,
pp. 337–342.

[15] Y. Bengio, A. Courville, and P. Vincent, “Representation learn-
ing: A review and new perspectives,” IEEE transactions on
pattern analysis and machine intelligence, vol. 35, no. 8, pp.
1798–1828, 2013.

[16] D. D. Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik,
and A. D. Lucia, “Detecting code smells using machine
learning techniques: Are we there yet?” in 2018 IEEE 25th
International Conference on Software Analysis, Evolution
and Reengineering (SANER), vol. 00, March 2018, pp. 612–
621. [Online]. Available: doi.ieeecomputersociety.org/10.1109/
SANER.2018.8330266

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in neural information processing systems, 2012, pp.
1097–1105.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper
with convolutions,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 1–9.

[19] T. N. Sainath, B. Kingsbury, G. Saon, H. Soltau, A.-r. Mo-
hamed, G. Dahl, and B. Ramabhadran, “Deep convolutional
neural networks for large-scale speech tasks,” Neural Networks,
vol. 64, pp. 39–48, 2015.

[20] R. Johnson and T. Zhang, “Effective use of word order for
text categorization with convolutional neural networks,” in
Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2015, pp. 103–112.

[21] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refac-
toring for Software Design Smells: Managing Technical Debt,
1st ed. Morgan Kaufmann, 2014.

[22] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Iden-
tifying Architectural Bad Smells,” in CSMR ’09: Proceedings of
the 2009 European Conference on Software Maintenance and
Reengineering. IEEE Computer Society, Mar. 2009, pp. 255–
258.

[23] M. Lippert and S. Roock, Refactoring in large software
projects: performing complex restructurings successfully. John
Wiley & Sons, 2006.

[24] H. S. de Andrade, E. Almeida, and I. Crnkovic, “Architectural
bad smells in software product lines: An exploratory study,”
in Proceedings of the WICSA 2014 Companion Volume, ser.
WICSA ’14 Companion. ACM, 2014, pp. 12:1–12:6.

[25] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “To-
ward a catalogue of architectural bad smells,” in Proceedings
of the 5th International Conference on the Quality of Software
Architectures: Architectures for Adaptive Software Systems,
ser. QoSA ’09. Springer-Verlag, 2009, pp. 146–162.

[26] S. A. Vidal, C. Marcos, and J. A. Dı́az-Pace, “An approach
to prioritize code smells for refactoring,” Automated Software
Engineering, vol. 23, no. 3, pp. 501–532, 2014.

[27] V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.-G.
Guéhéneuc, “A New Family of Software Anti-patterns: Linguis-
tic Anti-patterns,” in CSMR ’13: Proceedings of the 2013 17th
European Conference on Software Maintenance and Reengi-
neering. IEEE Computer Society, Mar. 2013, pp. 187–196.

[28] N. Tsantalis and A. Chatzigeorgiou, “Identification of extract
method refactoring opportunities for the decomposition of
methods,” Journal of Systems & Software, vol. 84, no. 10, pp.
1757–1782, Oct. 2011.

[29] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshy-
vanyk, and A. De Lucia, “Mining version histories for detecting



code smells,” IEEE Transactions on Software Engineering,
vol. 41, no. 5, pp. 462–489, May 2015.

[30] S. Fu and B. Shen, “Code Bad Smell Detection through
Evolutionary Data Mining,” in International Symposium on
Empirical Software Engineering and Measurement, Shanghai
Jiaotong University, Shanghai, China. IEEE, Nov. 2015, pp.
41–49.

[31] D. Sahin, M. Kessentini, S. Bechikh, and K. Deb, “Code-
Smell Detection as a Bilevel Problem,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 24,
no. 1, pp. 6–44, Oct. 2014.

[32] A. Ouni, R. G. Kula, M. Kessentini, and K. Inoue, “Web
Service Antipatterns Detection Using Genetic Programming,”
in GECCO ’15: Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, Osaka University.
ACM, Jul. 2015, pp. 1351–1358.

[33] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and
A. Ouni, “A Cooperative Parallel Search-Based Software En-
gineering Approach for Code-Smells Detection,” IEEE Trans-
actions on Software Engineering, vol. 40, no. 9, pp. 841–861,
2014.

[34] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De
Lucia, “The scent of a smell: An extensive comparison between
textual and structural smells,” IEEE Transactions on Software
Engineering, vol. 44, no. 10, pp. 977–1000, 2018.

[35] T. Paiva, A. Damasceno, E. Figueiredo, and C. Sant’Anna,
“On the evaluation of code smells and detection tools,” Journal
of Software Engineering Research and Development, vol. 5,
no. 1, pp. 2195–1721, 2017.

[36] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature,
vol. 521, no. 7553, p. 436, 2015.

[37] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep
learning. MIT press Cambridge, 2016, vol. 1.

[38] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” nature, vol. 323,
no. 6088, p. 533, 1986.

[39] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,” Neural computation, vol. 18,
no. 7, pp. 1527–1554, 2006.

[40] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-Scale Hierarchical Image Database,” in
CVPR09, 2009.

[41] A. Krizhevsky and G. Hinton, “Learning multiple layers of
features from tiny images,” Citeseer, Tech. Rep., 2009.

[42] Y. LeCun, C. Cortes, and C. Burges, “Mnist
handwritten digit database,” AT&T Labs. [Online]
http://yann.lecun.com/exdb/mnist, vol. 2, 2010.

[43] J. Martens, “Deep learning via hessian-free optimization.” in
ICML, vol. 27, 2010, pp. 735–742.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[45] D. J. Felleman and D. C. Van Essen, “Distributed hierarchical
processing in the primate cerebral cortex,” Cerebral Cortex,
vol. 1, no. 1, pp. 1–47, 1991.

[46] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular in-
teraction and functional architecture in the cat’s visual cortex,”
The Journal of physiology, vol. 160, no. 1, pp. 106–154, 1962.

[47] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[48] O. Z. Kraus, J. L. Ba, and B. J. Frey, “Classifying and segment-
ing microscopy images with deep multiple instance learning,”
Bioinformatics, vol. 32, no. 12, pp. i52–i59, 2016.

[49] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face
recognition: A convolutional neural-network approach,” IEEE
transactions on neural networks, vol. 8, no. 1, pp. 98–113, 1997.

[50] O. M. Parkhi, A. Vedaldi, A. Zisserman et al., “Deep face
recognition.” in BMVC, vol. 1, no. 3, 2015, p. 6.

[51] S.-M. Lee, S. M. Yoon, and H. Cho, “Human activity recogni-
tion from accelerometer data using convolutional neural net-
work,” in Big Data and Smart Computing (BigComp), 2017
IEEE International Conference on. IEEE, 2017, pp. 131–134.

[52] O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, and D. J. In-
man, “Real-time vibration-based structural damage detection

using one-dimensional convolutional neural networks,” Journal
of Sound and Vibration, vol. 388, pp. 154–170, 2017.

[53] K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink,
and J. Schmidhuber, “Lstm: A search space odyssey,” IEEE
transactions on neural networks and learning systems, vol. 28,
no. 10, pp. 2222–2232, 2017.

[54] A. Graves, N. Jaitly, and A.-r. Mohamed, “Hybrid speech
recognition with deep bidirectional lstm,” in Automatic Speech
Recognition and Understanding (ASRU), 2013 IEEE Work-
shop on. IEEE, 2013, pp. 273–278.

[55] T.-H. Wen, M. Gasic, N. Mrkšić, P.-H. Su, D. Vandyke, and
S. Young, “Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems,” in Proceedings
of the 2015 Conference on Empirical Methods in Natural
Language Processing, 2015, pp. 1711–1721.

[56] Y. Wang, M. Huang, L. Zhao et al., “Attention-based lstm
for aspect-level sentiment classification,” in Proceedings of the
2016 conference on empirical methods in natural language
processing, 2016, pp. 606–615.

[57] C. Baziotis, N. Pelekis, and C. Doulkeridis, “Datastories at
semeval-2017 task 4: Deep lstm with attention for message-
level and topic-based sentiment analysis,” in Proceedings of
the 11th International Workshop on Semantic Evaluation
(SemEval-2017), 2017, pp. 747–754.

[58] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase
representations using rnn encoder–decoder for statistical ma-
chine translation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP),
2014, pp. 1724–1734.

[59] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” California Univ
San Diego La Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[60] M. A. Kramer, “Nonlinear principal component analysis us-
ing autoassociative neural networks,” AIChE journal, vol. 37,
no. 2, pp. 233–243, 1991.

[61] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum
description length and helmholtz free energy,” in Advances in
neural information processing systems, 1994, pp. 3–10.

[62] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol,
“Extracting and composing robust features with denoising
autoencoders,” in Proceedings of the 25th international con-
ference on Machine learning, 2008, pp. 1096–1103.

[63] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked
convolutional auto-encoders for hierarchical feature extrac-
tion,” in International conference on artificial neural networks.
Springer, 2011, pp. 52–59.

[64] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D.
Manning, “Semi-supervised recursive autoencoders for predict-
ing sentiment distributions,” in Proceedings of the conference
on empirical methods in natural language processing. Associ-
ation for Computational Linguistics, 2011, pp. 151–161.

[65] S. C. AP, S. Lauly, H. Larochelle, M. Khapra, B. Ravindran,
V. C. Raykar, and A. Saha, “An autoencoder approach to
learning bilingual word representations,” in Advances in neural
information processing systems, 2014, pp. 1853–1861.

[66] M. Chen, Z. Xu, K. Weinberger, and F. Sha, “Marginalized
denoising autoencoders for domain adaptation,” arXiv preprint
arXiv:1206.4683, 2012.

[67] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust
deep autoencoders,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 2017, pp. 665–674.

[68] M. Sakurada and T. Yairi, “Anomaly detection using autoen-
coders with nonlinear dimensionality reduction,” in Proceed-
ings of the MLSDA 2014 2nd Workshop on Machine Learning
for Sensory Data Analysis, 2014, pp. 4–11.

[69] A. Barbez, F. Khomh, and Y.-G. Guéhéneuc, “A machine-
learning based ensemble method for anti-patterns detection,”
2019.

[70] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino,
“Comparing and experimenting machine learning techniques
for code smell detection,” Empirical Software Engineering,



vol. 21, no. 3, pp. 1143–1191, Jun 2016. [Online]. Available:
https://doi.org/10.1007/s10664-015-9378-4

[71] D. K. Kim, “Finding bad code smells with neural network
models.” International Journal of Electrical & Computer En-
gineering (2088-8708), vol. 7, no. 6, 2017.

[72] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, and L. Zhang, “Deep
learning based code smell detection,” IEEE Transactions on
Software Engineering, 2019.

[73] M. Hadj-Kacem and N. Bouassida, “A hybrid approach to
detect code smells using deep learning.” in ENASE, 2018, pp.
137–146.

[74] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A
survey of machine learning for big code and naturalness,” ACM
Computing Surveys (CSUR), vol. 51, no. 4, p. 81, 2018.

[75] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On
the naturalness of software,” in Software Engineering (ICSE),
2012 34th International Conference on. IEEE, 2012, pp. 837–
847.

[76] M. D. Ernst, “Natural language is a programming language:
Applying natural language processing to software develop-
ment,” in LIPIcs-Leibniz International Proceedings in Infor-
matics, vol. 71. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2017.

[77] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” in Pro-
ceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. ACM, 2016, pp. 87–98.

[78] H. Wei and M. Li, “Supervised deep features for software
functional clone detection by exploiting lexical and syntactical
information in source code,” in IJCAI, 2017, pp. 3034–3040.

[79] B. Vasilescu, C. Casalnuovo, and P. Devanbu, “Recovering
clear, natural identifiers from obfuscated js names,” in Proceed-
ings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 2017, pp. 683–693.

[80] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Lexical
statistical machine translation for language migration,” in
Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. ACM, 2013, pp. 651–654.

[81] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summariz-
ing source code using a neural attention model,” in Proceedings
of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), vol. 1, 2016, pp.
2073–2083.

[82] Y. Pu, K. Narasimhan, A. Solar-Lezama, and R. Barzilay,
“sk p: a neural program corrector for moocs,” in Companion
Proceedings of the 2016 ACM SIGPLAN International Confer-
ence on Systems, Programming, Languages and Applications:
Software for Humanity. ACM, 2016, pp. 39–40.

[83] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing
common c language errors by deep learning.” in AAAI, 2017,
pp. 1345–1351.

[84] S. R. Foster, W. G. Griswold, and S. Lerner, “Witchdoctor: Ide
support for real-time auto-completion of refactorings,” in Soft-
ware Engineering (ICSE), 2012 34th International Conference
on. IEEE, 2012, pp. 222–232.

[85] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and
S. Nakamura, “Learning to generate pseudo-code from source
code using statistical machine translation (t),” in Automated
Software Engineering (ASE), 2015 30th IEEE/ACM Interna-
tional Conference on. IEEE, 2015, pp. 574–584.

[86] W. Ling, P. Blunsom, E. Grefenstette, K. M. Hermann,
T. Kočiskỳ, F. Wang, and A. Senior, “Latent predictor net-
works for code generation,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), vol. 1, 2016, pp. 599–609.

[87] P. Yin and G. Neubig, “A syntactic neural model for general-
purpose code generation,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), vol. 1, 2017, pp. 440–450.

[88] C. V. Alexandru, S. Panichella, and H. C. Gall, “Replicating
parser behavior using neural machine translation,” in Pro-
ceedings of the 25th International Conference on Program
Comprehension. IEEE Press, 2017, pp. 316–319.

[89] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[90] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generat-
ing sequences from structured representations of code,” arXiv
preprint arXiv:1808.01400, 2018.

[91] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in neural infor-
mation processing systems, 2014, pp. 3104–3112.

[92] Z. Chen, S. J. Kommrusch, M. Tufano, L.-N. Pouchet,
D. Poshyvanyk, and M. Monperrus, “Sequencer: Sequence-
to-sequence learning for end-to-end program repair,” IEEE
Transactions on Software Engineering, 2019.

[93] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and
D. Poshyvanyk, “On learning meaningful code changes via
neural machine translation,” in 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE). IEEE,
2019, pp. 25–36.

[94] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White,
and D. Poshyvanyk, “Deep learning similarities from different
representations of source code,” in 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories
(MSR). IEEE, 2018, pp. 542–553.

[95] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction
via convolutional neural network,” in Software Quality, Reli-
ability and Security (QRS), 2017 IEEE International Confer-
ence on. IEEE, 2017, pp. 318–328.

[96] M. Allamanis, H. Peng, and C. Sutton, “A convolutional at-
tention network for extreme summarization of source code,”
in International Conference on Machine Learning, 2016, pp.
2091–2100.

[97] X. Huo, M. Li, and Z.-H. Zhou, “Learning unified features from
natural and programming languages for locating buggy source
code.” in IJCAI, 2016, pp. 1606–1612.

[98] J. Ott, A. Atchison, P. Harnack, N. Best, H. Anderson,
C. Firmani, and E. Linstead, “Learning lexical features of
programming languages from imagery using convolutional
neural networks,” in Proceedings of the 26th Conference
on Program Comprehension, ser. ICPC ’18. New York,
NY, USA: ACM, 2018, pp. 336–339. [Online]. Available:
http://doi.acm.org/10.1145/3196321.3196359

[99] X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, and J. Grundy,
“Neural network-based detection of self-admitted technical
debt: From performance to explainability,” ACM Trans. Softw.
Eng. Methodol., vol. 28, no. 3, Jul. 2019. [Online]. Available:
https://doi.org/10.1145/3324916

[100] L. Rantala and M. Mäntylä, “Predicting technical debt
from commit contents: reproduction and extension with
automated feature selection,” Software Quality Journal,
vol. 28, pp. 1551—-1579, 2020. [Online]. Available: https:
//doi.org/10.1007/s11219-020-09520-3

[101] F. Zampetti, A. Serebrenik, and M. Di Penta, “Automatically
learning patterns for self-admitted technical debt removal,” in
2020 IEEE 27th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER), 2020, pp. 355–366.

[102] U. Azadi, F. A. Fontana, and M. Zanoni, “Poster: machine
learning based code smell detection through wekanose,” in
2018 IEEE/ACM 40th International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 2018, pp. 288–289.

[103] F. A. Fontana and M. Zanoni, “Code smell severity classifi-
cation using machine learning techniques,” Knowledge-Based
Systems, vol. 128, pp. 43–58, 2017.

[104] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine
learning techniques for code smell detection: A systematic lit-
erature review and meta-analysis,” Information and Software
Technology, vol. 108, pp. 115–138, 2019.

[105] F. A. Fontana, I. Pigazzini, R. Roveda, and M. Zanoni, “Auto-
matic detection of instability architectural smells,” in Software
Maintenance and Evolution (ICSME), 2016 IEEE Interna-
tional Conference on. IEEE, 2016, pp. 433–437.

[106] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, and
A. Zaidman, “A textual-based technique for Smell Detection,”
in 2016 IEEE 24th International Conference on Program



Comprehension (ICPC), Universita di Salerno, Salerno, Italy.
IEEE, 2016, pp. 1–10.

[107] F. Chollet, Deep learning with python. Manning Publications
Co., 2017.

[108] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learn-
ing to represent programs with graphs,” arXiv preprint
arXiv:1711.00740, 2017.

[109] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec:
Learning distributed representations of code,” Proc. ACM
Program. Lang., vol. 3, no. POPL, Jan. 2019. [Online].
Available: https://doi.org/10.1145/3290353

[110] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks
the best choice for modeling source code?” in Proceedings
of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 2017, pp. 763–773.

[111] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and
A. Janes, “Big code != big vocabulary: Open-vocabulary
models for source code,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering,
ser. ICSE ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1073–1085. [Online]. Available:
https://doi.org/10.1145/3377811.3380342

[112] H. Babii, A. Janes, and R. Robbes, “Modeling vocabulary for
big code machine learning,” arXiv preprint arXiv:1904.01873,
2019.

[113] V. Markovtsev, W. Long, E. Bulychev, R. Keramitas,
K. Slavnov, and G. Markowski, “Splitting source code identi-
fiers using bidirectional lstm recurrent neural network,” arXiv
preprint arXiv:1805.11651, 2018.

[114] M. Rahman, D. Palani, and P. C. Rigby, “Natural software
revisited,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 2019, pp. 37–48.

[115] W. Fu and T. Menzies, “Easy over hard: A case study on deep
learning,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. ACM, 2017, pp. 49–60.

[116] R.-M. Karampatsis and C. Sutton, “Maybe deep neural net-
works are the best choice for modeling source code,” arXiv
preprint arXiv:1903.05734, 2019.

[117] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshy-
vanyk, “Toward deep learning software repositories,” in Pro-
ceedings of the 12th Working Conference on Mining Software
Repositories. IEEE Press, 2015, pp. 334–345.

[118] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional
neural networks over tree structures for programming language
processing.” in AAAI, vol. 2, no. 3, 2016, p. 4.

[119] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati, M. Sa-
hami, and L. Guibas, “Learning program embeddings to prop-
agate feedback on student code,” in International Conference
on Machine Learning, 2015, pp. 1093–1102.

[120] G. Robles, “Replicating msr: A study of the potential replica-
bility of papers published in the mining software repositories
proceedings,” in Mining Software Repositories (MSR), 2010
7th IEEE Working Conference on. IEEE, 2010, pp. 171–180.

[121] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and
C. Potts, “Learning word vectors for sentiment analysis,” in
Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies.
Portland, Oregon, USA: Association for Computational
Linguistics, June 2011, pp. 142–150. [Online]. Available:
http://www.aclweb.org/anthology/P11-1015

[122] V. Dallmeier and T. Zimmermann, “Extraction of bug localiza-
tion benchmarks from history,” in Proceedings of the twenty-
second IEEE/ACM international conference on Automated
software engineering, 2007, pp. 433–436.

[123] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and
M. Brockschmidt, “Codesearchnet challenge: Evaluating
the state of semantic code search,” arXiv preprint
arXiv:1909.09436, 2019.

[124] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of
existing faults to enable controlled testing studies for java pro-
grams,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis, 2014, pp. 437–440.

[125] V. Efstathiou and D. Spinellis, “Semantic source code models
using identifier embeddings,” in 2019 IEEE/ACM 16th Inter-

national Conference on Mining Software Repositories (MSR).
IEEE, 2019, pp. 29–33.

[126] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov,
“Learning word vectors for 157 languages,” in Proceedings
of the International Conference on Language Resources and
Evaluation (LREC 2018), 2018.

[127] T. Luong, H. Pham, and C. D. Manning, “Effective approaches
to attention-based neural machine translation,” in Proceedings
of the 2015 Conference on Empirical Methods in Natural
Language Processing, 2015, pp. 1412–1421.

[128] M. Allamanis, “The adverse effects of code duplication in
machine learning models of code,” in Proceedings of the 2019
ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software,
2019, pp. 143–153.

[129] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating
github for engineered software projects,” Empirical Software
Engineering, vol. 22, no. 6, pp. 3219–3253, Dec 2017. [Online].
Available: https://doi.org/10.1007/s10664-017-9512-6

[130] D. Spinellis, Z. Kotti, and A. Mockus, “A dataset for github
repository deduplication,” in 17th International Conference on
Mining Software Repositories, ser. MSR ’20. New York, NY,
USA: Association for Computing Machinery, Oct. 2020.

[131] T. Sharma, “Designite - A Software Design Quality Assessment
Tool,” May 2016, http://www.designite-tools.com. [Online].
Available: https://doi.org/10.5281/zenodo.2566832

[132] ——, “Designitejava,” Dec. 2018,
https://github.com/tushartushar/DesigniteJava. [Online].
Available: https://doi.org/10.5281/zenodo.2566861

[133] J. Cohen, “A coefficient of agreement for nominal scales,”
Educational and psychological measurement, vol. 20, no. 1, pp.
37–46, 1960.

[134] T. Sharma, “Codesplitjava,” Feb. 2019,
https://github.com/tushartushar/CodeSplitJava. [Online].
Available: https://doi.org/10.5281/zenodo.2566865

[135] ——, “Codesplit for c#,” Feb. 2019. [Online]. Available:
https://doi.org/10.5281/zenodo.2566905

[136] D. Spinellis, “dspinellis/tokenizer: Version 1.1,” Feb. 2019,
https://github.com/dspinellis/tokenizer. [Online]. Available:
https://doi.org/10.5281/zenodo.2558420

[137] F. Pecorelli, D. Di Nucci, C. De Roover, and A. De Lucia,
“A large empirical assessment of the role of data balancing
in machine-learning-based code smell detection,” Journal of
Systems and Software, vol. 169, p. 110693, 2020. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S0164121220301448

[138] T. Sharma, “tushartushar/deeplearningsmells: public release,”
Mar. 2021. [Online]. Available: https://doi.org/10.5281/
zenodo.4571626

[139] S. Ioffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,” in
Proceedings of the 32nd International Conference on Interna-
tional Conference on Machine Learning-Volume 37. JMLR.
org, 2015, pp. 448–456.

[140] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” The Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[141] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural net-
works for language modeling,” in Thirteenth annual conference
of the international speech communication association, 2012.

[142] Y. Gal and Z. Ghahramani, “A Theoretically Grounded Ap-
plication of Dropout in Recurrent Neural Networks,” arXiv e-
prints, p. arXiv:1512.05287, Dec 2015.

[143] A. Ng et al., “Sparse autoencoder,” CS294A Lecture notes,
vol. 72, no. 2011, pp. 1–19, 2011.

[144] M. Y. Park and T. Hastie, “L1-regularization path algorithm
for generalized linear models,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), vol. 69, no. 4, pp.
659–677, 2007.

[145] N. Japkowicz, C. Myers, and M. Gluck, “A novelty detection
approach to classification,” in Proceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence (IJCAI



95)—Volume 1. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1995, pp. 518––523.

[146] S. Hawkins, H. He, G. Williams, and R. Baxter, “Outlier
detection using replicator neural networks,” in Proceedings of
the 4th International Conference on Data Warehousing and
Knowledge Discovery (DaWak) 2002. Berlin Heidelberg:
Springer-Verlag, 2002, pp. 170–180.

[147] G. Williams, R. Baxter, H. He, S. Hawkins, and L. Gu, “A
comparative study of RNN for outlier detection in data min-
ing,” in Proceedings of the IEEE International Conference on
Data Mining, 2002, pp. 709–712.

[148] L. A. Becker, “Effect size (es),” Retrieved September, vol. 9, p.
2007, 2000. [Online]. Available: https://www.uv.es/∼friasnav/
EffectSizeBecker.pdf

[149] J. Yao and M. Shepperd, “Assessing software defection
prediction performance: Why using the Matthews Correlation
Coefficient matters,” in Proceedings of the Evaluation and
Assessment in Software Engineering, ser. EASE ’20. New
York, NY, USA: Association for Computing Machinery,
2020, p. 120–129. [Online]. Available: https://doi.org/10.
1145/3383219.3383232

[150] H. J. Kang, T. F. Bissyandé, and D. Lo, “Assessing the
generalizability of code2vec token embeddings,” in 2019 34th
IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 1–12.

[151] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian,
and D. Dig, “Accurate and efficient refactoring detection in
commit history,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. ACM,
2018, pp. 483–494. [Online]. Available: http://doi.acm.org/10.
1145/3180155.3180206

[152] B. Biegel, Q. D. Soetens, W. Hornig, S. Diehl, and S. Demeyer,
“Comparison of similarity metrics for refactoring detection,” in
Proceedings of the 8th Working Conference on Mining Software
Repositories, ser. MSR ’11. ACM, 2011, pp. 53–62. [Online].
Available: http://doi.acm.org/10.1145/1985441.1985452


