
� For correspondence:

tushar@dal.ca

Data availability: Replication

package can be found on

GitHub - https://github.com/-

tushartushar/ML4SCA

Funding: Maria Kechagia and

Federica Sarro are supported

by the ERC grant no. 741278

(EPIC).

A Survey on Machine Learning1

Techniques Applied to Source Code2

Tushar Sharma1�, Maria Kechagia2, Stefanos Georgiou3, Rohit Tiwari4, Indira3

Vats5, Hadi Moazen6, Federica Sarro24

1Dalhousie University, Canada; 2University College London, United Kingdom; 3Queens5

University, Canada; 4DevOn, India; 5J.S.S. Academy of Technical Education, India; 6Sharif6

University of Technology, Iran7

8

Abstract9

The advancements in machine learning techniques have encouraged researchers to apply these10

techniques to a myriad of software engineering tasks that use source code analysis, such as11

testing and vulnerability detection. Such a large number of studies hinders the community from12

understanding the current research landscape. This paper aims to summarize the current13

knowledge in applied machine learning for source code analysis. We review studies belonging to14

twelve categories of software engineering tasks and corresponding machine learning techniques,15

tools, and datasets that have been applied to solve them. To do so, we conducted an extensive16

literature search and identified 494 studies. We summarize our observations and findings with17

the help of the identified studies. Our findings suggest that the use of machine learning18

techniques for source code analysis tasks is consistently increasing. We synthesize commonly19

used steps and the overall workflow for each task and summarize machine learning techniques20

employed. We identify a comprehensive list of available datasets and tools useable in this21

context. Finally, the paper discusses perceived challenges in this area, including the availability of22

standard datasets, reproducibility and replicability, and hardware resources.23

24

Keywords: Machine learning for software engineering, source code analysis, deep learning, datasets,25

tools.26

1. Introduction27

In the last two decades, we have witnessed significant advancements in Machine Learning (ml),28

including Deep Learning (dl) techniques, specifically in the domain of image [237, 476], text [255, 4],29

and speech [418, 166, 165] processing. These advancements, coupled with a large amount of30

open-source code and associated artifacts, as well as the availability of accelerated hardware, have31

encouraged researchers and practitioners to use ml techniques to address software engineering32

problems [513, 561, 27, 248, 34].33

The software engineering community has employed ml and dl techniques for a variety of appli-34

cations such as software testing [275, 361, 564], source code representation [27, 191], source code35

quality analysis [34, 45], program synthesis [248, 540], code completion [288], refactoring [40],36

code summarization [295, 252, 24], and vulnerability analysis [440, 429, 501] that involve source37

code analysis. As the field of Machine Learning for Software Engineering (ml4se) is expanding, the38

number of available resources, methods, and techniques as well as tools and datasets, is also in-39

creasing. This poses a challenge, to both researchers and practitioners, to fully comprehend the40

landscape of the available resources and infer the potential directions that the field is taking. In41

Sharma et al. | | December 18, 2023 | 1–98

tushar@dal.ca
https://github.com/tushartushar/ML4SCA
https://github.com/tushartushar/ML4SCA

this context, literature surveys play an important role in understanding existing research, finding42

gaps in research or practice, and exploring opportunities to improve the state of the art. By sys-43

tematically examining existing literature, surveys may uncover hidden patterns, recurring themes,44

and promising research directions. Surveys also identify untapped opportunities and formulation45

of new hypotheses. A survey also serves as an educational tool, offering comprehensive coverage46

of the field to a newcomer.47

In fact, there have beennumerous recent attempts to summarize the application-specific knowl-48

edge in the form of surveys. For example, Allamanis et al. [27] present key methods to model49

source code using ml techniques. Shen and Chen [440] provide a summary of research methods50

associatedwith software vulnerability detection, software program repair, and software defect pre-51

diction. Durelli et al. [132] collect 48 primary studies focusing on software testing using machine52

learning. Alsolai and Roper [34] present a systematic review of 56 studies related to maintain-53

ability prediction using ml techniques. Recent surveys [487, 13, 45] summarize application of ml54

techniques on software code smells and technical debt identification. Similarly, literature reviews55

on program synthesis [248] and code summarization [348] have been attempted. We compare56

in Table 1 the aspects investigated in our survey with respect to existing surveys that review ml57

techniques for topics such as testing, vulnerabilities, and program comprehension with our sur-58

vey. Existing studies, in general, kept their focus on only one category; due to that readers could59

not grasp existing literature belonging to various software engineering categories in a consistent60

form. In addition, existing surveys do not always provide datasets and tools in the field. Our survey,61

covers a wide range of software engineering activities; it summarizes a significantly large number62

of studies; it systematically examines available tools and datasets for ml that would support re-63

searchers in their studies in this field; it identifies perceived challenges in the field to encourage64

the community to explore ways to overcome them.65

In this paper, we focus on the usage of ml, including dl, techniques for source code analysis.66

Source code analysis involves tasks that take the source code as input, process it, and/or produce67

source code as output. Source code representation, code quality analysis, testing, code summa-68

rization, and program synthesis are applications that involve source code analysis. To the best of69

our knowledge, the software engineering literature lacks a survey covering a wide range of source70

code analysis applications using machine learning; this work is an attempt to fill this research gap.71

In this survey, we aim to give a comprehensive, yet concise, overview of current knowledge on72

appliedmachine learning for source code analysis. We also aim to collate and consolidate available73

resources (in the form of datasets and tools) that researchers have used in previous studies on74

this topic. Additionally, we aim to identify and present challenges in this domain. We believe that75

our efforts to consolidate and summarize the techniques, resources, and challenges will help the76

community to not only understand the state-of-the-art better, but also to focus their efforts on77

tackling the identified challenges.78

This survey makes the following contributions to the field:79

• It presents a summary of the applied machine learning studies attempted in the source code80

analysis domain.81

• It consolidates resources (such as datasets and tools) relevant for future studies in this do-82

main.83

• It provides a consolidated summary of the open challenges that require the attention of the84

researchers.85

The rest of the paper is organized as follows. We present the followed methodology, including86

the literature search protocol and research questions, in Section 2. Section 2.3, Section 3, Section 4,87

and Section 5 provide the detailed results of our findings. We present threats to validity in Section 6,88

and conclude the paper in Section 7.89

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 2 of 98

Table 1. Comparison Among Surveys. The “Category” column refers to the software engineering task the survey

covers. The “Scope” column indicates the focus of the study; TML refers to traditional machine learning and DL

refers to deep learning techniques. The “Data&Tools” column indicates if a survey reviews available datasets

and tools for ml-based applications, the “Challenges” column shows whether the study identifies challenges in

the field studied, the “Type” column refers to the type of literature survey, and the “#Studies” column refers to

the number of studies included in a given survey. We use “–” to indicate that a field is not applicable to a certain

study and NA for the number of studies column, where the study does not explicitly mention selection criteria

and the number of selected studies.

Category Article Scope Data Chall- Type #Studies

& Tools enges

Program

Comprehension

Nazar et al. [348] TML Tools No Lit. survey 59

Zhang et al. [560] DL Data No Lit. survey NA

Song et al. [458] TML & DL No Yes Lit. survey NA

Testing

Omri and Sinz [361] DL No No Lit. survey NA

Durelli et al. [132] TML & DL No Yes Mapping study 48

Hall and Bowes [181] TML Yes Yes Meta-analysis 21

Zhang et al. [564] TML & DL No Yes Lit. survey 46

Pandey et al. [368] TML No Yes Lit. survey 154

Singh et al. [452] TML No No Lit. survey 13

Vulnerability

analysis

Li et al. [271] DL Yes Yes Meta-analysis –

Shen and Chen [440] DL No Yes Meta-analysis –

Ucci et al. [501] TML No Yes Lit. survey 64

Jie et al. [215] TML No No Lit. survey 19

Hanif et al. [187] TML & DL No Yes Lit. survey 90

Quality
assessment

Alsolai and Roper [34] TML No No Lit. survey 56

Tsintzira et al. [487] TML Yes Yes Lit. survey 90

Azeem et al. [45] TML Yes No Lit. survey 15

Caram et al. [77] TML No No Mapping study 25

Lewowski and Madeyski [259] TML Yes No Lit. survey 45

Prog. synthesis
Goues et al. [162] TML & DL No Yes Lit. survey NA

Le et al. [248] DL Yes Yes Lit. survey NA

Prog. synthesis

& code
representation Allamanis et al. [27] TML & DL Yes Yes Lit. survey 39+48

Software engg.

tasks Yang et al. [544] DL Data Yes Lit. survey 250

Source-code
analysis Our study TML & DL Yes Yes Lit. survey 494

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 3 of 98

2. Methodology90

First, we present the objectives of this study and the research questions derived from such ob-91

jectives. Second, we describe the search protocol we followed to identify relevant studies. The92

protocol identifies detailed steps to collect the initial set of articles as well as the inclusion and93

exclusion criteria to obtain a filtered set of studies.94

2.1 Research objectives95

This study aims to achieve the following research objectives (ROs).96

RO1. Identifying specific software engineering tasks involving source code that have been attempted97

using machine learning.98

Our objective is to explore the extent to which machine learning has been applied to analyze99

and process source code for SE tasks.We aim to summarize how ml can help engineers tackle100

specific SE tasks.101

RO2. Summarizing the machine learning techniques used for these tasks.102

This objective explores the ml techniques commonly applied to source code for performing103

the software engineering tasks identified above. We attempt to synthesize amapping of tasks104

(along with related sub-tasks) and corresponding ml techniques.105

RO3. Providing a list of available datasets and tools.106

With this goal, we aim to provide a consolidated summary of publicly available datasets and107

tools along with their purpose.108

RO4. Identifying the challenges and perceived deficiencies in ml-enabled source code analysis and ma-109

nipulation for software engineering.110

With this objective, we aim to identify challenges, and opportunities arising when applying111

ml techniques to source code for SE tasks, as well as to understand the extent to which they112

have been addressed in the articles surveyed.113

2.2 Literature search protocol114

We identified 494 relevant studies through a four step literature search. Figure 1 summarizes the115

search process. We elaborate on each of these phases in the rest of this section.116

Figure 1. Overview of the search process

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 4 of 98

2.2.1 Literature search—Phase 1117

We split the phase 1 literature search into two rounds. In the first round, we carried out an ex-118

tensive initial search on six well-known digital libraries—Google Scholar, SpringerLink, ACM Digital119

Library, ScienceDirect, IEEE Xplore, and Web of Science during Feb-Mar 2021. We formulated a120

set of search terms based on common tasks and software engineering activities related to source121

code analysis. Specifically, we used the following terms for the search: machine learning code, ma-122

chine learning code representation, machine learning testing,machine learning code synthesis,machine123

learning smell identification,machine learning security source code analysis,machine learning software124

quality assessment,machine learning code summarization,machine learning program repair,machine125

learning code completion, and machine learning refactoring. We searched minimum seven pages of126

search results for each search term manually; beyond seven pages, we continued the search un-127

less we get two continuous search pages without any new and relevant articles. We adopted this128

mechanism to avoid missing any relevant articles in the context of our study.129

In the second round of phase 1, we identified a set of frequently occurring keywords in the arti-130

cles obtained from the first round for each category individually. To do that, we manually scanned131

the keywords mentioned in the articles belonging to each category, and noted the keywords that132

appeared at least three times. If the selected keywords are too generic, we first check whether133

adding machine learning would improve the search results. For example, machine learning and134

program generation occurred multiple times in the program synthesis category; we combined both135

of these terms to make one search string i.e., program generation using machine learning. In other136

cases, we tried to reduce the scope of the search term by adding qualifying terms. Consider feature137

learning as an example: it is so generic that would result in many unrelated results. We reduced138

the search scope by adding source code in the search i.e., searching using feature learning in source139

code. We carried out this additional round of literature search to augment our initial search terms140

and reduce the risk of missing relevant articles. The full list of search terms used in the second141

round of phase 1 can be found in our replication package [438]. Next, we defined inclusion and142

exclusion criteria to filter out irrelevant studies.143

Table 2. Search terms and corresponding relevant studies found in the second round of phase 1.

Category Search terms #Studies

Vulnerability

analysis

feature learning in source code 9

vulnerability prediction in source code using machine learning 70

deep learning-based vulnerability detection 8

malicious code detection with machine learning 45

Testing

word embedding in software testing 2

automated Software Testing with machine learning 12

optimal machine learning based random test generation 1

Refactoring

source code refactoring prediction with machine learning 39

automatic clone recommendation with machine learning 14

machine learning based refactoring detection tools 16

search-based refactoring with machine learning 6

Quality
assessment

web service anti-pattern detection with machine learning 25

code smell prediction models 34

machine learning-based approach for code smells detection 17

software design flaw prediction 37

linguistic smell detection with machine learning 2

software defect prediction with machine learning 66

machine learning based software fault prediction 35

Program

synthesis

automated program repair methods with machine learning 45

144

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 5 of 98

program generation with machine learning 2

object-oriented program repair with machine learning 15

predicting patch correctness with machine learning 3

multihunk program repair with machine learning 9

Program

comprehension

autogenerated code with machine learning 6

commits analysis with machine learning 34

supplementary bug fixes with machine learning 9

Code
summarization

automatic source code summarization with machine learning 43

automatic commit message generation with machine learning 19

comments generation with machine learning 11

Code review
security flaws detection in source code with machine learning 20

intelligent source code security review with machine learning 2

Code
representation

design pattern detection with machine learning 10

human-machine-comprehensible software representation 1

feature learning in source code 6

Code
completion

missing software architectural tactics prediction with machine

learning

1

software system quality analysis with machine learning 6

package-level tactic recommendation generation in source code 3

identifier prediction in source code 13

token prediction in source code 29

145

Inclusion criteria:146

• Studies and surveys that discuss the application of machine learning (including dl) to source147

code to perform a software engineering task.148

• Resources revealing the deficiencies or challenges in the current set of methods, tools, and149

practices.150

Exclusion criteria:151

• Studies focusing on techniques other than ml applied on source code to address software152

engineering tasks e.g., code smell detection using metrics.153

• Articles that are not peer-reviewed (such as articles available only on arXiv.org).154

• Articles constituting a keynote, extended abstract, editorial, tutorial, poster, or panel discus-155

sion (due to insufficient details and limited length).156

• Studies whose full text is not available, or is written in any other language than English.157

We considered whether to include studies that do not directly analyze source code. Often,158

source code is analyzed to extract features, and machine learning techniques are applied to the159

extracted features. Furthermore, researchers in the field either create their own dataset (in that160

case, analyze/process source code) or use existing datasets. Removing studies that use a dataset161

will make this survey incomplete; hence, we decided to include such studies.162

During the search, we documented studies that satisfy our search protocol in a spreadsheet163

including the required meta-data (such as title, bibtex record, and link of the source). The spread-164

sheet with all the articles from each phase can be found in our online replication package [438].165

Each selected article went through amanual inspection of title, keywords, and abstract. The inspec-166

tion applied the inclusion and exclusion criteria leading to inclusion or exclusion of the articles. In167

the end, we obtained 1, 576 articles after completing Phase 1 of the search process.168

2.2.2 Literature search—Phase 2169

We first identified a set of categories and sub-categories for common software engineering tasks.170

These tasks are commonly referred in recent publications [147, 27, 440, 45]. These categories171

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 6 of 98

and sub-categories of common software engineering tasks can be found in Figure 3. Then, we172

manually assigned a category and sub-category, if applicable, to each selected article based on the173

(sub-)category to which an article contributes the most. The assignment was carried out by one of174

the authors and verified by two other authors. We computed Cohen's Kappa [329] to measure the175

initial disagreement; we found a strong agreement among the authors with 𝜅 = 0.87. In case of176

disagreement, each author specified a key goal, operation, or experiment in the article, indicating177

the rationale of the category assignment for the article. This exercise resolved the majority of the178

disagreements. In the rest of the cases, we discussed the rationale identified by individual authors179

and voted to decide a category or sub-category to which the article contributes the most. In this180

phase, we also discarded duplicates or irrelevant studies not meeting our inclusion criteria after181

reading their title and abstract. After this phase, we were left with 1, 098 studies.182

2.2.3 Literature search—Phase 3183

In the last decade, the use of ML has increased significantly. The research landscape involving184

source code and ml, which includes methods, applications, and required resources, has changed185

significantly in the last decade. To keep the survey focused on recent methods and applications,186

we focused on studies published after 2011. Also, we discarded papers that had not received187

enough attention from the community by filtering out all those having a `citation count < (2021 –188

publication year)'. We chose 2021 as the base year to not penalize studies that came out recently;189

hence, the studies that are published in 2021 do not need to have any citation to be included in this190

search. We obtain the citation count from digital libraries manually during Mar-May 2022. After191

applying this filter, we obtained 977 studies.192

2.2.4 Literature search—Phase 4193

In this phase, we discarded those studies that do not satisfy our inclusion criteria (such as when194

the article is too short or do not apply any ml technique to source code for SE tasks) after reading195

the whole article. The remaining 494 articles are the selected studies that we examine in detail.196

For each study, we extracted the core idea and contribution, the ml techniques, datasets and tools197

used aswell as challenges and findings unveiled. Next, we present our observations corresponding198

to each research goal we pose.199

2.3 Assigning articles to software engineering task categories200

Towards achieving RO1, we tagged each selected article with one of the task categories based on201

the primary focus of the study. The categories represent common software engineering tasks202

that involve source code analysis. These categories are code completion, code representation, code203

review, code search, dataset mining, program comprehension, program synthesis, quality assessment,204

refactoring, testing, and vulnerability analysis. If a given article does not fall in any of these categories205

but is still relevant to our discussion as it offers overarching discussion on the topic; we put the206

study in the general category. Figure 2 presents a category-wise distribution of studies per year.207

It is evident that the topic is engaging the research community more and more and we observe,208

in general, a healthy upward trend. Interestingly, the number of studies in the scope dropped209

significantly in the year 2021.210

Some of the categories are quite generic and hence further categorization is possible based on211

specific tasks. For each category, we identified sub-categories by grouping related studies together212

and assigning an intuitive name representing the set of the studies. For example, the testing cate-213

gory is further divided into defect prediction, and test data/case generation. We attempted to assign214

a sub-category to each study; if none of the sub-categories was appropriate for a study, we did not215

assign any sub-category to the study. One author of this paper assigned a sub-category to each216

study based on the topic to which that study contributed the most. The initial assignment was217

verified by two other authors of this paper, where disagreements were discussed and resolved to218

reach a consensus. Figure 3 presents the distribution of studies per year w.r.t. each category and219

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 7 of 98

Figure 2. Category-wise distribution of studies

Figure 3. Category- and sub-categories-wise distribution of studies

corresponding sub-categories.220

To quantify the growth of each category, we compute the average increase in the number of221

articles from the last year for each category between the years 2012 and 2022. We observed that222

the program synthesis and vulnerability analysis categories grew most with approximately 44% and223

50% average growth each year, respectively.224

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 8 of 98

C
o

d
e

 r
ep

re
se

n
ta

ti
o

n

C
o

d
e

 c
o

m
p

le
ti

o
n

C
o

d
e

 r
ev

ie
w

C
o

d
e

 s
e

ar
ch

D
at

a
se

t
m

in
in

g

P
ro

gr
am

 c
o

m
p

re
h

e
n

si
o

n

P
ro

gr
am

 s
yn

th
e

si
s

Q
u

al
it

y
as

se
ss

m
e

n
t

R
e

fa
ct

o
ri

n
g

Te
st

in
g

V
u

ln
e

ra
b

ili
ty

 a
n

al
ys

is

To
ta

l

Support Vector Regression TML-SUP-MOD-SVR 0 0 0 0 0 0 0 1 0 1 0 2

Support Vector Machine TML-SUP-MOD-SVM 0 0 0 0 0 8 2 41 4 3 31 89

Polynomial Regression TML-SUP-MOD-POLY 0 0 0 0 0 0 0 1 0 0 0 1

Logistic Regression TML-SUP-MOD-LOG 0 1 0 0 1 2 2 22 4 1 8 41

Locally Deep Support Vector Machines TML-SUP-MOD-LDSVM 0 0 0 0 0 0 0 0 0 0 1 1

Linear Regression TML-SUP-MOD-LR 0 0 0 0 0 2 0 10 1 1 7 21

Linear Discriminant Analysis TML-SUP-MOD-LDA 1 1 0 0 0 0 0 0 0 0 2 4

Least Median Square Regression TML-SUP-MOD-LMSR 0 0 0 0 0 0 0 1 0 0 0 1

LASSO TML-SUP-MOD-LSS 0 0 0 0 0 0 0 0 0 0 1 1

Boosted Decision Trees TML-SUP-TR-BDT 0 0 0 0 0 0 0 0 0 0 1 1

Classification And Regression Tree TML-SUP-TR-CART 0 0 0 0 0 0 1 1 0 0 0 2

Co-forest Random Forest TML-SUP-TR-CRF 0 0 0 0 0 0 0 1 0 0 1 2

Decision Forest TML-SUP-TR-DF 0 0 0 0 0 0 0 0 0 0 1 1

Decision Jungle TML-SUP-TR-DJ 0 0 0 0 0 0 0 0 0 0 1 1

Decision Stump TML-SUP-TR-DS 0 0 0 0 0 0 0 0 0 0 2 2

Decision Tree TML-SUP-TR-DT 0 1 1 0 0 8 3 52 2 1 19 87

Extra Trees TML-SUP-TR-ET 0 0 0 0 0 0 0 3 0 0 0 3

Gradient Boosted Trees TML-SUP-TR-GBT 0 0 0 0 0 0 1 1 0 0 0 2

Gradient Boosted Decision Tree TML-SUP-TR-GBDT 0 0 0 0 0 0 0 0 0 0 2 2

ID3 TML-SUP-TR-ID3 0 0 0 0 0 0 0 0 0 0 1 1

Random Tree TML-SUP-TR-RT 0 0 0 0 0 0 0 2 0 0 2 4

Random Forest TML-SUP-TR-RF 1 1 1 0 0 12 3 45 3 1 21 88

COBWEB TML-SUP-IN-CWEB 0 0 0 0 0 0 0 1 0 0 0 1

KStar TML-SUP-IN-KS 0 0 0 0 0 0 0 5 0 0 0 5

K-Nearest Neighbours TML-SUP-IN-KNN 0 0 0 0 0 3 0 13 0 1 9 26

Bayes Net TML-SUP-PRO-BN 0 1 1 0 0 1 0 8 1 0 6 18

Bayes Point Machine TML-SUP-PRO-BPM 0 0 0 0 0 0 0 0 0 0 1 1

Bernoulli Naives Bayes TML-SUP-PRO-BNB 0 0 0 0 0 0 0 3 0 0 2 5

Gaussian Naive Bayes TML-SUP-PRO-GNB 0 0 0 0 0 0 0 5 0 0 1 6

Graph random-walk with absorbing states TML-SUP-PRO-GRASSHOPER 0 0 0 0 0 1 0 0 0 0 0 1

Transfer Naive Bayes TML-SUP-PRO-TNB 0 0 0 0 0 0 0 1 0 0 0 1

Naive Bayes TML-SUP-PRO-NB 0 0 0 0 0 7 1 40 2 2 16 68

Multinomial Naive Bayes TML-SUP-PRO-MNB 0 0 0 0 0 0 0 3 1 0 1 5

Decision Table TML-SUP-RUL-DTB 0 0 0 0 0 0 0 1 0 0 0 1

Ripper TML-SUP-RUL-Ripper 0 0 0 0 0 1 0 10 0 0 4 15

Learn-to-Rank Diverse Rank TML-SUP-LR-DR 0 0 0 0 0 1 0 0 0 0 0 1

Hierarchical Clustering TML-UNSUP-CLS-HC 0 0 0 0 0 0 1 0 0 0 0 1

KMeans TML-UNSUP-CLS-KM 0 0 0 0 0 0 0 1 0 0 1 2

Fuzzy Logic TML-UNSUP-OTH-FL 0 0 0 0 0 0 0 1 0 0 0 1

Maximal Marginal Relevance TML-UNSUP-OTH-MMR 0 0 0 0 0 1 0 0 0 0 0 1

Latent Dirichlet Allocation TML-UNSUP-OTH-LDAA 0 0 0 1 0 9 0 3 1 0 0 14

Gene Expression Programming TML-EVO-GEP 0 0 0 0 0 0 0 2 0 0 0 2

Genetic Programming TML-EVO-GP 0 0 0 0 0 0 0 3 0 0 0 3

AdaBoost TML-GEN-AB 0 0 0 0 0 0 0 13 2 2 4 21

Binary Relevance TML-GEN-BR 0 0 0 0 0 0 0 1 0 0 0 1

Classifier Chain TML-GEN-CC 0 0 0 0 0 0 0 1 0 0 0 1

Cost-Sensitive Classifer TML-GEN-CSC 0 0 0 0 0 0 0 2 0 0 0 2

Ensemble Learning TML-GEN-EL 0 0 0 0 0 1 0 3 0 0 0 4

Ensemble Learning Machine TML-GEN-ELM 0 0 0 0 0 0 0 1 0 0 0 1

Gradient Boosting TML-GEN-GB 0 0 0 0 0 2 1 8 0 0 3 14

Gradient Boosting Machine TML-GEN-GBM 0 0 0 0 0 1 0 1 0 0 1 3

Statiscal Machine Translation TML-GEN-SMT 0 0 0 0 0 0 1 0 0 0 0 1

Neural Machine Translation TML-GEN-NMT 1 1 0 0 0 0 5 1 0 0 0 8

Multiple Kernel Ensemble Learning TML-GEN-MKEL 0 0 0 0 0 0 0 1 0 0 0 1

Neural Machine Model TML-GEN-NLM 0 0 0 0 0 1 0 0 0 0 0 1

Majority Voting Ensemble TML-GEN-MVE 0 0 0 0 0 0 0 1 0 0 0 1

Bagging TML-GEN-B 0 0 0 0 0 0 0 11 0 0 1 12

LogitBoost TML-GEN-LB 0 0 0 0 0 0 0 4 1 0 1 6

Kernel Based Learning TML-GEN-KBL 0 0 0 0 0 0 0 1 0 0 0 1

Tr
ad

it
io

n
al

 M
ac

h
in

e
Le

ar
n

in
g

Model-based

Tree-based

Instance-based

Probabilistic-based

Rule-based

Clustering

Other

Evolutionary

Meta-algorithms /

General Approaches

Table 3. Usage of ML techniques in the selected studies (Part-1)

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 9 of 98

C
o

d
e

 r
ep

re
se

n
ta

ti
o

n

C
o

d
e

 c
o

m
p

le
ti

o
n

C
o

d
e

 r
ev

ie
w

C
o

d
e

 s
e

ar
ch

D
at

a
se

t
m

in
in

g

P
ro

gr
am

 c
o

m
p

re
h

en
si

o
n

P
ro

gr
am

 s
yn

th
e

si
s

Q
u

al
it

y
as

se
ss

m
e

n
t

R
e

fa
ct

o
ri

n
g

Te
st

in
g

V
u

ln
e

ra
b

ili
ty

 a
n

al
ys

is

To
ta

l

Bidirectional GRU DL-RNN-Bi-GRU 1 0 0 0 0 0 0 0 0 0 1 2

Bidirectional RNN DL-RNN-Bi-RNN 0 0 0 0 0 1 0 0 0 0 0 1

Bidirectional LSTM DL-RNN-Bi-LSTM 0 0 0 0 0 5 2 2 0 0 3 12

Gated Recurrent Unit DL-RNN-GRU 1 1 0 0 0 9 0 1 0 0 3 15

Hierarchical Attention Network DL-RNN-HAN 1 0 0 0 0 1 0 0 0 0 0 2

Recurrent Neural Network DL-RNN-RNN 3 3 0 1 0 9 5 0 0 0 2 23

Pointer Network DL-RNN-PN 0 1 0 0 0 0 0 0 0 0 0 1

Modular Tree Structured RNN DL-RNN-MTN 1 1 0 0 0 0 0 0 0 0 0 2

Long Short Term Memory DL-RNN-LSTM 3 4 0 1 0 21 10 6 1 1 5 52

Gated Graph Neural Network DL-GRA-GGNN 0 0 0 1 0 0 2 0 0 0 0 3

Graph Convolutional Networks DL-GRA-GCN 0 0 0 0 0 0 0 0 0 0 1 1

Graph Interval Neural Network DL-GRA-GINN 1 0 0 0 0 0 0 0 0 0 0 1

Graph Neural Network DL-GRA-GNN 2 0 0 0 0 3 0 1 0 0 0 6

Convolutional Neural Network DL-CNN-CNN 3 0 0 1 0 4 2 8 0 0 5 23

Faster R-CNN DL-CNN-FR-CNN 0 0 0 0 0 0 0 0 0 1 0 1

Text-CNN DL-CNN-TCNN 0 0 0 0 0 0 0 0 0 0 1 1

Artificial Neural Network DL-ANN 0 1 0 0 0 2 1 21 3 1 3 32

Autoencoder DL-AE 1 0 0 0 0 0 0 2 0 0 1 4

Deep Neural Network DL-DNN 2 0 0 1 0 6 2 5 1 0 4 21

Regression Neural Network DL-RGNN 0 0 0 0 0 0 0 1 0 0 0 1

Multi Level Perceptron DL-MLP 0 0 0 0 0 2 3 14 1 1 5 26

Bidirectional Encoder Representation from Transformers DL-XR-BERT 0 0 0 0 0 1 1 0 0 0 0 2

CodeBERT DL-XR-CodeBERT 1 0 0 0 0 0 1 0 0 0 0 2

Generative Pretraining Transformer for Code DL-XR-GPT-C 0 0 0 0 0 0 1 0 0 0 0 1

Transformer DL-XR-TF 2 1 2 0 0 4 3 1 0 0 0 13

Bilateral Neural Network DL-OTH-BiNN 0 0 0 0 0 0 0 1 0 0 0 1

Cascade Correlation Network DL-OTH-CCN 0 0 0 0 0 0 0 1 0 0 0 1

Code2Vec DL-OTH-Code2Vec 5 0 0 0 0 1 0 0 0 0 0 6

Deep Belief Network DL-OTH-DBN 0 0 0 0 0 0 0 2 0 0 2 4

Doc2Vec DL-OTH-Doc2Vec 0 0 0 0 0 0 0 0 0 0 2 2

Encoder-Decoder DL-OTH-EN-DE 3 1 0 0 0 17 10 0 0 0 0 31

FastText DL-OTH-FT 0 0 0 0 0 0 0 0 0 0 1 1

Functional Link ANN DL-OTH-FLANN 0 0 0 0 0 0 0 1 0 0 0 1

Guassian Encoder-Decoder DL-OTH-GED 0 0 0 0 0 0 1 0 0 0 0 1

Global Vectors for Word Representation DL-OTH-Glove 1 0 0 0 0 0 0 0 0 0 0 1

Word2Vec DL-OTH-Word2Vec 0 0 0 0 0 0 0 1 0 0 0 1

Sequence-to-Sequence DL-OTH-Seq2Seq 1 0 0 0 0 2 2 0 0 1 0 6

Reverse NN DL-OTH-ReNN 0 0 0 0 0 0 0 1 0 0 0 1

Residual Neural Network DL-OTH-ResNet 0 0 0 0 0 0 1 1 0 0 0 2

Radial Basis Function Network DL-OTH-RBFN 0 0 0 0 0 0 0 1 0 0 0 1

Probabilistic Neural Network DL-OTH-PNN 0 0 0 0 0 0 0 1 1 0 0 2

Node2Vec DL-OTH-Node2Vec 0 0 0 0 0 0 0 1 0 0 0 1

Neural Network for Discrete Goal DL-OTH-NND 0 0 0 0 0 0 0 2 0 0 0 2

Double Deep Q-Networks RL-DDQN 0 0 0 0 0 0 0 0 0 1 0 1

Reinforcement Learning RL-RL 0 0 0 0 0 3 0 0 0 0 0 3

Hybrid Adaptive neuro fuzzy inference system OTH-HYB-ANFIS 0 0 0 0 0 0 0 1 0 0 0 1

Expectation Minimization OTH-OPT-EM 0 0 0 0 0 0 0 1 0 0 0 1

Gradient Descent OTH-OPT-GD 0 0 0 0 0 0 1 0 0 0 0 1

Stochastic Gradient Descent OTH-OPT-SGD 0 0 0 0 0 0 0 2 0 0 0 2

Sequential Minimal Optimization OTH-OPT-SMO 0 0 0 0 0 0 0 5 0 0 1 6

Particle Swarm Optimization OTH-OPT-PSO 0 0 0 0 0 0 0 1 0 0 0 1

Reinforcement

Learning

Others Optimization

Techniques

D
ee

p
 L

ea
rn

in
g

RNN

Graph

CNN

Vanilla

Transformers

Other

Table 4. Usage of ML techniques in the selected studies (Part-2)

3. Literature Survey Results225

We document our observations per category and subcategory by providing a summary of the ex-226

isting efforts to achieve RO2 of the study. Table 3 and Table 4 show the frequency of the various227

ml techniques per software engineering task category used in the selected studies. The tables also228

classify the ml techniques into a hierarchical classification based on the characteristics of the ml229

techniques. Specifically, the first level of classification divides ml techniques into traditional ma-230

chine learning (tml), deep learning (dl), reinforcement learning (rl), and others (oth) that include231

hybrid and optimization techniques. Furthermore, we identify sub-categories and ml techniques232

corresponding to each category. To generate these tables, we identified ml techniques used in233

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 10 of 98

each study while summarizing the study. Given that a study may use multiple ml techniques, we234

developed a script to split the techniques and create a csv file containing one ml technique and235

the corresponding paper category. We then compute a number of times for each ml technique236

for each software engineering task category to generate the tables. In these tables we refer to ml237

techniques with their commonly used acronym along with their category and sub-category. It is ev-238

ident from these tables that svm, rf, and dt are the most frequently used traditional ml techniques,239

whereas, the rnn family (including lstm and gru) is the most commonly used dl technique.240

Evolution ofML techniques use over time: In addition, we segregate the identified ml techniques241

by their category (i.e., tml, dl, rl, and oth) and year of publication. Figure 4 presents the summary242

of the analysis. We observe that majorly traditional ml and dl approaches are used in this field.243

We also observe that the use of dl approaches for source code analysis has significantly increased244

from 2016.245

Figure 4. Usage of ML techniques by categories per year

Venueandarticle categories: We identified andmanually curated the software engineering venue246

for each study discussed in our literature review. Figure 5 shows the venues for the considered247

categories. We show the most prominent venues per category. Each label includes a number248

indicating the number of articles published at the same venue in that category.249

We observe that icse is the top venue, appearing in three categories. ieee Access is the top jour-250

nal for the considered categories. Machine learning conferences such as iclr also appear as the251

top venues for the program synthesis category. The category program comprehension exhibits the252

highest concentration of articles to a relatively small list of top venues where approximately 50%253

of articles come from the top venues (with at least four studies). On the other hand, researchers254

publish articles related to testing, code completion, and vulnerability analysis in a rather diverse set255

of venues.256

Target programming languages: We identified the target programming language of each study257

to observe the focus of researchers in the field by category. Figure 6 presents the result of the258

analysis. We observe that for most of the categories, Java dominates the field. For quality assess-259

ment category, studies also analyzed source code written in C/C++, apart from Java. Researchers260

analyzed Python programs also, apart from Java, for studies belonging to program comprehension261

and program synthesis. This analysis, on the one hand, shows that Java, C/C++, and Python are the262

most analyzed programming languages in this field; on the other hand, it points out the lack of263

studies targeting other prominent programming languages per category.264

Popular models: As part of collecting metadata and summarizing studies, we identified the pro-265

posed model, if any, for each selected study. We considered novel proposed models only and not266

the name of the approach or method in this analysis. We also obtained the number of citations267

for the study. In Table 5, we present the most popular model, in no particular order, by using the268

number of citations as the metric to decide the popularity. We collected the number of citations269

at the end of August 2023 and included all the models with corresponding citations over 100.270

In the rest of this section, we delve into each category and sub-category at a time, break down271

the entire workflow of a code analysis task into fine-grained steps, and summarize the method272

and ml techniques used. It is worth emphasizing that we structure the discussion around the cru-273

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 11 of 98

Figure 5. Top venues for each considered category

cial steps for each category (e.g., model generation, data sampling, feature extraction, and model274

training).275

3.1 Code representation276

Raw source code cannot be fed directly to a dl model. Code representation is the fundamental277

activity to make source code compatible with dl models by preparing a numerical representation278

of the code to further solve a specific software engineering task. Code representation is the process279

of transforming the textual program source code into a numerical representation i.e., vectors that280

a dl model can accept and process [227]. Studies in this category emphasize that source code is281

a richer construct and hence should not be treated simply as a collection of tokens or text [350,282

27]; the proposed techniques extensively utilize the syntax, structure, and semantics (such as type283

information from an ast). The activity transforms source code into a numerical representation284

making it easier to further use the code by ml models to solve specific tasks such as code pattern285

identification [342, 480], method name prediction [32], and comment classification [514].286

In the training phase, a large number of repositories are processed to train a model which is287

then used in the inference phase. Source code is pre-processed to extract a source code model288

(such as an ast or a sequence of tokens) which is fed into a feature extractor responsible to mine289

the necessary features (for instance, ast paths and tree-based embeddings). Then, an ml model is290

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 12 of 98

Figure 6. Target programming languages for each considered category

trained using the extracted features. Themodel produces a numerical (i.e., a vector) representation291

that can be used further for specific software engineering applications such as defect prediction,292

vulnerability detection, and code smells detection.293

Dataset preparation: Code representation efforts start with preparing a source code model. The294

majority of the studies use the ast representation [350, 30, 563, 25, 91, 31, 32, 540, 67, 525, 84,295

377, 376]. Some studies [439, 22, 44, 83, 574, 219, 352, 343, 134] parsed the source code as tokens296

and prepared a sequence of tokens in this step. Hoang et al. [194] generated tokens represent-297

ing only the code changes. Furthermore, Sui et al. [465] compiled a program into llvm-ir. An298

inter-procedural value-flow graph (ivfg) used was built on top of the intermediate representation.299

Thaller et al. [480] used abstract semantic graphs as their codemodel. Nie et al. [353] used dataset300

offered by Jiang et al. [209] that offers a large number code snippets and comment pairs. Finally,301

Brauckmann et al. [66] and Tufano et al. [490] generated multiple source code models (ast, cfg,302

and byte code).303

Feature extraction: Relevant features need to be extracted from the prepared source codemodel304

for further processing. The first category of studies, based on applied feature extraction mecha-305

nism, uses token-based features. Nguyen et al. [350] prepared vectors of syntactic context (re-306

ferred to as syntaxeme), type context (sememes), and lexical tokens. Shedko et al. [439] generated a307

stream of tokens corresponding to function calls and control flow expressions. Karampatsis et al.308

[221] split tokens as subwords to enable subwords prediction. Path-based abstractions is the basis309

of the second category where the studies extract a path typically from an ast. Alon et al. [30] used310

paths between ast nodes. Kovalenko et al. [235] extracted path context representing two tokens311

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 13 of 98

Table 5. Popular models proposed in the selected studies.

Model #Citations Model #Citations

Transfer Naive Bayes [307] 513 Code Generation Model [551] 651

Path-based code representa-

tion [30]

230 Multi-headed pointer net-

work [507]

128

Inst2Vec [57] 234 Code-NN [204] 681

DeepCoder [47] 612 ASTNN [563] 498

Code2Seq [31] 643 Code2Vec [32] 1,093

TBCNN [342] 695 Program as graph model [67] 159

SLAMC [352] 130 Coding criterion [377] 128

TransCoder [408] 115 TreeGen [468] 124

Codex [93] 897 AlphaCode [270] 317

in code and a structural connection along with paths between ast nodes. Alon et al. [31] encoded312

each ast path with its values as a vector and used the average of all of the k paths as the decoder's313

initial state where the value of k depends on the number of leaf nodes in the ast. The decoder314

then generated an output sequence while attending over the k encoded paths. Peng et al. [377]315

proposed ``coding criterion'' to capture similarity among symbols based on their usage using ast316

structural information. Peng et al. [376] used open-source parser Tree-Sitter to obtain ast for each317

method. They split code tokens into sub-tokens respective to naming conventions and generate318

path using ast nodes. The authors sets 32 as themaximumpath length. Finally, Alon et al. [32] also319

used path-based features along with distributed representation of context where each of the path320

and leaf-values of a path-context ismapped to its corresponding real-valued vector representation.321

Another set of studies belong to the category that used graph-based features. Chen et al. [91]322

created ast node identified by an api name and attached each node to the corresponding ast node323

belonging to the identifier. Thaller et al. [480] proposed feature maps; feature maps are human-324

interpretation, stacked, named subtrees extracted from abstract semantic graph. Brauckmann325

et al. [66] created a dataflow-enriched ast graph, where nodes are labeled as declarations, state-326

ments, and types as found in the Clang1 ast. Cvitkovic et al. [115] augmented ast with semantic327

information by adding a graph-structured vocabulary cache. Finally, Zhang et al. [563] extracted328

small statement trees along with multi-way statement trees to capture the statement-level lexi-329

cal and syntactical information. The final category of studies used dl [194, 490] to learn features330

automatically.331

ML model training: The majority of the studies rely on the rnn-based dl model. Among them,332

some of the studies [514, 191, 525, 66, 31] employed lstm-based models; while others [563, 194,333

221, 540, 67] used gru-based models. Among the other kinds of ml models, studies employed gnn-334

based [115, 528], dnn [350], conditional random fields [30], svm [274, 394], cnn-based models [91,335

342, 480], and transformer-based models [376]. Some of the studies rely on the combination of336

different dl models. For example, Tufano et al. [490] employed rnn-based model for learning337

embedding in the first stage which is given to an autoencoder-based model to encode arbitrarily338

long streams of embeddings.339

A typical output of a code representation technique is the vector representation of the source340

code. The exact form of the output vector may differ based on the adopted mechanism. Often,341

the code vectors are application specific depending upon the nature of features extracted and342

training mechanism. For example, Code2Vec produces code vectors trained for method name343

prediction; however, the same mechanism can be used for other applications after tuning and344

selecting appropriate features. Kang et al. [220] carried out an empirical study to observe whether345

1https://clang.llvm.org/

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 14 of 98

https://clang.llvm.org/

the embeddings generated by Code2Vec can be used in other contexts. Similarly, Pour et al. [385]346

used Code2Vec, Code2Seq, and CodeBERT to explore the robustness of code embedding models347

by retraining the models using the generated adversarial examples.348

The semantics of the produced embeddings depend significantly on the selected features. Stud-349

ies in this domain identify this aspect and hence swiftly focused to extract features that capture350

the relevant semantics; for example, path-based features encode the order among the tokens.351

The chosen ml model plays another important role to generate effective embeddings. Given the352

success of rnn with text processing tasks, due to its capability to identify sequence and pattern,353

rnn-based models dominate this category.354

3.2 Testing355

In this section, we point out the state-of-the-art regardingml techniques applied to software testing.356

Testing is the process of identifying functional or non-functional bugs to improve the accuracy and357

reliability of a software. In this section, we offer a discussion on test cases generation by employing358

ml techniques.359

3.2.1 Test data and test cases generation360

A usual approach to have a ml model for generating test oracles involves capturing data from an361

application under test, pre-processing the captured data, extracting relevant features, using an ml362

algorithm, and evaluating the model.363

Dataset preparation: Researchers developed a number of ways for capturing data from appli-364

cations under test and pre-process them before feeding them to an ml model. Braga et al. [65]365

recorded traces for applications to capture usage data. They sanitized any irrelevant information366

collected from the programs recording components. AppFlow [197] captures human-event se-367

quences from a smart-phone screen in order to identify tests. Similarly, Nguyen et al. [351] sug-368

gested Shinobi, a framework that uses a fast r-cnn model to identify input data fields from mul-369

tiple web-sites. Utting et al. [505] captured user and system execution traces to help generating370

missing api tests. To automatically identify metamorphic relations, Nair et al. [345] suggested an371

approach that leveragesml techniques and testmutants. By using a variety of code transformation372

techniques, the authors' approach can generate a synthetic dataset for training models to predict373

metamorphic relations.374

Feature extraction: Some authors [65, 505] used execution traces as features. Kim et al. [230]375

suggested an approach that replaces sbst's meta-heuristic algorithms with deep reinforcement376

learning to generate test cases based on branch coverage information. [164] used code quality377

metrics such as coupling, dit, and nof to generate test data; they use the test data generated to378

predict the code coverage in a continuous integration pipeline.379

ML model training: Researchers used supervised and unsupervised ml algorithms to generate380

test data and cases. In some of the studies, the authors utilized more than one ml algorithm to381

achieve their goal. Specifically, several studies [65, 230, 505, 345] used traditional ml algorithms,382

such as Support Vector Machine, Naive Bayes, Decision Tree, Multilayer Perceptron, Random Forest,383

AdaBoost, Linear Regression. Nguyen et al. [351] used the dl algorithm Fast r-cnn. Similarly, [156]384

used lstm to automate generating the input grammar data for fuzzing.385

3.3 Program synthesis386

This section summarizes the ml techniques used by automated program synthesis tools and tech-387

niques in the examined software engineering literature. Apart from amajor sub-category program388

repair, we also discuss state-of-the-art corresponds to code generation and program translation sub-389

categories in this section.390

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 15 of 98

3.3.1 Program repair391

AutomatedProgramRepair (apr) refers to techniques that attempt to automatically identify patches392

for a givenbug (i.e., programmingmistakes that can cause anunintended run-timebehavior), which393

can be applied to software with a little or without human intervention [162]. Program repair typ-394

ically consists of two phases. Initially, the repair tool uses fault localization to detect a bug in the395

software under examination, then, it generates patches using techniques such as search-based396

software engineering and logic rules that can possibly fix a given bug. To validate the generated397

patch, the (usually manual) evaluation of the semantic correctness2 of that patch follows.398

According to Goues et al. [162], the techniques for constructing repair patches can be divided399

into three categories (heuristic repair, constraint-based repair, and learning-aided repair) if we400

consider the following two criteria: what types of patches are constructed and how the search401

is conducted. Here, we are interested in learning-aided repair, which leverages the availability402

of previously generated patches and bug fixes to generate patches. In particular, learning-aided-403

based repair tools use ml to learn patterns for patch generation.404

Typically, at the pre-processing step, such methods take source code of the buggy revision as405

an input, and those revisions that fixes the buggy revision. The revision with the fixes includes a406

patch carried out manually that corrects the buggy revision and a test case that checks whether407

the bug has been fixed. Learning-aided-based repair ismainly based on the hypothesis that similar408

bugs will have similar fixes. Therefore, during the training phase, such techniques can use features409

such as similarity metrics to match bug patterns to similar fixes. Then, the generated patches rely410

on those learnt patterns. Next, we elaborate upon the individual steps involved in the process of411

program repair using ml techniques.412

Dataset preparation: The majority of the studies extract buggy project revisions and manual413

fixes from buggy software projects. Most studies leverage source-code naturalness. For instance,414

Tufano et al. [492] extracted millions of bug-fixing pairs from GitHub, Amorim et al. [39] lever-415

aged the naturalness obtained from a corpus of known fixes, and Chen et al. [97] used natural416

language structures from source code. Furthermore, many studies develop their own large-scale417

bug benchmarks. Ahmed et al. [10] leveraged 4,500 erroneous C programs, Gopinath et al. [161]418

used a suite of programs and datasets stemmed from real-world applications, Long and Rinard419

[297] used a set of successful manual patches from open-source software repositories, and Mash-420

hadi and Hemmati [326] used the ManySStuBs4J dataset containing natural language description421

and code snippets to automatically generate code fixes. Le et al. [249] created an oracle for predict-422

ing which bugs should be delegated to developers for fixing and which should be fixed by repair423

tools. Jiang et al. [211] used a dataset containing more than 4 million methods extracted. White424

et al. [533] used Spoon, an open-source library for analyzing and transforming Java source code,425

to build a model for each buggy program revision. Pinconschi et al. [382] constructed a dataset426

containing vulnerability-fix pairs by aggregating five existing dataset (Mozilla Foundation Security427

Advisories, SecretPatch, NVD, Secbench, and Big-Vul). The dataset i.e., PatchBundle is publicly avail-428

able on GitHub. Cambronero and Rinard [76] proposed a method to generate new supervised429

machine learning pipelines. To achieve the goal, the study trained using a collection of 500 super-430

vised learning programs and their associated target datasets from Kaggle. Liu et al. [287] prepared431

their dataset by selecting 636 closed bug reports from the Linux kernel and Mozilla databases.432

Svyatkovskiy et al. [475] constructed their experimental dataset from the 2700 top-starred Python433

source code repositories on GitHub. CODIT [82] collects a new dataset—Code-ChangeData, consist-434

ing of 32,473 patches from 48 open-source GitHub projects collected from Travis Torrent.435

Other studies use existing bug benchmarks, such asDefects4J [218] and IntroClass [250], which436

already include buggy revisions and human fixes, to evaluate their approaches. For instance, Saha437

et al. [416], Lou et al. [299], Zhu et al. [582], Renzullo et al. [406], Wang et al. [518], and Chen438

2The term semantic correctness is a criterion for evaluating whether a generated patch is similar to the human fix for a given

bug [291].

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 16 of 98

et al. [101] leveraged Defects4J for the evaluations of their approaches. Additionally, Dantas et al.439

[118] used the IntroClass benchmark and Majd et al. [313] conducted experiments using 119,989440

C/C++ programs within Code4Bench. Wu et al. [534] used the DeepFix dataset that contains 46,500441

correct C programs and 6,975 programs with errors for their graph-based dl approach for syntax442

error correction.443

Some studies examine bugs in different programming languages. For instance, Svyatkovskiy444

et al. [474] used 1.2 billion lines of source code in Python, C#, JavaScript, and TypeScript program-445

ming languages. Also, Lutellier et al. [305] used six popular benchmarks of four programming446

languages (Java, C, Python, and JavaScript).447

There are also studies that mostly focus on syntax errors. In particular, Gupta et al. [178] used448

6,975 erroneous C programswith typographic errors, Santos et al. [421] used source code files with449

syntax errors, and Sakkas et al. [419] used a corpus of 4,500 ill-typed OCaml programs that lead to450

compile-time errors. Bhatia et al. [59] examined a corpus of syntactically correct submissions for451

a programming assignment. They used a dataset comprising of over 14,500 student submissions452

with syntax errors.453

Finally, there is a number of studies that use programming assignment from students. For454

instance, Bhatia et al. [59], Gupta et al. [178], and Sakkas et al. [419] used a corpus of 4,500 ill-455

typed OCaml student programs.456

Feature extraction: The majority of studies utilize similarity metrics to extract similar bug pat-457

terns and, respectively, correct bug fixes. These studies mostly employ word embeddings for code458

representation and abstraction. In particular, Amorim et al. [39], Svyatkovskiy et al. [474], Santos459

et al. [421], Jiang et al. [211], and Chen et al. [97], leveraged source-code naturalness and applied460

nlp-based metrics. Tian et al. [483] employed different representation learning approaches for461

code changes to derive embeddings for similarity computations. Similarly, White et al. [533] used462

Word2Vec to learn embeddings for each buggy program revision. Ahmed et al. [10] used similar463

metrics for fixing compile-time errors. Additionally, Saha et al. [416] leveraged a code similarity464

analysis, which compares both syntactic and semantic features, and the revision history of a soft-465

ware project under examination, from Defects4J, for fixing multi-hunk bugs, i.e., bugs that require466

applying a substantially similar patch to different locations. Furthermore, Wang et al. [518] investi-467

gated, using similarity metrics, how these machine-generated correct patches can be semantically468

equivalent to human patches, and how bug characteristics affect patch generation. Sakkas et al.469

[419] also applied similarity metrics. Svyatkovskiy et al. [475] extracted structured representation470

of code (for example, lexemes, asts, and dataflow) and learn directly a task over those representa-471

tions.472

There are several approaches that use logic-basedmetrics based on the relationships of the fea-473

tures used. Specifically, Van Thuy et al. [506] extracted twelve relations of statements and blocks474

for Bi-gram model using Big code to prune the search space, and make the patches generated by475

Prophet [297]more efficient and precise. Alrajeh et al. [33] identified counterexamples andwitness476

traces using model checking for logic-based learning to perform repair process automatically. Cai477

et al. [74] used publicly available examples of faulty models written in the B formal specification478

language, and proposed B-repair, an approach that supports automated repair of such a formal479

specification. Cambronero and Rinard [76] extracted dynamic program traces through identifica-480

tion of relevant apis of the target library; the extracted traces help the employed machine learning481

model to generate pipelines for new datasets.482

Many studies also extract and consider the context where the bugs are related to. For instance,483

Tufano et al. [492] extracted Bug-Fixing Pairs (bfps) from millions of bug fixes mined from GitHub484

(used as meaningful examples of such bug-fixes), where such a pair consists of a buggy code com-485

ponent and the corresponding fixed code. Then, they used those pairs as input to an Encoder-486

Decoder Natural Machine Translation (nmt) model. For the extraction of the pair, they used the487

GumTree Spoon ast Diff tool [140]. Additionally, Soto and Le Goues [459] constructed a corpus by488

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 17 of 98

delimiting debugging regions in a provided dataset. Then, they recursively analyzed the differences489

between the Simplified Syntax Trees associated with EditEvent’s. Mesbah et al. [335] also gener-490

ated astdiffs from the textual code changes and transformed them into a domain-specific language491

called Delta that encodes the changes thatmust bemade tomake the code compile. Then, they fed492

the compiler diagnostic information (as source) and the Delta changes that resolved the diagnos-493

tic (as target) into a Neural Machine Translation network for training. Furthermore, Li et al. [267]494

used the prior bug fixes and the surrounding code contexts of the fixes for code transformation495

learning. Saha et al. [415] developed a ml model that relies on four features derived from a pro-496

gram's context, i.e., the source-code surrounding the potential repair location, and the bug report.497

Similarly, Mashhadi and Hemmati [326] used a combination of natural language text and corre-498

sponding code snippet to generated an aggregated sequence representation for the downstream499

task. Finally, Bader et al. [46] utilized a ranking technique that also considers the context of a code500

change, and selects the most appropriate fix for a given bug. Vasic et al. [507] used results from501

localization of variable-misuse bugs. Wu et al. [534] developed an approach, ggf, for syntax-error502

correction that treats the code as a mixture of the token sequences and graphs. LIN et al. [276]503

and Zhu et al. [582] utilized ast paths to generate code embeddings to predict the correctness of a504

patch. Chakraborty et al. [82] represent the patches in a parse tree form and extract the necessary505

information (e.g., grammar rules, tokens, and token-types) from them. They used GumTree,3 a506

tree-based code differencing tool, to identify the edited ast nodes. To collect the edit context, their507

proposal, CODIT, converts the asts to their parse tree representation and extracts corresponding508

grammar rules, tokens, and token types.509

ML model training: In the following, we present the main categories of ml techniques found in510

the examined papers.511

Neural Machine Translation: This category includes papers that apply neural machine translation512

(nmt) for enhancing automated program repair. Such approaches can, for instance, include tech-513

niques that use examples of bug fixing for one programming language to fix similar bugs for other514

programming language. Lutellier et al. [305] developed the repair tool called CoCoNuT that uses515

ensemble learning on the combination of cnns and a new context-aware nmt. Additionally, Tufano516

et al. [492] used nmt techniques (Encoder-Decoder model) for learning bug-fixing patches for real517

defects, and generated repair patches. Mesbah et al. [335] introduced DeepDelta, which used nmt518

for learning to repair compilation errors. Jiang et al. [211] proposed cure, a nmt-based approach519

to automatically fix bugs. Pinconschi et al. [382] used SequenceR, a sequence-to-sequence model,520

to patch security faults in C programs. Zhu et al. [582] proposed a tool Recoder, a syntax-guided521

edit decoder that takes encoded information and produces placeholders by selecting non-terminal522

nodes based on their probabilities. Chakraborty et al. [82] developed a technique called codit that523

automates code changes for bug fixing using tree-based neural machine translation. In particu-524

lar, they proposed a tree-based neural machine translation model, an extension of OpenNMT,4 to525

learn the probability distribution of changes in code.526

Natural Language Processing: In this category, we include papers that combine natural language527

processing (nlp) techniques, embeddings, similarity scores, and ml for automated program repair.528

Tian et al. [483] carried out an empirical study to investigate different representation learning ap-529

proaches for code changes to derive embeddings, which are amendable to similarity computations.530

This study uses bert transformer-based embeddings. Furthermore, Amorim et al. [39] applied, a531

word embeddingmodel (Word2Vec), to facilitate the evaluation of repair processes, by considering532

the naturalness obtained from known bug fixes. Van Thuy et al. [506] have also applied word repre-533

sentations, and extracted relations of statements and blocks for a Bi-grammodel using Big code, to534

improve the existing learning-aid-based repair tool Prophet [297]. Gupta et al. [178] used word em-535

beddings and reinforcement learning to fix erroneous C student programswith typographic errors.536

3https://github.com/GumTreeDiff/gumtree
4https://opennmt.net/

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 18 of 98

https://opennmt.net/

Tian et al. [483] applied a ml predictor with bert transformer-based embeddings associated with lo-537

gistic regression to learn code representations in order to learn deep features that can encode the538

properties of patch correctness. Saha et al. [416] used similarity analysis for repairing bugs that539

may require applying a substantially similar patch at a number of locations. Additionally, Wang540

et al. [518] used also similarity metrics to compare the differences among machine-generated and541

human patches. Santos et al. [421] used n-grams and nns to detect and correct syntax errors.542

Logic-based rules: Alrajeh et al. [33] combined model checking and logic-based learning to sup-543

port automated program repair. Cai et al. [74] also combined model-checking and ml for program544

repair. Shim et al. [444] used inductive program synthesis (DeeperCoder), by creating a simple Do-545

main Specific Language (dsl), and ml to generate computer programs that satisfies user require-546

ments and specification. Sakkas et al. [419] combined type rules and ml (i.e.,multi-class classifica-547

tion, dnns, and mlp) for repairing compile errors.548

Probabilistic predictions: Here, we list papers that use probabilistic learning and ml approaches549

such as association rules, Decision Tree, and Support Vector Machine to predict bug locations and550

fixes for automated program repair. Long and Rinard [297] introduced a repair tool called Prophet,551

which uses a set of successful manual patches from open-source software repositories, to learn552

a probabilistic model of correct code, and generate patches. Soto and Le Goues [459] conducted553

a granular analysis using different statement kinds to identify those statements that are more554

likely to be modified than others during bug fixing. For this, they used simplified syntax trees and555

association rules. Gopinath et al. [161] presented a data-driven approach for fixing of bugs in556

database statements. For predicting the correct behavior for defect-inducing data, this study uses557

Support Vector Machine and Decision Tree. Saha et al. [415] developed the Elixir repair approach558

that uses Logistic Regression models and similarity-score metrics. Bader et al. [46] developed a559

repair approach called Getafix that uses hierarchical clustering to summarize fix patterns into a560

hierarchy ranging from general to specific patterns. Xiong et al. [537] introduced L2S that uses ml561

to estimate conditional probabilities for the candidates at each search step, and search algorithms562

to find the best possible solutions. Gopinath et al. [160] used Support Vector Machine and ID3 with563

path exploration to repair bugs in complex data structures. Le et al. [249] conducted an empirical564

study on the capabilities of program repair tools, and applied Random Forest to predict whether565

using genetic programming search in apr can lead to a repair within a desired time limit. Aleti and566

Martinez [16] used themost significant features as inputs to Random Forest, Support Vector Machine,567

Decision Tree, andmulti-layer perceptronmodels.568

Recurrent neural networks: dl approaches such as rnns (e.g., lstm and Transformer) have been used569

for synthesizing new code statements by learning patterns from a previous list of code statement,570

i.e., this techniques can be used to mainly predict the next statement. Such approaches often571

leverage word embeddings. Dantas et al. [118] combined Doc2Vec and lstm, to capture dependen-572

cies between source code statements, and improve the fault-localization step of program repair.573

Ahmed et al. [10] developed a repair approach (Tracer) for fixing compilation errors using rnns.574

Recently, Li et al. [267] introduced DLFix, which is a context-based code transformation learning575

for automated program repair. DLFix uses rnns and treats automated program repair as code576

transformation learning, by learning patterns from prior bug fixes and the surrounding code con-577

texts of those fixes. Svyatkovskiy et al. [474] presented IntelliCode that uses a Transformer model578

that predicts sequences of code tokens of arbitrary types, and generates entire lines of syntacti-579

cally correct code. Chen et al. [97] used the lstm for synthesizing if–then constructs. Similarly,580

Vasic et al. [507] applied the lstm in multi-headed pointer networks for jointly learning to localize581

and repair variable misuse bugs. Bhatia et al. [59] combined neural networks, and in particular582

rnns, with constraint-based reasoning to repair syntax errors in buggy programs. Chen et al. [101]583

applied lstm for sequence-to-sequence learning achieving end-to-end program repair through the584

SequenceR repair tool they developed. Majd et al. [313] developed SLDeep, statement-level soft-585

ware defect prediction, which uses lstm on static code features.586

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 19 of 98

Apart from above-mentioned techniques, White et al. [533] developed DeepRepair, a recur-587

sive unsupervised deep learning-based approach, that automatically creates a representation of588

source code that accounts for the structure and semantics of lexical elements. The neural network589

language model is trained from the file-level corpus using embeddings.590

3.3.2 Code generation591

592

An automated code generation approach takes specification, typically in the form of natural lan-593

guage prompts, and generates executable code based on the specification [551, 395, 474]. We594

elaborate on the studies that involve generating source code using ml techniques.595

Dataset preparation: Yin and Neubig [552] proposed a transition-based neural semantic parser,596

namely tranx, which generates formal meaning representation from natural language text. They597

usedmultiple datasets for their study—dataset proposed by Dong and Lapata [128] containing 880598

geography-related questions, Django dataset [358], as well asWikiSQL dataset [576]. Similarly, Sun599

et al. [468] and Shin et al. [446] used the HearthStone dataset [283] for Python code generation;600

in addition, Shin et al. [446] used the Spider [557] dataset for training. Liang et al. [272] used the601

semantic parsing datasetWebQuestionsSP[550] consisting 3, 098 question-answer pairs for training602

and 1, 639 for testing. Bielik et al. [60] used the Linux Kernel dataset [222], and the Hutter Prize603

Wikipedia dataset.5 Devlin et al. [122] evaluated their architecture on 205 real-world Flash-Fill in-604

stances [170]. Xiong et al. [537] used training data stemming from two Defects4J projects and their605

related JDK packages. Wei et al. [530] conducted experiments on Java and Python projects collected606

from GitHub used by previous work (such as by Hu et al. [198], Hu et al. [199], Wan et al. [511]).607

Some studies curated datasets for their experiments. For example, Chen et al. [93] created608

HumanEval, a dataset containing 164 programming problems crafted manually for evaluation. Sim-609

ilarly, Li et al. [270] first used a curated set of public GitHub repositories implemented in several610

popular languages such as C++, C#, Java, Go, and Python for pre-training. They created a dataset,611

CodeContests, for fine-tuning. The dataset includes problems, solutions, and test cases scraped612

from the Codeforces platform. Furthermore, IntelliCode [474] is trained on 1.2 billion lines of613

source code written in the Python, C#, JavaScript and TypeScript programming languages. Alla-614

manis et al. [28] evaluated their models on a large dataset of 2.9 million lines of code. Cai et al. [75]615

used a training set that contains 200 traces for addition, 100 traces for bubble sort, 6 traces for topo-616

logical sort, and 4 traces for quicksort. Devlin et al. [121] used programming examples that involve617

induction, such as I/O examples. Shu and Zhang [449] used training data to generate programs at618

various levels of complexity according to 45 predefined tasks (e.g., Split, Join, Select). Murali et al.619

[344] used a corpus of about 150, 000 api-manipulating Android methods. Shin et al. [447] propose620

a new approach to generate desirable distribution for the target datasets for program induction621

and synthesis tasks.622

Feature extraction: Studies in this category extensively used ast during the feature extraction623

step. tranx [552] maps natural language text into an ast using a series of tree-construction ac-624

tions. Similarly, Sun et al. [468] parsed a program as an ast and decomposed the program into625

several context-free grammar rules. Also, the study by Yin and Neubig [551] transformed state-626

ments to asts. These asts are generated for all well-formed programs using parsers provided by627

the programming language under examination. Furthermore, Rabinovich et al. [395] developed a628

model that used a modular decoder, whose sub-models are composed using natively generated629

asts. Each sub-model is associated with a specific construct in the ast grammar, and, then, it is630

invoked when that construct is required in the output tree.631

Some studies in the category used examples of input and output to learn code generation.632

Euphony [257] learns good representation using easily obtainable solutions for given programs.633

DeepCoder [47] observes inputs and outputs, by leveraging information from interpreters. Then,634

5http://prize.hutter1.net/

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 20 of 98

http://prize.hutter1.net/

DeepCoder searches for a program that matches the input-output examples. Similarly, Chen et al.635

[99] developed a neural program synthesis from input-output examples. Shu and Zhang [449]636

extracted features from string transformations, i.e., input-output strings, and use the learned fea-637

tures to induce correct programs. Devlin et al. [122] used I/O programming examples and devel-638

oped a dsl for synthesizing related programs.639

Finally, the rest of the studies used tokens from source code as their features. For example,640

Chen et al. [97] and Li et al. [270] extracted tokens from source code. Allamanis et al. [28] extracted641

features that refer to program semantics such as variable names. Xiong et al. [537] extracted sev-642

eral features, including context, variable, expression, and position features, from the source code643

to train their ml models. Devlin et al. [121] focused on extracting features from programs that in-644

volve induction. Murali et al. [344] extracted low-level features (e.g., api calls). Liang et al. [272] also645

used tokens and graphs extracted from the data sets used. Shin et al. [446] considered idioms (new646

named operators) from programs in an extended grammar. Bielik et al. [60] leveraged language647

features, using datasets of ngrams in their experiments. Maddison andTarlow [310] considered fea-648

tures of variables and structural language features. Cummins et al. [113] used language features649

to synthesize human-like written programs. Shin et al. [447] used different features related to I/O650

operations e.g., program size, control-flow ratio, and so on. Chen et al. [98] extracted features from651

programming-language arguments. Wei et al. [530] leveraged the power of code summarization652

and code generation. The input of code summarization is the output of code generation; the ap-653

proach applies the relations between these tasks and proposes a dual training framework to train654

these tasks simultaneously using probability and attention weights along with dual constraints.655

ML model training: A majority of the studies in this category relies on the rnn-based ecoder-656

decoder architecture. tranx [552] implemented a transition system that generates an ast from657

a sequence of tree-constructing actions. The system is based on a lstm-based encoder-decoder658

model where the encoder encodes the input tokens into its corresponding vector representation659

and the decoder generates the probabilities of tree-constructing actions. Also, Yin and Neubig660

[551] proposed adata-driven syntax-basedneural networkmodel for generation of code in general-661

purpose programming languages such as Python. Cai et al. [75] implemented recursion in the Neu-662

ral Programmer-Interpreter framework that uses an lstm controller on four tasks: grade-school663

addition, bubble sort, topological sort, and quicksort. Bielik et al. [60] designed a language TChar664

for character-level languagemodeling, and program synthesis using lstm. Cummins et al. [113] ap-665

plied lstm to synthesize compilable, executable benchmarks. Chen et al. [98] used reinforcement666

learning to predict arguments (e.g., CALL, REDUCE). Devlin et al. [122] presented a novel variant of667

the attentional rnn architecture, which allows for encoding of a variable size set of input-output668

examples. Wei et al. [530] used Seq2Seq, Bi-lstm, lstm-based models to exploit the code summa-669

rization and code generation for automatic software development. Furthermore, Rabinovich et al.670

[395] introduced Abstract Syntax Networks (ASNs), an extension of the standard encoder-decoder671

framework.672

Some of the studies employed transformer-based models. Sun et al. [468] proposed TreeGen673

for code generation. They implemented an ast readerer to combine the grammar rules with ast674

and mitigated the long-dependency problem with the help of the attention mechanism used in675

Transformers. Similarly, Li et al. [270] implemented a transformer architecture for AlphaCode. Chen676

et al. [93] proposed Codex that is a gpt model fine-tuned on publicly available code from GitHub677

containing up to 12B parameters on code. IntelliCode by Svyatkovskiy et al. [474] is a multilingual678

code completion tool that predicts sequences of code tokens of arbitrary types. IntelliCode is also679

able to generate entire lines of syntactically correct code. It uses a generative transformer model.680

Euphony [257] targets a standard formulation, syntax-guided synthesis, by extending the gram-681

mar of given programs. To do so, Euphony uses a probabilistic model dictating the likelihood of682

each program. DeepCoder [47] leverages gradient-based optimization and integrates neural net-683

work architectures with search-based techniques. Szydlo et al. [477] investigated the concept of684

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 21 of 98

source code generation of machine learning models as well as the generation algorithms for com-685

monly usedmlmethods. Chen et al. [99] introduced a technique that is based on execution-guided686

synthesis and uses a synthesizer ensemble. This approach leverages semantic information to en-687

semble multiple neural program synthesizers. Chen et al. [97] used latent attention to compute688

token weights. They found that latent attention performs better in capturing the sentence struc-689

ture. Allamanis et al. [28] used dl models to learn semantics from programs. They used the code’s690

graph structure and learned program representations over the generated graphs. Xiong et al. [537]691

applied the gradient boosting tree algorithm to train theirmodels. Devlin et al. [121] used the trans-692

fer learning and k-shot learning approach for cross-task knowledge transfer to improve program693

induction in limited-data scenarios. Shu and Zhang [449] proposed NPBE (Neural Programming by694

Example) that teaches a dnn to compose a set of predefined atomic operations for stringmanipula-695

tions. Murali et al. [344] trained a neural generator on program sketches to generate source code696

in a strongly typed, Java-like programming language. Liang et al. [272] introduced the Neural Sym-697

bolic Machine (NSM), based on a sequence-to-sequence neural network induction, and apply it to698

semantic parsing. Shin et al. [446] employed non-parametric Bayesian inference to mine the code699

idioms that frequently occur in a given corpus and trained a neural generative model to option-700

ally emit named idioms instead of the original code fragments. Maddison and Tarlow [310] used701

models that are based on probabilistic context free grammars (PCFGs) and a neuro-probabilistic702

language, which are extended to incorporate additional source code-specific structures.703

3.3.3 Program translation704

705

In this section, we list studies that use ml that can be used, for instance, for translating source code706

from one programming language to another by learning source-code patterns. Le et al. [248] pre-707

sented a survey on dl techniques including machine translation algorithms and applications. Oda708

et al. [357] used statistical machine translation (smt) and proposed a method to automatically gen-709

erate pseudo-code from source code for source-code comprehension. To evaluate their approach710

they conducted experiments, and generated English or Japanese pseudo-code from Python state-711

ments using smt. Then, they found that the generated pseudo-code is mostly accurate, and it can712

facilitate code understanding. Roziere et al. [408] applied unsupervised machine translation to713

create a transcompiler in a fully unsupervised way. TransCoder uses beam search decoding to714

generate multiple translations. Phan and Jannesari [380] proposed PrefixMap, a code suggestion715

tool for all types of code tokens in the Java programming language. Their approach uses statistical716

machine translation that outperforms nmt. They used three corpus for their experiments—a large-717

scale corpus of English-German translation in nlp [304], the Conala corpus [553], which contains718

Python software documentation as 116,000 English sentences, and the msr 2013 corpus [23].719

3.4 Quality assessment720

The quality assessment category has sub-categories code smell detection, clone detection, and quality721

assessment/prediction. In this section, we elaborate upon the state-of-the-art related to each of722

these categories within our scope.723

3.4.1 Code smell detection724

Code smells impair the code quality and make the software difficult to extend and maintain [435].725

Extensive literature is available on detecting smells automatically [435]; ml techniques have been726

used to classify smelly snippets from non-smelly code. First, source code is pre-processed to ex-727

tract individual samples (such as a class, file, or method). These samples are classified into positive728

and negative samples. Afterwards, relevant features are identified from the source code and those729

features are then fed into anmlmodel for training. The trainedmodel classifies a source code sam-730

ple into a smelly or non-smelly code.731

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 22 of 98

Dataset preparation: The process of identifying code smells requires a dataset as a ground732

truth for training an ml model. Each sample of the training dataset must be tagged appropri-733

ately as smelly sample (along with target smell types) or non-smelly sample. Many authors built734

their datasets tagged manually with annotations. For example, Fakhoury et al. [139] developed735

a manually validated oracle containing 1, 700 instances of linguistic smells. Pecorelli et al. [375]736

created a dataset of 8.5 thousand samples of smells from 13 open-source projects. Some au-737

thors [11, 336, 110, 206, 180] employed existing datasets (Landfill and Qualitas) in their studies.738

Tummalapalli et al. [500, 497, 499] used 226 WSDL files from the tera-PROMISE dataset. Oliveira739

et al. [360] relied on historical data and mined smell instances from history where the smells were740

refactored.741

Some efforts such as one by Sharma et al. [437] used CodeSplit [434, 433] first to split source742

code files into individual classes and methods. Then, they used existing smell detection tools [436,743

432] to identify smells in the subject systems. They used the output of both of these tasks to744

identify and segregate positive and negative samples. Similarly, Kaur and Kaur [226] used smells745

identified by Dr Java, EMMA, and FindBugs as their gold-set. Alazba and Aljamaan [14] and Dewan-746

gan et al. [124] used the dataset manually labelled instances detected by four code smell detector747

tools (i.e., iPlasma, PMD, Fluid Tool, Anti-Pattern Scanner, and Marinescu's detection rule). The748

dataset labelled six code smells collected from 74 software systems. Zhang and Dong [569] pro-749

posed a large dataset BrainCode consisting 270, 000 samples from 20 real-world applications. The750

study used iPlasma to identify smells in the subject systems.751

Liu et al. [290] adopted an usual mechanism to identify their positive and negative samples.752

They assumed that popular well-known open-source projects are well-written and hence all of the753

classes/methods of these projects are by default considered free from smells. To obtain positive754

samples, they carried out reverse refactoring e.g.,moving a method from a class to another class to755

create an instance of feature envy smell.756

Feature extraction: The majority of the articles [52, 223, 240, 174, 8, 360, 390, 149, 42, 148, 481,757

111, 38, 114, 336, 290, 179, 495, 110, 500, 417, 497, 499, 226, 176, 124, 14, 206, 569, 173] in this cate-758

gory use object-orientedmetrics as features. Thesemetrics include class-levelmetrics (such as lines759

of code, lack of cohesion among methods, number of methods, fan-in and fan-out) and method-level760

metrics (such as parameter count, lines of code, cyclomatic complexity, and depth of nested conditional).761

We observed that some of the attempts use a relatively small number of metrics (Thongkum and762

Mekruksavanich [481] and Agnihotri and Chug [8] used 10 and 16 metrics, respectively). However,763

some of the authors chose to experiment with a large number of metrics. For example, Amorim764

et al. [38] employed 62, Mhawish and Gupta [336] utilized 82, and Arcelli Fontana and Zanoni [42]765

used 63 class-level metrics and 84 method-level metrics.766

Some efforts diverge from the mainstream usage of using metrics as features and used alter-767

native features. Lujan et al. [303] used warnings generated from existing static analysis tools as768

features. Similarly, Ochodek et al. [356] analyzed individual lines in source code to extract tex-769

tual properties such as regex and keywords to formulate a set of vocabulary based features (such770

as bag of words). Tummalapalli et al. [498] and Gupta et al. [175] used distributed word repre-771

sentation techniques such as Term frequency-inverse Document Frequency (TFIDF), Continuous772

Bag Of Words (CBW), Global Vectors for Word Representation (GloVe), and Skip Gram. Similarly,773

Hadj-Kacem and Bouassida [180] generated ast first and obtain the corresponding vector repre-774

sentation to train a model for smell detection. Furthermore, Sharma et al. [437] hypothesized that775

dl methods can infer the features by themselves and hence explicit feature extraction is not re-776

quired. They did not process the source code to extract features and feed the tokenized code to777

ml models.778

MLmodel training: The type of ml models usage can be divided into three categories.779

Traditional ml models: In the first category, we can put studies that use one or more traditional ml780

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 23 of 98

models. These models include Decision Tree, Support Vector Machine, Random Forest, Naive Bayes,781

Logistic Regression, Linear Regression, Polynomial Regression, Bagging, andMultilayer Perceptron. The782

majority of studies [303, 240, 174, 8, 360, 390, 149, 148, 374, 481, 111, 127, 114, 495, 110, 498, 499,783

226, 124, 14, 175, 206, 180, 173] in this category compared the performance of various ml models.784

Some of the authors experimented with individual ml models; for example, Kaur et al. [223] and785

Amorim et al. [38] used Support Vector Machine and Decision Tree, respectively, for smell detection.786

Ensemble methods: The second category of studies employed ensemble methods to detect smells.787

Barbez et al. [52] and Tummalapalli et al. [496] experimented with ensemble techniques such as788

majority training ensemble and best training ensemble. Saidani et al. [417] used the Ensemble Classi-789

fier Chain (ECC) model that transforms multi-label problems into several single-label problems to790

find the optimal detection rules for each anti-pattern type.791

dl-based models: Studies that use dl form the third category. Sharma et al. [437] used cnn, rnn792

(lstm), and autoencoders-based dlmodels. Hadj-KacemandBouassida [179] employed autoencoder-793

based dl model to first reduce the dimensionality of data and Artificial Neural Network to classify794

the samples into smelly and non-smelly instances. Liu et al. [290] deployed four different dlmodels795

based on cnn and rnn. It is common to use other kinds of layers (such as embeddings, dense, and796

dropout) alongwith cnn and rnn. Gupta et al. [176] used eight dlmodels and Zhang andDong [569]797

proposed Metric–Attention-based Residual network (MARS) to detect brain class/method. MARS798

used metric–attention mechanism to calculate the weight of code metrics and detect code smells.799

Discussion: A typical ml model trained to classify samples into either smelly or non-smelly samples.800

The majority of the studies focused on a relatively small set of known code smells— god class [52,801

303, 223, 174, 8, 360, 149, 167, 42, 111, 78, 179], feature envy [52, 223, 8, 149, 42, 148, 111, 437, 179],802

long method [223, 174, 149, 167, 42, 148, 111, 45, 179], data class [223, 360, 149, 167, 42, 148], and803

complex class [303, 174, 360]. Results of these efforts vary significantly; F1 score of the ml models804

vary between 0.3 to 0.99. Among the investigated ml models, authors widely report that Decision805

Tree [45, 148, 13, 174] and Random Forest [45, 148, 240, 42, 336] perform the best. Other methods806

that have been reported better than other ml models in their respective studies are Support Vector807

Machine [496], Boosting [302], and autoencoders [437].808

Traditional ml techniques are the prominent choice in this category because these techniques809

works well with fixed size, fixed column meaning vectors. Code quality metrics capture the fea-810

tures relevant to the identification of smells, and they have fixed size, fixed column meaning vec-811

tors. However, such vectors do not capture subjectivity inherent in the context and hence some812

studies rely on alternative features such as embeddings generated by ast representations to feed813

dl models such as rnn.814

3.4.2 Code clone detection815

Code clone detection is the process of identifying duplicate code blocks in a given software system.816

Software engineering researchers have proposed not only methods to detect code clones auto-817

matically, but, also verify whether the reported clones from existing tools are false-positives or not818

using ml techniques. Studies in this category prepare a dataset containing source code samples819

classified as clones or non-clones. Then, they apply feature extraction techniques to identify rele-820

vant features that are fed into ml models for training and evaluation. The trained models identify821

clones among the sample pairs.822

Dataset preparation: Manual annotation is a common way to prepare a dataset for applying ml823

to identify code clones [340, 341, 532]. Mostaeen et al. [340] used a set of tools (NiCad, Deckard,824

iClones, CCFinderX and SourcererCC) to first identify a list of code clones; they then manually vali-825

dated each of the identified clone set. Yang et al. [542] used existing code clone detection tools to826

generate their training set. Some authors (such as Bandara and Wijayarathna [49] and Hammad827

et al. [183]) relied on existing code-clone datasets. Zhang and Khoo [562] used NiCad to detect all828

clone groups from each version of the software. The study mapped the clones from a consecu-829

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 24 of 98

tive version and used the mapping to predict clone consistency at both the clone-creating and the830

clone-changing time. Bui et al. [72] deployed an interestingmechanism to prepare their code-clone831

dataset. They crawled through GitHub repositories to find different implementations of sorting al-832

gorithms; they collected 3,500 samples from this process.833

Feature extraction: Themajority of the studies relied on the textual properties of the source code834

as features. Bandara and Wijayarathna [49] identified features such as the number of characters835

and words, identifier count, identifier character count, and underscore count using the antlr tool.836

Some studies [340, 341, 339] utilized line similarity and token similarity. Yang et al. [542] and Ham-837

mad et al. [183] computed tf-idf along with other metrics such as position of clones in the file.838

Cesare et al. [79] extracted 30 package-level features including the number of files, hashes of the839

files, and common filenames as they detected code clones at the package level. Zhang and Khoo840

[562] obtained a set of code attributes (e.g., lines of code and the number of parameters), context841

attribute set (e.g.,method name similarity, and sum of parameter similarity). Similarly, Sheneamer842

and Kalita [441] obtained metrics such as the number of constructors, number of field access, and843

super-constructor invocation from the program ast. They also employed program dependence844

graph features such as decl_assign and control_decl. Along the similar lines, Zhao and Huang [571]845

used cfg and dfg (Data Flow Graph) for clone detection. Some of the studies [72, 532, 142] relied846

on dl methods to encode the required features automatically without specifying an explicit set of847

features.848

MLmodel training:849

Traditional ml models: Themajority of studies [341, 49, 339, 441, 562] experimented with a number850

of ml approaches. For example, Mostaeen et al. [341] used Bayes Network, Logistic Regression, and851

Decision Tree; Bandara and Wijayarathna [49] employed Naive Bayes, K Nearest Neighbors, AdaBoost.852

Similarly, Sheneamer and Kalita [441] compared the performance of Support Vector Machine, Linear853

Discriminant Analysis, Instance-Based Learner, Lazy K-means, Decision Tree, Naive Bayes, Multilayer854

Perceptron, and Logit Boost.855

dl-based models: dl models such as ann [340, 339], dnn [142, 571], and rnn with Reverse neural856

network [532] are also employed extensively. Bui et al. [71] and Bui et al. [72] combined neural857

networks for ml models' training. Specifically, Bui et al. [71] built a Bilateral neural network on858

top of two underlying sub-networks, each of which encodes syntax and semantics of code in one859

language. Bui et al. [72] constructed BiTBCNNs—a combination layer of sub-networks to encode860

similarities and differences among code structures in different languages. Hammad et al. [183]861

proposed a Clone-Advisor, a dnn model trained by fine-tuning GPT-2 over the BigCloneBench code862

clone dataset, for predicting code tokens and clone methods.863

3.4.3 Defect prediction864

To pinpoint bugs in software, researchers used various ml approaches. The first step of this pro-865

cess is to identify the positive and negative samples from a dataset where samples could be a type866

of source code entity such as classes, modules, files, and methods. Next, features are extracted867

from the source code and fed into an ml model for training. Finally, the trained model can clas-868

sify different code snippets as buggy or benign based on the encoded knowledge. To this end,869

we discuss the collected studies based on (1) data labeling, (2) features extract, and (3) ml model870

training.871

Dataset preparation: To train an ml model for predicting defects in source code a labeled dataset872

is required. For this purpose, researchers have used some well-known and publicly available873

datasets. For instance, a large number of studies [80, 157, 316, 454, 85, 58, 320, 453, 81, 517, 106,874

265, 125, 386, 307, 229, 90, 116, 520, 442, 129, 455, 568, 73, 126, 423, 521, 281, 404, 263, 224, 359,875

246, 457, 366, 318, 393, 323, 470, 137, 365, 554, 469, 120, 12, 15] used the promise dataset [424].876

Some studies used other datasets in addition to promise dataset. For example, Liang et al. [273]877

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 25 of 98

used Apache projects and Qiao et al. [393] used mis dataset [306]. Xiao et al. [535] utilized a Contin-878

uous Integration (ci) dataset and Pradel and Sen [387] generated a synthetic dataset. Apart from879

using the existing datasets, some other studies prepared their own datasets by utilizing various880

GitHub projects [314, 190, 455, 7, 315, 372, 491] including Apache [266, 64, 117, 141, 364, 460, 317,881

105, 400], Eclipse [583, 117] and Mozilla [311, 233] projects, or industrial data[64].882

Feature extraction: The most common features to train a defect prediction model are the source883

code metrics introduced by Halstead [182], Chidamber and Kemerer [103], and McCabe [328].884

Most of the examined studies [80, 157, 316, 454, 85, 320, 517, 106, 314, 315, 307, 229, 73, 86, 233,885

427, 141, 224, 217, 359, 246, 41, 21, 457, 522, 318, 393, 323, 469, 554, 470, 120, 105, 137, 400, 12,886

364, 460, 388, 317, 15, 372, 488] used a large number of metrics such as Lines of Code, Number887

of Children, Coupling Between Objects, and Cyclomatic Complexity. Some authors [365, 456] com-888

bined detected code smells with code qualitymetrics. Furthermore, Felix and Lee [144] used defect889

metrics such as defect density and defect velocity along with traditional code smells.890

In addition to the above, some authors [81, 125, 58, 386] suggested the use of dimensional891

space reduction techniques—such as Principal Component Analysis (pca)—to limit the number of892

features. Pandey and Gupta [367] used Sequential Forward Search (sfs) to extract relevant source893

codemetrics. Dos Santos et al. [129] suggested a sampling-based approach to extract source code894

metrics to train defect predictionmodels. Kaur et al. [225] suggested an approach to fetch entropy895

of change metrics. Bowes et al. [64] introduced a novel set of metrics constructed in terms of896

mutants and the test cases that cover and detect them.897

Other authors [387, 568] used embeddings to trainmodels. Such studies, first generate asts[266,898

141, 263, 366, 273], a variation of asts such as simplified asts [281, 88], or ast-diff [521, 491] for899

a selected method or file could be considered. Then, embeddings are generated either using the900

token vector corresponding to each node in the generated tree or extracting a set of paths from an901

ast. Singh et al. [455] proposed a method named Transfer Learning Code Vectorizer that generates902

features from source code by using a pre-trained code representation dlmodel. Another approach903

for detecting defects is capturing the syntax and multiple levels of semantics in the source code904

as suggested by Dam et al. [116]. To do so, the authors trained a tree-base lstm model by using905

source code files as feature vectors. Subsequently, the trained model receives an ast as input and906

predicts if a file is clear from bugs or not.907

Wang et al. [520] employed the Deep Belief Network algorithm (dbn) to learn semantic features908

from token vectors, which are fetched from applications' asts. Shi et al. [442] used a dnn model909

to automate the features extraction from the source code. Xiao et al. [535] collected the testing910

history information of all previous ci cycles, within a ci environment, to train defect predict models.911

Likewise to the above study, Madhavan and Whitehead [311] and Aggarwal [7] used the changes912

among various versions of a software as features to train defect prediction models.913

In contrast to the above studies, Chen et al. [90] suggested the dtl-dp, a framework to predict914

defects without the need of features extraction tools. Specifically, dtl-dp visualizes the programs915

as images and extracts features out of themby using a self-attentionmechanism [508]. Afterwards,916

it utilizes transfer learning to reduce the sample distribution differences between the projects by917

feeding them to a model.918

ML model training: In the following, we present the main categories of ml techniques found in919

the examined papers.920

Traditional ml models: To train models, most of the studies [80, 157, 316, 454, 85, 58, 320, 453,921

81, 106, 125, 386, 314, 315, 184, 367, 129, 455, 229, 225, 73, 520, 393, 323, 469, 554, 470, 120,922

105, 400, 364, 460, 456, 388, 317, 15, 372, 224, 359, 246, 144, 318, 457, 21, 404] used traditional923

ml algorithms such as Decision Tree, Random Forest, Support Vector Machine, and AdaBoost. Sim-924

ilarly, Jing et al. [217], Wang et al. [522] used Cost Sensitive Discriminative Learning. In addition,925

other authors [265, 517, 307] proposed changes to traditional ml algorithms to train their mod-926

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 26 of 98

els. Specifically, Wang and Yao [517] suggested a dynamic version of AdaBoost.NC that adjusts its927

parameters automatically during training. Similarly, Li et al. [265] proposed ACoForest, an active928

semi-supervised learning method to sample the most useful modules to train defect prediction929

models. Ma et al. [307] introduced Transfer Naive Bayes, an approach to facilitate transfer learning930

from cross-company data information and weighting training data.931

dl-basedmodels: In contrast to the above studies, researchers [90, 116, 387, 266, 427] used dlmod-932

els such as cnn and rnn-based models for defect prediction. Specifically, Chen et al. [90], Al Qasem933

et al. [12], Li et al. [263], Pan et al. [366] used cnn-based models to predict bugs. rnn-based meth-934

ods [116, 491, 88, 273, 141, 281] are also frequently used where variations of lstm are used to935

for defect prediction. Moreover, by using dl approaches, authors achieved improved accuracy for936

defect prediction and they pointed out bugs in real-world applications [387, 266].937

3.4.4 Quality assessment/prediction938

Studies in this category assess or predict issues related to various quality attributes such as relia-939

bility, maintainability, and run-time performance. The process starts with dataset pre-processing940

and labeling to obtain labeled data samples. Feature extraction techniques are applied on the pro-941

cessed samples. The extracted features are then fed into an ml model for training. The trained942

model assesses or predicts the quality issues in the analyzed source code.943

Dataset preparation: Heo et al. [193] generated data to train an ml model in pursuit to balance944

soundness and relevance in static analysis by selectively allowing unsoundness only when it is945

likely to reduce false alarms. Similarly, Alikhashashneh et al. [20] used the Understand tool to de-946

tect variousmetrics, and employed themon the Juliet test suite for C++. Reddivari and Raman [402]947

extracted a subset of data belonging to open source projects such as Ant, Tomcat, and Jedit to pre-948

dict reliability and maintainability using ml techniques. Malhotra1 and Chug [321] also prepared a949

custom dataset using two proprietary software systems as their subjects to predict maintainability950

of a class.951

Feature extraction: Heo et al. [193] extracted 37 low-level code features for loop (such as number952

of Null, array accesses, and number of exits) and library call constructs (such as parameter count953

and whether the call is within a loop). Some studies [20, 402, 321] used source code metrics as954

features.955

MLmodel training: Alikhashashneh et al. [20] employed Random Forest, Support Vector Machine, K956

Nearest Neighbors, and Decision Tree to classify static code analysis tool warnings as true positives,957

false positives, or false negatives. Reddivari and Raman [402] predicted reliability andmaintainabil-958

ity using the similar set of ml techniques. Anomaly-detection techniques such as One-class Support959

Vector Machine have been used by Heo et al. [193]. They applied their method on taint analysis and960

buffer overflow detection to improve the recall of static analysis. Whereas, some other studies [20]961

aimed to rank and classify static analysis warnings.962

3.5 Code completion963

Code auto-completion is a state-of-the-art integral feature of modern source-code editors and964

ides [69]. The latest generation of auto-completion methods uses nlp and advanced ml models,965

trained on publicly available software repositories, to suggest source-code completions, given the966

current context of the software-projects under examination.967

Dataset preparation: The majority of the studies mined a large number of repositories to con-968

struct their own datasets. Specifically, Gopalakrishnan et al. [158] examined 116,000 open-source969

systems to identify correlations between the latent topics in source code and the usage of ar-970

chitectural developer tactics (such as authentication and load-balancing). Han et al. [185], Han971

et al. [186] trained and tested their system by sampling 4,919 source code lines from open-source972

projects. Raychev et al. [401] used large codebases from GitHub to make predictions for JavaScript973

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 27 of 98

and Python code completion. Svyatkovskiy et al. [473] used 2,700 Python open-source software974

GitHub repositories for the evaluation of their novel approach, Pythia.975

The rest of the approaches employed existing benchmarks and datasets. Rahman et al. [398]976

trained their proposedmodel using the data extracted fromAizuOnline Judge (aoj) system. Liu et al.977

[289], Liu et al. [288] performed experiments on three real-world datasets to evaluate the effective-978

ness of their model when compared with the state-of-the-art approaches. Li et al. [264] conducted979

experiments on two datasets to demonstrate the effectiveness of their approach consisting of an980

attention mechanism and a pointer mixture network on code completion tasks. Schuster et al.981

[426] used a public archive of GitHub from 2020 [1].982

Feature extraction: Studies in this category extract source code information in variety of forms.983

Gopalakrishnan et al. [158] extracted relationships between topical concepts in the source code984

and the use of specific architectural developer tactics in that code. Liu et al. [289], Liu et al. [288]985

introduced a self-attentional neural architecture for code completion with multi-task learning. To986

achieve this, they extracted the hierarchical source code structural information from the programs987

considered. Also, they captured the long-term dependency in the input programs, and derived988

knowledge sharing between related tasks. Li et al. [264] used locally repeated terms in program989

source code to predict out-of-vocabulary (OoV) words that restrict the code completion. Chen and990

Wan [92] proposed a tree-to-sequence (Tree2Seq) model that captures the structure information991

of source code to generate comments for source code. Raychev et al. [401] used asts and per-992

formed prediction of a program element on a dynamically computed context. Svyatkovskiy et al.993

[473] introduced a novel approach for code completion called Pythia, which exploits state-of-the-994

art large-scale dl models trained on code contexts extracted from asts.995

ML model training: The studies can be classified based on the used ml technique for code com-996

pletion.997

Recurrent Neural Networks: For code completion, researchers mainly try to predict the next token.998

Therefore, most approaches use rnns. In particular, Terada and Watanobe [479] used lstm for999

code completion to facilitate programming education. Rahman et al. [398] also used lstm. Wang1000

et al. [519] used an lstm-based neural network combined with several techniques such as Word1001

Embedding models and Multi-head Attention Mechanism to complete programming code. Zhong1002

et al. [575] applied several dl techniques, including lstm, Attention Mechanism (AM), and Sparse1003

Point Network (spn) for JavaScript code suggestions.1004

Apart from lstm, researchers have used rnn with different approaches to perform code sugges-1005

tions. Li et al. [264] applied neural language models, which involve attention mechanism for rnn,1006

by learning from large codebases to facilitate effective code completion for dynamically-typed pro-1007

gramming languages. Hussain et al. [202] presented CodeGRU that uses gru for capturing source1008

codes contextual, syntactical, and structural dependencies. Yang et al. [545] presented rep to im-1009

prove language modeling for code completion. Their approach uses learning of general token rep-1010

etition of source code with optimized memory, and it outperforms lstm. Schumacher et al. [425]1011

combined neural and classical ml including rnns, to improve code recommendations.1012

Probabilistic Models: Earlier approaches for code completion used statistical learning for recom-1013

mending code elements. In particular, Gopalakrishnan et al. [158] developed a recommender sys-1014

tem using prediction models including neural networks for latent topics. Han et al. [185], Han et al.1015

[186] applied Hidden Markov Models to improve the efficiency of code-writing by supporting code1016

completion of multiple keywords based on non-predefined abbreviated input. Proksch et al. [391]1017

used Bayesian Networks for intelligent code completion. Raychev et al. [401] utilized a probabilistic1018

model for code in any programming languagewithDecision Tree. Svyatkovskiy et al. [473] proposed1019

Pythia that employs a Markov Chain language model. Their approach can generate ranked lists of1020

methods and api recommendations, which can be used by developers while writing programs.1021

Other techniques: Recently, new approaches have been developed for code completion based on1022

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 28 of 98

multi-task learning, code representations, and nmt. For instance, Liu et al. [289], Liu et al. [288] ap-1023

plied Multi-Task Learning (mtl) for suggesting code elements. Lee et al. [256] developed MergeLog-1024

ging, a dlbased merged network that uses code representations for automated logging decisions.1025

Chen and Wan [92] applied Tree2Seq model with nmt techniques for code comment generation.1026

3.6 Program Comprehension1027

Program comprehension techniques attempt to understand the theory of comprehension process1028

of developers as well as the tools, techniques, and processes that influence the comprehension1029

activity [463]. We summarized, in the rest of the section, program comprehension studies into1030

four sub-categories i.e., code summarization, program classification, change analysis, and entity1031

identification/recommendation.1032

3.6.1 Code summarization1033

Code summarization techniques attempt to provide a consolidated summary of the source code1034

entity (typically a method). A variety of attempts has been made in this direction. The majority of1035

the studies [94, 252, 285, 9, 443, 548, 198, 260, 516, 253, 549, 523, 565, 204, 268, 580, 188, 581]1036

produces a summary for a small block (such as a method). This category also includes studies that1037

summarize small code fragments [347], code folding within ides [510], commit message genera-1038

tion [212, 295, 214, 213, 96, 526], and title generation for online posts from code [151].1039

Dataset preparation: The majority of the studies [26, 94, 252, 285, 9, 198, 95, 260, 516, 511, 523,1040

96, 581] in this category prepares pairs of code snippets and their corresponding natural language1041

description. Specifically, Chen and Zhou [94] used more than 66 thousand pairs of C# code and1042

natural language description where source code is tokenized using amodified version of the antlr1043

parser. Ahmad et al. [9] conducted their experiments on a dataset containing Java and Python1044

snippets; sequences of both the code and summary tokens are represented by a sequence of1045

vectors. Hu et al. [198] and Li et al. [260] prepared a large dataset from 9,714 GitHub projects.1046

Similarly, Wang et al. [516] mined code snippets and corresponding javadoc comments for their1047

experiment. Chen et al. [95] created their dataset from 12 popular open-source Java libraries with1048

more than 10 thousand stars. They considered method bodies as their inputs and method names1049

along with method comments as prediction targets. Psarras et al. [392] prepared their dataset by1050

using Weka, SystemML, DL4J, Mahout, Neuroph, and Spark as their subject systems. The authors1051

retained names and types of methods, and local and class variables. Choi et al. [104] collected1052

and refined more than 114 thousand pairs of methods and corresponding code annotations from1053

100 open-source Java projects. Iyer et al. [204] mined StackOverflow and extracted title and code1054

snippet from posts that contain exactly one code snippet. Similarly, Gao et al. [151] used a dump1055

of StackOverflow dataset. They tokenized code snippets with respect to each programming lan-1056

guage for pre-processing. The common steps in preprocessing identifiers include making them1057

lower case, splitting the camel-cased and underline identifiers into sub-tokens, and normalizing1058

the code with special tokens such as "VAR" and "NUMBER". Nazar et al. [347] used human anno-1059

tators to summarize 127 code fragments retrieved from Eclipse and NetBeans official frequently1060

asked questions. Yang et al. [546] built a dataset with over 300K pairs of method and comment1061

to evaluate their approach. Chen et al. [96] used dataset provided by Hu et al. [198] and man-1062

ually categorized comments into six intention categories for 20,000 code-comment pairs. Wang1063

et al. [526] created a Python dataset that contains 128 thousand code-comment pairs. Zhou et al.1064

[579] crawled over 6700 Java projects from Github to extract their methods and the corresponding1065

Javadoc comments to create their dataset.1066

Jiang [213] used 18 popular Java projects from GitHub to prepare a dataset with approximately1067

50 thousand commits to generate commit messages automatically. Liu et al. [292] processed 561068

popular open-source projects and selected approximately 160K commits after filtering out the ir-1069

relevant commits. Liu et al. [296] used RepoRepears to identify Java repositories to process. They1070

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 29 of 98

collected pull-request meta data by using GitHub APIs. After preprocessing the collected informa-1071

tion, they trained a model to generate pull request description automatically. Wang et al. [515]1072

prepared a dataset of 107K commits by mining 10K open-source repositories to generate context-1073

aware commit messages.1074

Apart fromsource code, someof the studies used additional information generated fromsource1075

code. For example, LeClair et al. [252] used ast alongwith code and their corresponding summaries1076

belonging to more than 2 million Java methods. Likewise, Shido et al. [443] and Zhang et al. [565]1077

also generated asts of the collected code samples. Liu et al. [285] utilized call dependencies along1078

with source code and corresponding comments from more than a thousand GitHub repositories.1079

LeClair et al. [253] employed ast along with adjacency matrix of ast edges.1080

Some of the studies used existing datasets such as StaQC [547] and the dataset created by Jiang1081

et al. [212]. Specifically, Liu et al. [295], Jiang and McMillan [214] utilized a dataset of commits1082

provided by Jiang et al. [212] that contains two million commits from one thousand popular Java1083

projects. Yao et al. [548] and Ye et al. [549] used StaQC dataset [547]; it contains more than 1191084

thousand pairs of question title and code snippet related to sql mined from StackOverflow. Xie1085

et al. [536] utilized two existing datasets—one each for Java [251] and Python [53]. Bansal et al. [51]1086

evaluated their code summarization technique using a Java dataset of 2.1M Javamethods from 28K1087

projects created by LeClair and McMillan [251]. Li et al. [268] also used the Java dataset of 2.1M1088

methods LeClair and McMillan [251] to predict the inconsistent names from the implementation1089

of the methods. Simiarly, Haque et al. [188], LeClair et al. [254], Haque et al. [189] relied on the1090

Java dataset by LeClair and McMillan [251] for summarizing methods. Zhou et al. [580] combined1091

multiple datasets for their experiment. The first dataset [198] contains over 87 thousand Java1092

methods. The other datasets contained 2.1M Java methods [251] and 500 thousand Java methods1093

respectively.1094

Efforts in the direction of automatic code folding also utilize techniques similar to code summa-1095

rization. Viuginov and Filchenkov [510] collected projects developed using IntelliJ platform. They1096

identified the foldable and FoldingDescription elements from workspace.xml belonging to 3351097

JavaScript and 304 Python repositories.1098

Feature extraction: Studies investigated different techniques for code and feature representa-1099

tions. In the simplest form, Jiang et al. [212] tokenized their code and text. Jiang and McMillan1100

[214] extracted commit messages starting from ``verb + object'' and computed TFIDF for each1101

word. Haque et al. [189] extracted top-40 most-common action words from the dataset of 2.1m1102

Java methods provided by LeClair and McMillan [251]. Psarras et al. [392] used comments as well1103

as source code elements such as method name, variables, and method definition to prepare bag-1104

of-words representation for each class. Liu et al. [285] represented the extracted call dependency1105

features as a sequence of tokens.1106

Some of the studies extracted explicit features from code or ast. For example, Viuginov and1107

Filchenkov [510] used 17 languages as independent and 8 languages as dependent features. These1108

features include ast features such as depth of code blocks' root node, number of ast nodes, and1109

number of lines in the block. Hu et al. [198] and Li et al. [260] transformed ast into Structure-Based1110

Traversal (sbt). Yang et al. [546] developed a dl approach, MMTrans, for code summarization that1111

learns the representation of source code from the two heterogeneous modalities of the ast, i.e.,1112

sbt sequences and graphs. Zhou et al. [580] extracted ast and prepared tokenized code sequences1113

and tokenized ast to feed to semantic and structural encoders respectively. Zhou et al. [581, 579]1114

tokenized source code and parse them into ast. Lin et al. [277] proposed block-wise ast splitting1115

method; they split the code of a method based on the blocks in the dominator tree of the Control1116

Flow Graph, and generated a split ast for each block. Liu et al. [292] worked with ast diff between1117

commits as input to generate a commit summary. Lu et al. [301] used Eclipse JDT to parse code1118

snippets at method-level into ast and extracted API sequences and corresponding comments to1119

generate comments for API-based snippets. Huang et al. [201] proposed a statement-based ast1120

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 30 of 98

traversal algorithm to generate the code token sequence preserving the semantic, syntactic and1121

structural information in the code snippet.1122

Themost commonway of representing features in this category is to encode the features in the1123

form of embeddings or feature vectors. Specifically, LeClair et al. [252] used embeddings layer for1124

code, text, as well as for ast. Similarly, Choi et al. [104] transformed each of the tokenized source1125

code into a vector of fixed length through an embedding layer. Wang et al. [516] extracted the1126

functional keyword from the code and perform positional encoding. Yao et al. [548] used a code1127

retrieval pre-trained model with natural language query and code snippet and annotated each1128

code snippet with the help of a trained model. Ye et al. [549] utilized two separate embedding1129

layers to convert input sequences, belonging to both text and code, into high-dimensional vectors.1130

Furthermore, some authors encode source code models using various techniques. For instance,1131

Chen et al. [95] represented every input code snippet as a series of ast paths where each path is1132

seen as a sequence of embedding vectors associated with all the path nodes. LeClair et al. [253]1133

used a single embedding layer for both the source code and ast node inputs to exploit a large over-1134

lap in vocabulary. Wang et al. [523] prepared a large-scale corpus of training data where each code1135

sample is represented by three sequences—code (in text form), ast, and cfg. These sequences are1136

encoded into vector forms using work2vec. Studies also explored other mechanisms to encode1137

features. For example, Liu et al. [295] extracted commit diffs and represented them as bag of1138

words. The corresponding model ignores grammar and word order, but keeps term frequencies.1139

The vector obtained from the model is referred to as diff vector. Zhang et al. [565] parsed code1140

snippets into asts and calculated their similarity using asts. Allamanis et al. [26] and Ahmad et al.1141

[9] employed attention-based mechanism to encode tokens. Li et al. [268] used GloVe, a word em-1142

bedding technique, to obtain the vector representation of the context; the study included method1143

callers and callee as well as other methods in the enclosing class as the context for a method. Sim-1144

ilarly, Li et al. [262] calculated edit vectors based on the lexical and semantic differences between1145

input code and the similar code.1146

MLmodel training: The ml techniques used by the studies in this category can be divided into the1147

following four categories.1148

Encoder-decoder models: Themajority of the studies used attention-based Encoder-Decodermodels1149

to generate code summaries for code snippets. We further classify the studies in three categories1150

based on their ml implementation.1151

A large portion of the studies use sequence-to-sequence based approaches. For instance, Gao et al.1152

[151] proposed an end-to-end sequence-to-sequence system enhanced with an attention mecha-1153

nism to perform better content selection. A code snippet is transformed by a source-code encoder1154

into a vector representation; the decoder reads the code embeddings to generate the target ques-1155

tion titles. Jiang et al. [212] trained an ntm algorithm to ``translate'' from diffs to commitmessages.1156

Iyer et al. [204] used an attention-based neural network to model the conditional distribution of a1157

natural language summary. Their approach uses an lstm model guided by attention on the source1158

code snippet to generate a summary of one word at a time. Choi et al. [104] transformed input1159

source code into a context vector by detecting local structural features with cnns. Also, attention1160

mechanism is used with encoder cnns to identify interesting locations within the source code. Sim-1161

ilarly, Jiang [213], Haque et al. [188], Liu et al. [296], Lu et al. [301], Takahashi et al. [478] employed1162

lstm-based Encoder-Decoder model to generate summaries. Their last module decoder generates1163

source code summary. Ahmad et al. [9] proposed to use Transformer to generate a natural lan-1164

guage summary given a piece of source code. For both encoder and decoder, the Transformer1165

consists of stacked multi-head attention and parameterized linear transformation layers. LeClair1166

et al. [252] used attention mechanism to not only attend words in the output summary to words1167

in the code word representation but also to attend the summary words to parts of the ast. The1168

concatenated context vector is used to predict the summary of one word at a time. Xie et al. [536]1169

designed a novel multi-task learning (mlt) approach for code summarization through mining the1170

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 31 of 98

relationship between method-code summaries and method names. Li et al. [268] used rnn-based1171

encoder-decodermodel to generate a code representation of amethod and checkwhether the cur-1172

rent method name is inconsistent with the predicted name based on the semantic representation.1173

Haque et al. [189] compared five seq2seq-like approaches (attendgru, ast-attendgru, ast-attendgru-1174

fc, graph2seq, and code2seq) to explore the role of actionword identification in code summarization.1175

Wang et al. [515] proposed a new approach, named CoRec, to translate git diffs, using attentional1176

Encoder-Decoder model, that include both code changes and non-code changes into commit mes-1177

sages. Zhou et al. [578] presented ContextCC that uses a Seq2Seq Neural Network model with an1178

attention mechanism to generate comments for Java methods.1179

Other studies relied on tree-based approaches. For example, Yang et al. [546] developed amulti-1180

modal transformer-based code summarization approach for smart contracts. Bansal et al. [51]1181

introduced a project-level encoder dl model for code summarization. Chen et al. [95], Hu et al.1182

[198] employed lstm-based Encoder-Decoder model to generate summaries.1183

Rest of the studies employed retrieval-based techniques. Zhang et al. [565] proposed Rencos in1184

which they first trained an attentional Encoder-Decoder model to obtain an encoder for all code1185

samples and a decoder for generating natural language summaries. Second, the approach re-1186

trieves the most similar code snippets from the training set for each input code snippet. Rencos1187

uses the trained model to encode the input and retrieves two code snippets as context vectors. It1188

then decodes them simultaneously to adjust the conditional probability of the next word using the1189

similarity values from the retrieved two code snippets. Li et al. [262] implemented their retrieve-1190

and-edit approach by using lstm-based models.1191

Extended encoder-decoder models: Many studies extended the traditional Encoder-Decoder mech-1192

anism in a variety of ways. Among them, sequence-to-sequence based approaches include an ap-1193

proach proposed by Liu et al. [285]; they introduced CallNN that utilizes call dependency informa-1194

tion. They employed two encoders, one for the source code and another for the call dependency1195

sequence. The generated output from the two encoders are integrated and used in a decoder1196

for the target natural language summarization. Wang et al. [516] implemented a three step ap-1197

proach. In the first step, functional reinforcer extracts the most critical function-indicated tokens1198

from source code which are fed into the secondmodule code encoder along with source code. The1199

output of the code encoder is given to a decoder that generates the target sequence by sequen-1200

tially predicting the probability of words one by one. LeClair et al. [253] proposed to use gnn-based1201

encoder to encode ast of eachmethod and rnn-based encoder tomodel themethod as a sequence.1202

They used an attention mechanism to learn important tokens in the code and corresponding ast.1203

Finally, the decoder generates a sequence of tokens based on the encoder output. Zhou et al.1204

[580] used two encoders, semantic and structural, to generate summaries for Java methods. Their1205

method combined text features with structure information of code snippets to train encoders with1206

multiple graph attention layers.1207

Li et al. [260] presented a tree-based approachHybrid-DeepConmodel containing two encoders1208

for code and ast along with a decoder to generate sequences of natural language annotations.1209

Shido et al. [443] extended Tree-lstm and proposed Multi-way Tree-lstm as their encoder. The ra-1210

tional behind the extension is that the proposed approach not only can handle an arbitrary number1211

of ordered children, but also factor-in interactions among children. Zhou et al. [581] trained two1212

separate Encoder-Decoder models, one for source code sequence and another for ast via adversar-1213

ial training, where eachmodel is guided by a well-designed discriminator that learns to evaluate its1214

outputs. Lin et al. [277] used a transformer to generate high-quality code summaries. The learned1215

syntax encoding is combined with code encoding, and fed into the transformer.1216

Rest of the approaches adopted retrieval-based approaches. Ye et al. [549] employed dual learn-1217

ingmechanismby usingBi-lstm. In one direction, themodel is trained for code summarization task1218

that takes code sequence as input and summarized into a sequence of text. On the other hand,1219

the code generation task takes the text sequence and generate code sequence. They reused the1220

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 32 of 98

outcome of both tasks to improve performance of the other task. Liu et al. [292] proposed a new1221

approach ATOM that uses the diff between commits as input. The approach used BiLSTMmodule1222

to generate a new message by using diff-diff to retrieve the most relevant commit message.1223

Reinforcement learning models: Some of the studies exploited reinforcement learning techniques1224

for code summary generation. In particular, Yao et al. [548] proposed code annotation for code1225

retrieval method that generates an natural language annotation for a code snippet so that the1226

generated annotation can be used for code retrieval. They used Advanced Actor-Critic model for1227

annotation mechanism and lstm based model for code retrieval. Wan et al. [511] and Wang et al.1228

[523] used deep reinforcement learning model for training using annotated code samples. The1229

trained model is an Actor network that generates comments for input code snippets. The Critic1230

module evaluates whether the generated word is a good fit or not. Wang et al. [526] used a hierar-1231

chical attention network for comment generation. The study incorporated multiple code features,1232

including type-augmented abstract syntax trees and program control flows, along with plain code1233

sequences. The extracted features are injected into an actor-critic network. Huang et al. [201] pro-1234

posed a composite learning model, which combines the actor-critic algorithm of reinforcement1235

learning with the encoder-decoder algorithm, to generate block comments.1236

Other techniques: Jiang and McMillan [214] used Naive Bayes to classify the diff files into the verb1237

groups. For automated code folding, Viuginov and Filchenkov [510] used Random Forest and Deci-1238

sion Tree to classify whether a code block needs to be folded. Similarly, Nazar et al. [347] used Sup-1239

port Vector Machine and Naive Bayes classifiers to generate summaries from the extracted features.1240

Chen et al. [96] compared six ml techniques to demonstrate that comment category prediction1241

can boost code summarization to reach better results. Etemadi and Monperrus [138] compared1242

NNGen, SimpleNNGen, and EXC-NNGen to explore the origin of nearest diffs selected by the neural1243

network.1244

3.6.2 Program classification1245

Studies targeting this category classify software artifacts based on programming language [504],1246

application domain [504], and type of commits (such as buggy and adaptive) [207, 334]. We sum-1247

marize these efforts below from dataset preparation, feature extraction, and ml model training1248

perspective.1249

Dataset preparation: Ma et al. [308] identified more than 91 thousand open-source repositories1250

from GitHub as subject systems. They created an oracle by manually classifying software artifacts1251

from 383 sample projects. Shimonaka et al. [445] conducted experiments on source code gener-1252

ated by four kinds of code generators to evaluate their technique that identify auto-generated code1253

automatically by using ml techniques. Ji et al. [207] and Meqdadi et al. [334] analyzed the GitHub1254

commit history. Ugurel et al. [504] relied on C and C++ projects from Ibiblio and the Sourceforge1255

archives. Levin and Yehudai [258] used eleven popular open-source projects and annotated 11511256

commits manually to train a model that can classify commits into maintenance activities. Similarly,1257

Mariano et al. [325] and Mariano et al. [324] classify commits by maintenance activities; they iden-1258

tify a large number of open-source GitHub repositories. Along the similar lines, Meng et al. [333]1259

classified commits messages into categories such as bug fix and feature addition and Li et al. [261]1260

predicted the impact of single commit on the program. They used popular a small set (specifically,1261

5 and 10 respectively) of Java projects as their dataset. Furthermore, Sabetta and Bezzi [411] pro-1262

posed an approach to classify security-related commits. To achieve the goal, they used 660 such1263

commits from 152 open-source Java projects that are used in SAP software. Gharbi et al. [154]1264

created a dataset containing 29K commits from 12 open source projects. Abdalkareem et al. [3]1265

built a dataset to improve the detection CI skip commits i.e., commits where `[ci skip]' or `[skip1266

ci]' is used to skip continuous integration pipeline to execute on the pushed commit. To build the1267

dataset, the authors used BigQuery GitHub dataset to identify repositories where at least 10% of1268

commits skipped the CI pipeline. Altarawy et al. [35] used three labeled data sets including one1269

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 33 of 98

that was created with 103 applications implemented in 19 different languages to find similar appli-1270

cations.1271

Feature extraction: Features in this category of studies belong to either source code features cat-1272

egory or repository features. A subset of studies [445, 308, 504] relies on features extracted from1273

source code token including language specific keywords and other syntactic information. Other1274

studies [207, 334] collect repository metrics (such as number of changed statements, methods,1275

hunks, and files) to classify commits. Ben-Nun et al. [57] leveraged both the underlying data- and1276

control-flow of a program to learn code semantics performance prediction. Gharbi et al. [154]1277

used tf-idf to weight the tokens extracted from change messages. Ghadhab et al. [152] curated1278

a set of 768 BERT-generated features, a set of 70 code change-based features and a set of 201279

keyword-based features for training a model to classify commits. Similarly, Mariano et al. [325]1280

and Mariano et al. [324] extracted a 71 features majorly belonging to source code changes and1281

keyword occurrences categories. Meng et al. [333] and Li et al. [261] computed change metrics1282

(such as number lines added and removed) as well as natural language metrics extracted from1283

commit messages. Abdalkareem et al. [3] employed 23 commit-level repository metrics. Sabetta1284

and Bezzi [411] analyzed changes in source code associated with each commit and extracted the1285

terms that the developer used to name entities in the source code (e.g., names of classes). Simi-1286

larly, LASCAD Altarawy et al. [35] extracted terms from the source code and preprocessed terms1287

by removing English stop words and programming language keywords.1288

ML model training: A variety of ml approaches have been applied. Specifically, Ma et al. [308]1289

used Support Vector Machine, Decision Tree, and Bayes Network for artifact classification. Meqdadi1290

et al. [334] employed Naive Bayes, Ripper, as well as Decision Tree and Ugurel et al. [504] used Sup-1291

port Vector Machine to classify specific commits. Ben-Nun et al. [57] proposed an approach based1292

on an rnn architecture and fixed inst2vec embeddings for code analysis tasks. Levin and Yehudai1293

[258], Mariano et al. [325, 324] used Decision Tree and Random Forest for commits classification into1294

maintenance activities. Gharbi et al. [154] applied Logistic Regressionmodel to determine the com-1295

mit classes for each new commitmessage. Ghadhab et al. [152] trained a dnn classifier to fine-tune1296

the BERT model on the task of commit classification. Meng et al. [333] used a cnn-based model to1297

classify code commits. Sabetta and Bezzi [411] trained Random Forest, Naive Bayes, and Support1298

Vector Machine to identify security-relevant commits. Altarawy et al. [35] developed LASCAD us-1299

ing Latent Dirichlet Allocation and hierarchical clustering to establish similarities among software1300

projects.1301

3.6.3 Change analysis1302

Researchers have explored applications ofml techniques to identify or predict relevant code changes [484,1303

489]. We briefly describe the efforts in this domain w.r.t. three major steps—dataset preparation,1304

feature extraction, and ml model training.1305

Dataset preparation: Tollin et al. [484] performed their study on two industrial projects. Tufano1306

et al. [489] extracted 236K pairs of code snippets identified before and after the implementation1307

of the changes provided in the pull requests. Kumar et al. [241] used eBay web-services as their1308

subject systems. Uchôa et al. [503] used the data provided by the Code Review Open Platform1309

(CROP), an open-source dataset that links code review data to software changes, to predict impact-1310

ful changes in code review. Malhotra and Khanna [319] considered three open-source projects to1311

investigate the relationship between code quality metrics and change proneness.1312

Feature extraction: Tollin et al. [484] extracted features related to the code quality from the is-1313

sues of two industrial projects. Tufano et al. [489] used features from pull requests to investigate1314

the ability of a nmt modes. Abbas et al. [2] and Malhotra and Khanna [319] computed well-known1315

C&K metrics to investigate the relationship between change proneness and object-oriented met-1316

rics. Similarly, Kumar et al. [241] computed 21 code quality metrics to predict change-prone web-1317

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 34 of 98

services. Uchôa et al. [503] combinesmetrics fromdifferent sources—21 features related to source1318

code, modification history of the files, and the textual description of the change, 20 features that1319

characterize the developer’s experience, and 27 code smells detected by DesigniteJava[432].1320

ML model training: Tollin et al. [484] employed Decision Tree, Random Forest, and Naive Bayes1321

ml algorithms for their prediction task. Tufano et al. [489] used Encoder-Decoder architecture of a1322

typical nmt model to learn the changes introduced in pull requests. Malhotra and Khanna [319]1323

experimented with �, Multilayer Perceptron, and Random Forest to observe relationship between1324

code metrics and change proneness. Abbas et al. [2] compared ten ml models including Random1325

Forest, Decision Tree, Multilayer Perceptron, and Bayes Network. Similarly, Kumar et al. [241] used1326

Support Vector Machine to the predict change proneness in web-services. Uchôa et al. [503] used six1327

ml models such as Support Vector Machine, Decision Tree, and Random Forest to investigate whether1328

predicted impactful changes are helpful for code reviewers.1329

3.6.4 Entity identification/recommendation1330

This category represents studies that recommend source code entities (such as method and class1331

names) [24, 322, 539, 210, 192] or identify entities such as design patterns [150] in code using1332

ml [502, 17, 559, 133, 87]. Specifically, Linstead et al. [284] proposed a method to identify func-1333

tional components in source code and to understand code evolution to analyze emergence of1334

functional topics with time. Huang et al. [200] found commenting position in code using ml tech-1335

niques. Uchiyama et al. [502] identified design patterns and Abuhamad et al. [5] recommended1336

code authorship. Similar approaches include recommendingmethod name [24, 210, 539], method1337

signature [322], class name [24], and type inference [192]. We summarize these efforts classified1338

in three steps of applying ml techniques below.1339

Dataset preparation: Themajority of the studies employed GitHub projects for their experiments.1340

Specifically, Linstead et al. [284] used two large, open source Java projects, Eclipse and ArgoUML in1341

their experiments to apply unsupervised statistical topicmodels. Similarly, Hellendoorn et al. [192]1342

downloaded 1,000 open-source TypeScript projects and extracted identifiers with corresponding1343

type information. Abuhamad et al. [5] evaluated their approach over the entire Google Code Jam1344

(gcj) dataset (from 2008 to 2016) and over real-world code samples (from 1987) extracted from1345

public repositories on GitHub. Allamanis et al. [24] mined 20 software projects from GitHub to1346

predictmethod and class names. Jiang et al. [210] used theCode2Seqdataset containing 3.8million1347

methods as their experimental data. Ali et al. [18] applied information retrieval techniques to1348

automatically create traceability links in three subject systems.1349

A subset of studies focused on identifying design patterns using ml techniques. Uchiyama et al.1350

[502] performed experimental evaluations with five programs to evaluate their approach on pre-1351

dicting design patterns. Alhusain et al. [17] applied a set of design patterns detection tools on1352

400 open source repositories; they selected all identified instances where at least two tools re-1353

port a design pattern instance. Zanoni et al. [559] manually identified 2,794 design patterns in-1354

stances from ten open-source repositories. Dwivedi et al. [133] analyzed JHotDraw and identified1355

59 instances of abstract factory and 160 instances of adapter pattern for their experiment. Simi-1356

larly, Gopalakrishnan et al. [159] applied their approach to discover latent topics in source code on1357

116, 000 open-source projects. They recommended architectural tactics based on the discovered1358

topics. Furthermore, Mahmoud and Bradshaw [312] chose ten open-source projects to validate1359

their topic modeling approach designed for source code.1360

Feature extraction: Several studies generated embeddings from their feature set. Specifically,1361

Huang et al. [200] used embeddings generated fromWord2vec capturing code semantics. Similarly,1362

Jiang et al. [210] employed Code2vec embeddings and Allamanis et al. [24] used embeddings that1363

contain semantic information about sub-tokens of a method name to identify similar embeddings1364

utilized in similar contexts. Zhang et al. [567] utilized knowledge graph embeddings to extract1365

interrelations of code for bug localization.1366

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 35 of 98

Other studies used source code or code metadata as features. Abuhamad et al. [5] extracted1367

code authorship attributes from samples of code. Malik et al. [322] used function names, formal1368

parameters, and corresponding comments as features. Ali et al. [18] extracted source code en-1369

tity names, such as class, method, and variable names. Bavota et al. [56] retrieved 618 features1370

from six open-source Java systems to apply Latent Dirichlet Allocation-based feature location tech-1371

nique. Similarly, De Lucia et al. [119] extracted class name, signature of methods, and attribute1372

names from Java source code. They applied Latent Dirichlet Allocation to label source code arti-1373

facts. Gopalakrishnan et al. [159] processed tactics in the form of a set of textual descriptions and1374

produced a set of weighted indicator terms. Mahmoud and Bradshaw [312] extracted code term1375

co-occurrence, pair-wise term similarity, and clusters of terms features and applied their apporach1376

Semantic Topic Models (STM) on them.1377

In addition, Uchiyama et al. [502], Chaturvedi et al. [87], Dwivedi et al. [133], Alhusain et al. [17]1378

used several source-code metrics as features to detect design patterns in software programs.1379

MLmodel training: Themajority of studies in this category use rnn-based dlmodels. In particular,1380

Huang et al. [200] and Hellendoorn et al. [192] used bidirectional rnnmodels. Similarly, Abuhamad1381

et al. [5] and Malik et al. [322] also employed rnn models to identify code authorship and function1382

signatures respectively. Zhang et al. [567] created a bug-localization tool, KGBugLocator utilizing1383

knowledge graph embeddings and bi-directional attention models. Xu et al. [539] employed the1384

gru-based Encoder-Decoder model for method name prediction. Uchiyama et al. [502] used a hier-1385

archical neural network as their classifier. Allamanis et al. [24] utilized neural language models for1386

predicting method and class names.1387

Other studies used traditional ml techniques. Specifically, Chaturvedi et al. [87] compared four1388

ml techniques (Linear Regression, Polynomial Regression, support vector regression, and neural net-1389

work). Dwivedi et al. [133] used Decision Tree and Zanoni et al. [559] trained Naive Bayes, Decision1390

Tree, Random Forest, and Support Vector Machine to detect design patterns using ml. Ali et al. [18]1391

employed Latent Dirichlet Allocation to distinguish domain-level terms from implementation-level1392

terms. Gopalakrishnan et al. [159] discovered latent topics using Latent Dirichlet Allocation in the1393

large-scale corpus. The study used Decision Tree, Random Forest, and Linear Regression as classifiers1394

to compute the likelihood that a given source file is associated with a given tactic.1395

3.7 Code review1396

Code Review is the process of systematically check the code written by a developer performed by1397

one or more different developers. A very small set of studies explore the role of ml in the process1398

of code review that we present in this section.1399

Dataset preparation: Lal and Pahwa [245] labeled check-in code samples as clean and buggy. On1400

code samples, they carried out extensive pre-processing such as normalization and label encoding.1401

Aiming to automate code review process, Tufano et al. [493] trained two dl architectures one for1402

both contributor and for reviewer. They mined Gerrit and GitHub to prepare their dataset from1403

8, 904 projects. Furthermore, Thongtanunam et al. [482] proposed AutoTransform to better handle1404

new tokens using Byte-Pair Encoding (BPE) approach. They leveraged the dataset proposed by1405

Tufano et al. [493] consisting 630,858 changed methods to train a Transformer-based NMT model.1406

Feature extraction: Lal and Pahwa [245] used tf-idf to convert the code samples into vectors after1407

applying extensive pre-processing. Tufano et al. [493] used n-grams extracted from each commit1408

to train their classifiers.1409

ML model training: Lal and Pahwa [245] used a Naive Bayesmodel to classify samples into buggy1410

or clean. Tufano et al. [493] trained two dl architectures one for both contributor and for reviewer.1411

The authors use n-grams extracted from each commit and implement their classifiers using Deci-1412

sion Tree,Naive Bayes, and Random Forest. In their revisedwork [494], the authors used Text-To-Text1413

Transfer Transformer (T5) model and shown significant improvements in dl code review models.1414

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 36 of 98

3.8 Code search1415

Code search is an activity of searching a code snippet based on individual's need typically in Q&A1416

sites such as StackOverflow [413, 450, 512]. The studies in this category define the following coarse-1417

grained steps. In the first step, the techniques prepare a training set by collecting source code and1418

often corresponding description or query. A feature extraction step then identifies and extracts1419

relevant features from the input code and text. Next, these features are fed into ml models for1420

training which is later used to execute test queries.1421

Dataset preparation: Shuai et al. [450] utilized commented code as input. Wan et al. [512] used1422

source code in the the form of tokens, ast, and cfg. Sachdev et al. [413] employed a simple tok-1423

enizer to extract all tokens from source code by removing non–alphanumeric tokens. Ling et al.1424

[282] mined software projects from GitHub for the training of their approach. Jiang et al. [208]1425

used existing McGill corpus and Android corpus.1426

Feature extraction: Code search studies typically use embeddings representing the input code.1427

Shuai et al. [450] performed embeddings on code, where source code elements (method name,1428

api sequence, and tokens) are processed separately. They generated embeddings for code com-1429

ments independently. Wan et al. [512] employed a multi-modal code representation, where they1430

learnt the representation of eachmodality via lstm, Tree-lstm and ggnn, respectively. Sachdev et al.1431

[413] identified words from source code and transformed the extracted tokens into a natural lan-1432

guage documents. Similarly, Ling et al. [282] used an unsupervised word embedding technique1433

to construct a matching matrix to represent lexical similarities in software projects and used an1434

rnn model to capture latent syntactic patterns for adaptive code search. Jiang et al. [208] used a1435

fragment parser to parse a tutorial fragment in four steps (API discovery, pronoun and variable1436

resolution, sentence identification, and sentence type identification).1437

ML model training: Shuai et al. [450] used a cnn-based ml model named carlcs-cnn. The cor-1438

responding model learns interdependent representations for embedded code and query by a1439

co-attention mechanism. Based on the embedded code and query, the co-attention mechanism1440

learns a correlation matrix and leverages row/column-wise max-pooling on the matrix. Wan et al.1441

[512] employed a multi-modal attention fusion. The model learns representations of different1442

modality and assigns weights using an attention layer. Next, the attention vectors are fused into1443

a single vector. Sachdev et al. [413] utilized word and documentation embeddings and performed1444

code search using the learned embeddings. Similarly, Ling et al. [282] used an autoencoder network1445

and a metric (believability) to measure the degree to which a sentence is approved or disapproved1446

within a discussion in a issue-tracking system. Jiang et al. [208] used Latent Dirichlet Allocation to1447

segregate all tutorial fragments into relevant clusters and identify relevant tutorial for an API.1448

Once an ml model is trained, code search can be initiated using a query and a code snippet.1449

Shuai et al. [450] used the given query and code sample to measure the semantic similarity using1450

cosine similarity. Wan et al. [512] ranked all the code snippets by their similarities with the input1451

query. Similarly, Sachdev et al. [413] were able to answer almost 43% of the collected StackOver-1452

flow questions directly from code.1453

3.9 Refactoring1454

Refactoring transformations are intended to improve code quality (specifically maintainability),1455

while preserving the program behavior (functional requirements) from users' perspective [471].1456

This section summarizes the studies that identify refactoring candidates or predict refactoring com-1457

mits by analyzing source code and by applying ml techniques on code. A process pipeline typically1458

adopted by the studies in this category can be viewed as a three step process. In the first step, the1459

source code of the projects is used to prepare a dataset for training. Then, individual samples (i.e.,1460

either a method, class, or a file) is processed to extract relevant features. The extracted features1461

are then fed to an ml model for training. Once trained, the model is used to predict whether an1462

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 37 of 98

input sample is a candidate for refactoring or not.1463

Dataset preparation: The first set of studies created their own dataset for model training. For in-1464

stance, Rodriguez et al. [407] and Amal et al. [37] created datasets where each sample is reviewed1465

by a human to identify an applicable refactoring operation; the identified operation is carried out1466

by automated means. Kosker et al. [234] employed four versions of the same repository, com-1467

puted their complexity metrics, and classified their classes as refactored if their complexity metric1468

values are reduced from the previous version. Nyamawe et al. [354] analyzed 43 open-source1469

repositories with 13.5 thousand commits to prepare their dataset. Similarly, Aniche et al. [40] cre-1470

ated a dataset comprising over twomillion refactorings frommore than 11 thousand open-source1471

repositories. Sagar et al. [414] identified 5004 commits randomly selected from all the commits1472

obtained from 800 open-source repositories where RefactoringMiner [486] identified at least one1473

refactoring. Along the similar lines, Li et al. [268] used RefactoringMiner and RefDiff tools to iden-1474

tify refactoring operations in the selected commits. Xu et al. [538], Krasniqi and Cleland-Huang1475

[236] used manual analysis and tagging for identifying refactoring operations. Bavota et al. [55]1476

obtained 2, 329 classes from nine subject systems and applied topic modeling to identify latent top-1477

ics and move them to an appropriate package. Similarly, Bavota et al. [56] identified all classes1478

from six software systems and applied their proposed technique namely Methodbook to identify1479

move method refactoring candidates using relational topic models. Finally, Kurbatova et al. [244]1480

generated synthetic data by moving methods to other classes to prepare a dataset for feature1481

envy smell. The rest of the studies in this category [239, 242, 43], used the tera-promise dataset1482

containing various metrics for open-source projects where the classes that need refactoring are1483

tagged.1484

Feature extraction: A variety of features, belonging to product as well as process metrics, has1485

been employed by the studies in this category. Some of the studies rely on code quality met-1486

rics. Specifically, Kosker et al. [234] computed cyclomatic complexity along with 25 other code1487

quality metrics. Similarly, Kumar et al. [242] computed 25 different code quality metrics using the1488

SourceMeter tool; these metrics include cyclomatic complexity, class class and clone complexity,1489

loc, outgoing method invocations, and so on. Some of the studies [239, 43, 451, 524] calculated1490

a large number of metrics. Specifically, Kumar and Sureka [239] computed 102 metrics and then1491

applied pca to reduce the number of features to 31, while Aribandi et al. [43] used 125 metrics.1492

Sidhu et al. [451] used metrics capturing design characteristics of a model including inheritance,1493

coupling and modularity, and size. Wang and Godfrey [524] computed a wide range of metrics1494

related to clones such as number of clone fragements in a class, clone type (type1, type2, or type3),1495

and lines of code in the cloned method.1496

Some other studies did not limit themselves to only code quality metrics. Particularly, Yue1497

et al. [558] collected 34 features belonging to code, evolution history, diff between commits, and1498

co-change. Similarly, Aniche et al. [40] extracted code quality metrics, process metrics, and code1499

ownership metrics.1500

In addition, Nyamawe et al. [354], Nyamawe et al. [355] carried out standard nlp preprocessing1501

and generated tf-idf embeddings for each sample. Along the similar lines, Kurbatova et al. [244]1502

used code2vec to generate embeddings for each method. Sagar et al. [414] extracted keywords1503

from commit messages and used GloVe to obtain the corresponding embedding. Krasniqi and1504

Cleland-Huang [236] tagged each commit message with their parts-of-speech and prepared a lan-1505

guage model dependency tree to detect refactoring operations from commit messages. Bavota1506

et al. [55] and Bavota et al. [56] extracted identifiers, comments, and string literals from source1507

code. Bavota et al. [55] prepared structural coupling matrix and package decomposition matrix to1508

identifymove class candidates. Bavota et al. [56] applied relational topicmodels to derive semantic1509

relationships between methods and define a probability distribution of topics (topic distribution1510

model) among methods to refactor feature envy code smell.1511

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 38 of 98

MLmodel training: Majority of the studies in this category utilized traditional ml techniques. Ro-1512

driguez et al. [407] proposed amethod to identifyweb-service groups for refactoring using K-means,1513

cobweb, and expectation maximization. Kosker et al. [234] trained a Naive Bayes-based classifier to1514

identify classes that need refactoring. Kumar and Sureka [239] used Least Square-Support Vector1515

Machine (ls-svm) along with smote as classifier. They found that ls-svm with Radial Basis Function1516

(rbf) kernel gives the best results. Nyamawe et al. [354] recommended refactorings based on the1517

history of requested features and applied refactorings. Their approach involves two classification1518

tasks; first, a binary classification that suggests whether refactoring is needed or not and second,1519

a multi-label classification that suggests the type of refactoring. The authors used Linear Regres-1520

sion,Multinomial Naive Bayes (mnb), Support Vector Machine, and Random Forest classifiers. Yue et al.1521

[558] presented crec—a learning-based approach that automatically extracts refactored and non-1522

refactored clones groups from software repositories, and trains an AdaBoostmodel to recommend1523

clones for refactoring. Kumar et al. [242] employed a set of ml models such as Linear Regression,1524

Naive Bayes, Bayes Network, Random Forest, AdaBoost, and Logit Boost to develop a recommenda-1525

tion system to suggest the need of refactoring for a method. Amal et al. [37] proposed the use of1526

ann to generate a sequence of refactoring. Aribandi et al. [43] predicted the classes that are likely1527

to be refactored in the future iterations. To achieve their aim, the authors used various variants1528

of ann, Support Vector Machine, as well as Best-in-training based Ensemble (bte) and Majority Voting1529

Ensemble (mve) as ensemble techniques. Kurbatova et al. [244] proposed an approach to recom-1530

mend move method refactoring based on a path-based presentation of code using Support Vector1531

Machine. Similarly, Aniche et al. [40] used Linear Regression, Naive Bayes, Support Vector Machine, De-1532

cision Tree, Random Forest, and Neural Network to predict applicable refactoring operations. Sidhu1533

et al. [451], Xu et al. [538], Wang and Godfrey [524] used dnn, gradient boosting, and Decision Tree1534

respectively to identify refactoring candidate. Sagar et al. [414], Nyamawe et al. [355] employed1535

various classifiers such as Support Vector Machine, Linear Regression, and Random Forest to predict1536

commits with refactoring operations.1537

Bavota et al. [55] and Bavota et al. [56] applied Latent Dirichlet Allocation to identify move class1538

and move method refactoring candidates respectively. They model the documents in a given cor-1539

pus as a probabilistic mixture of latent topics and model the links between document pairs as a1540

binary variable.1541

3.10 Vulnerability analysis1542

The studies in this domain analyze source code to identify potential security vulnerabilities. In this1543

section, we point out the state-of-the-art in software vulnerability detection using ml techniques.1544

First, the studies prepare a dataset or identify an existing dataset for ml training. Next, the studies1545

extract relevant features from the identified subject systems. Then, the features are fed into a ml1546

model for training. The trained model is then used to predict vulnerabilities in the source code.1547

Dataset preparation: Authors used existing labeled datasets as well as created their own datasets1548

to train ml models. Specifically, a set of studies [378, 337, 397, 412, 231, 61, 461, 280, 555, 467, 247,1549

370, 6, 556, 509, 228, 232, 570, 327, 130, 448, 131, 541, 54, 346, 527, 100, 269, 403, 48] used avail-1550

able labeled datasets for php, Java, C, C++, and Android applications to train vulnerability detection1551

models. In other cases, Russell et al. [409] extended an existing dataset with millions of C and C++1552

functions and then labeled it based on the output of three static analyzers (i.e., Clang, CppCheck,1553

and Flawfinder).1554

Many studies [309, 19, 112, 349, 135, 331, 146, 383, 238, 369, 36, 172, 107, 102, 338, 196, 422,1555

543, 573, 379, 430, 216, 280, 278] created their own datasets. Ma et al. [309], Ali Alatwi et al. [19], Cui1556

et al. [112], and Gupta et al. [172] created datasets to train vulnerability detectors for Android appli-1557

cations. In particular, Ma et al. [309] decompiled and generated cfgs of approximately 10 thousand,1558

both benign and vulnerable, Android applications from AndroZoo and Android Malware datasets;1559

Ali Alatwi et al. [19] collected 5,063 Android applications where 1,000 of them were marked as be-1560

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 39 of 98

nign and the remaining as malware; Cui et al. [112] selected an open-source dataset comprised of1561

1,179 Android applications that have 4,416 different version (of the 1,179 applications) and labeled1562

the selected dataset by using the Androrisk tool; and Gupta et al. [172] used two Android applica-1563

tions (Android-universal-image-loader and JHotDraw) which they have manually labeled based on1564

the projects pmd reports (true if a vulnerability was reported in a pmd file and false otherwise). To1565

create datasets of php projects, Medeiros et al. [331] collected 35 open-source php projects and in-1566

tentionally injected 76 vulnerabilities in their dataset. Shar et al. [430] used phpminer to extract 151567

datasets that include sql injections, cross-site scripting, remote code execution, and file inclusion1568

vulnerabilities, and labeled only 20% of their dataset to point out the precision of their approach.1569

Ndichu et al. [349] collected 5,024 JavaScript code snippets from d3m, jsunpack, and 100 top web-1570

sites where the half of the code snippets were benign and the other half malicious. In other cases,1571

authors [543, 397, 379] collected large number of commit messages and mapped them to known1572

vulnerabilities by using Google's Play Store, National Vulnerability Database (nvd), Synx, Node Secu-1573

rity Project, and so on, while in limited cases authors [383] manually label their dataset. Hou et al.1574

[196], Moskovitch et al. [338] and Santos et al. [422] created their datasets by collecting web-page1575

samples from StopBadWare and VxHeavens. Lin et al. [280] constructed a dataset and manually1576

labeled 1,471 vulnerable functions and 1,320 vulnerable files from nine open-source applications,1577

named Asterisk, FFmpag, httpd, LibPNG, LibTIFF, OpenSSL, Pidgin, vlc Player, and Xen. Lin et al.1578

[278] have used more then 30,000 non-vulnerable functions and manually labeled 475 vulnerable1579

functions for their experiments.1580

Feature extraction: Authors used static source code metrics, cfgs, asts, source code tokens, and1581

word embeddings as features.1582

Source code metrics: A set of studies [331, 146, 36, 172, 107, 397, 112, 383, 403, 130, 232, 332, 6, 247,1583

467] used more than 20 static source code metrics (such as cyclomatic complexity,maximum depth1584

of class in inheritance tree, number of statements, and number of blank lines).1585

Data/control flow and ast: Ma et al. [307], Kim et al. [231], Bilgin et al. [61], Kronjee et al. [238],1586

Wang et al. [527], Du et al. [131], Medeiros et al. [332] used cfgs, asts, or data flow analysis as1587

features. More specifically, Ma et al. [309] extracted the api calls from the cfgs of their dataset and1588

collected information such as the usage of apis (which apis the application uses), the api frequencies1589

(how many times the application uses apis) and api sequence (the order the application uses apis).1590

Kim et al. [231] extracted asts and gfcs which they tokenized and fed into ml models, while Bilgin1591

et al. [61] extracted asts and translated their representation of source code into a one-dimensional1592

numerical array to fed them to a model. Kronjee et al. [238] used data-flow analysis to extract1593

features, while Spreitzenbarth et al. [461] used static, dynamic analysis, and information collected1594

from ltrace to collect features and train a linear vulnerability detection model. Lin et al. [278]1595

created asts and from there they extracted code semantics as features.1596

Repository and file metrics: Perl et al. [379] collected GitHub repository meta-data (i.e., programming1597

language, star count, fork count, and number of commits) in addition to source code metrics. Other1598

authors [378, 135] used file meta-data such as files' creation and modification time, machine type, file1599

size, and linker version.1600

Code and Text tokens: Chernis and Verma [102] used simple token features (character count, char-1601

acter diversity, entropy, maximum nesting depth, arrow count, ``if'' count, ``if'' complexity, ``while''1602

count, and ``for'' count) and complex features (character n-grams, word n-grams, and suffix trees).1603

Hou et al. [196] collected 10 features such as length of the document, average length of word, word1604

count, word count in a line, and number of NULL characters. The remaining studies [409, 369, 338,1605

422, 543, 412, 573, 430, 100, 346, 409, 327, 143, 570, 370, 48, 555, 280] tokenized parts of the source1606

code or text-based information with various techniques such as the most frequent occurrences of1607

operational codes, capture the meaning of critical tokens, or applied techniques to reduce the vo-1608

cabulary size in order to retrieve the most important tokens. In some other cases, authors [269]1609

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 40 of 98

used statistical techniques to reduce the feature space to reduce the number of code tokens.1610

Other features: Ali Alatwi et al. [19], Ndichu et al. [349] andMilosevic et al. [337] extractedpermission-1611

related features. In other cases, authors [541] combined softwaremetrics andN-grams as features1612

to train models and others [448] created text-based images to extract features. Likewise, Sultana1613

[466] extracted traceable patterns such as CompoundBox, Immutable, Implementor, Overrider,1614

Sink, Stateless, FunctionObject, and LimitSel and used Understand tool to extract various software1615

metrics. Wei et al. [531] extracted system calls and function call-related information to use as1616

features, while Vishnu and Jevitha [509] extracted url-based features like number of chars, dupli-1617

cated characters, special characters, script tags, cookies, and re-directions. Padmanabhuni and1618

Tan [362] extracted buffer usage patterns and defensive mechanisms statements constructs by1619

analyzing files.1620

Model training: To train models, the selected studies used a variety of traditional ml and dl algo-1621

rithms.1622

Traditional ML techniques: One set of studies [19, 349, 378, 409, 369, 338, 379, 430, 555, 467, 362,1623

247, 6, 556, 466, 509, 531, 130, 143, 332, 131, 346, 527, 100, 403] used traditional ml algorithms1624

such as Naive Bayes, Decision Tree, Support Vector Machine, Linear Regression, Decision Tree, and Ran-1625

dom Forest to train their models. Specifically, Ali Alatwi et al. [19], Russell et al. [409], Perl et al. [379]1626

selected Support Vector Machine because it is not affected by over-fitting when having very high di-1627

mensional variable spaces. Along the similar lines, Ndichu et al. [349] used Support Vector Machine1628

to train their model with linear kernel. Pereira et al. [378] used Decision Tree, Linear Regression,1629

and Lasso to train their models, while [6] found that Random Forest is the best model for predicting1630

cross-project vulnerabilities. Compared to the above studies, Shar et al. [430] used both supervised1631

(i.e., Linear Regression and Random Forest) and semi-supervised (i.e., Co-trained Random Forest) al-1632

gorithms to train their models since most of that datasets were not labeled. Yosifova et al. [555]1633

used text-based features to train Naive Bayes, Support Vector Machine, and Random Forest models.1634

Du et al. [130] created the leopard framework that does not require prior knowledge about known1635

vulnerabilities and used Random Forest, Naive Bayes, Support Vector Machine, and Decision Tree to1636

point them out.1637

Other studies [331, 146, 383, 238, 36, 172, 107, 337, 102, 196, 422, 397, 112] used up to 321638

different ml algorithms to train models and compared their performance. Specifically, Medeiros1639

et al. [331] experimented with multiple variants of Decision Tree, Random Forest, Naive Bayes, K1640

Nearest Neighbors, Linear Regression, Multilayer Perceptron, and Support Vector Machinemodels and1641

identified Support Vector Machine as the best performing classifier for their experiment. Likewise,1642

Milosevic et al. [337] and Rahman et al. [397] employed multiple ml algorithms, respectively, and1643

found that Support Vector Machine offers the highest accuracy rate for training vulnerability detec-1644

tors. In contrast to the above studies, Ferenc et al. [146] showed that K Nearest Neighbors offers1645

the best performance for their dataset after experimenting with dnn, K Nearest Neighbors, Support1646

Vector Machine, Linear Regression, Decision Tree, Random Forest, and Naive Bayes. In order to find1647

out which is the best model for the swan tool, Piskachev et al. [383] evaluated the Support Vector1648

Machine, Naive Bayes, Bayes Network, Decision Tree, Stump, and Ripper. Their results pointed out the1649

Support Vector Machine as the best performing model to detect vulnerabilities. Similarly, Kronjee1650

et al. [238], Cui et al. [112], and Gupta et al. [172] compared different ml algorithms and found1651

Decision Tree and Random Forest as the best performing algorithms.1652

DL techniques: A large number of studies [543, 412, 231, 280, 48, 232, 327, 278, 448, 54] used dl1653

methods such as cnn, rnn, and ann to train models. In more details, Yang et al. [543] utilized the bp-1654

ann algorithm to train vulnerability detectors. For the project Achilles, Saccente et al. [412] used an1655

array of lstmmodels to train on data containing Java code snippets for a specific set of vulnerability1656

types. In another study, Kim et al. [231] suggested a dl framework that makes use of rnn models1657

to train vulnerability detectors. Specifically, the authors framework first feeds the code embed-1658

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 41 of 98

dings into a bi-lstm model to capture the feature semantics, then an attention layer is used to get1659

the vector weights, and, finally, passed into a dense layer to output if a code is safe or vulnerable.1660

Compared to the studies that examined traditional ml or dl algorithms, Zheng et al. [573] exam-1661

ined both of them. They used Random Forest, K Nearest Neighbors, Support Vector Machine, Linear1662

Regression among the traditional ml algorithms along with bi-lstm, gru, and cnn. There results indi-1663

cate bi-lstm as the best performing model. Lin et al. [280] developed a benchmarking framework1664

that can use bi-lstm, lstm, bi-gru, gru, dnn and Text-cnn, but can be extended to use more deep1665

learning models. Kim et al. [232] generating graphical semantics that reflect on code semantic fea-1666

tures and use them for Graph Convolutional Network to automatically identify and learn semantic1667

and extract features for vulnerability detection, while Shiqi et al. [448] created textual images and1668

fed them to Deep Belief Networks to classify malware.1669

3.11 Summary1670

In this section, we briefly summarize the usage ofml in a software engineering task involving source1671

code analysis. Figure 7 presents an overview of the pipeline that is typically used in a software1672

engineering task that uses ml.1673

Features

Trained ML
model

Dataset
preparation

ML model
training

Feature
extraction

Le
g

en
d

Training phase

Inference phase

Both phases

Software
repositories

?

Dataset (annotated
samples, source

code model, pairs of
bugs-fixes, etc.)

Downstream task outcome (code
embedding, identified smell, bugs, or

vulnerability, text summary, etc.)

Input sample (typically,
source code)

Figure 7. Overview of the software engineering task implementation pipeline using ML

Dataset preparation: Preparing a dataset is the first major activity in the pipeline. The activity1674

starts with identifying the source of required data, typically source code repositories. The activ-1675

ity involves selecting and downloading the required repositories, collecting supplementary data1676

(such as GitHub issues), create individual samples sometimes by combining information, and an-1677

notate samples. Depending upon the specific software engineering task at hand, these steps are1678

customized and extended.1679

The outcome of this activity is a dataset. Depending upon the context, the dataset may contain1680

information such as annotated code samples, source code model (e.g., ast), and pairs of buggy1681

code and fixed code.1682

Feature extraction: Performance of a ml model depends significantly on the provided kind and1683

quality of features. Various techniques are applied on the prepared dataset to extract the required1684

features that help the ml model perform well for the given task. Features may take variety of form1685

and format; for source code analysis applications, typical features include source code metrics,1686

source code tokens, their properties, and representation, changes in the code (code diff), vector1687

representation of code and text, dependency graph, and vector representation of ast, cfg, or ast1688

diff. Obviously, selection of the specific features depends on the downstream task.1689

ML model training: Selecting a ml model for a given task depends on many factors such as the1690

nature of the problem, the properties of training and input samples, and the expected output.1691

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 42 of 98

Below, we provide an analysis of employed ml models based on these factors.1692

• One of the factors that influence the choice of ml models is the chosen features and their1693

properties. Studies in the quality assessment category majorly relied on token-based features1694

and code quality metrics. Such features allowed studies in this categories to use traditional1695

ml models. Some authors applied dl models such as dnn when higher-granularity constructs1696

such as cfg and dfg are used as features.1697

• Similarly, the majority of the studies in testing category relied on code quality metrics. There-1698

fore, they have fixed size, fixed meaning (for each column) vectors to feed to a ml model.1699

With such inputs, traditional ml approaches, such as Random Forest and Support Vector Ma-1700

chine, work well. Other studies used a variation of ast or ast of the changes to generate the1701

embeddings. dl models including dnn and rnn-based models are used to first train a model1702

for embeddings. A typical ml classifier use the embeddings to classify samples in buggy or1703

benign.1704

• Typical output of a code representation study is embeddings representing code in the vec-1705

tor form. The semantics of the produced embeddings significantly depend on the selected1706

features. Studies in this domain identify this aspect and, hence, they are swiftly focused to1707

extract features that capture the relevant semantics; for example, path-based features en-1708

code the order among the tokens. The chosen ml model plays another important role to1709

generate effective embeddings. Given the success of rnn with text processing tasks, due to1710

its capability to identify a sequence or pattern, rnn-based models dominate this category.1711

• Program repair is typically a sequence to sequence transformation i.e., a sequence of buggy1712

code is the input and a sequence of fixed code is the output. Given the nature of the problem,1713

it is not surprising to observe that the majority of the studies in this category used Encoder-1714

Decoder-based models. rnn are considered a popular choice to realize Encoder-Decoder1715

models due to its capability to remember long sequences.1716

4. Datasets and Tools1717

For RO3, this section provides a consolidated summary of available datasets and tools that are1718

used by the studies considered in the survey. We carefully examined each selected study and1719

noted the resources (i.e., datasets and tools). We define the following criteria to include a resource1720

in our catalog.1721

• The referenced resource must have been used by at least one primary study.1722

• The referenced resource must be publicly available at the time of writing this article (Dec1723

2022).1724

• The resource provides bare-minimum usage instructions to build and execute (wherever ap-1725

plicable) and to use the artifact.1726

• The resource is useful either by providing an implementation of a ml technique, helping the1727

user to generate information/data which is further used by a ml technique, or by providing a1728

processed dataset that can be directly employed in a ml study.1729

Table 6 lists all the tools that we found in this exploration. Each resource is listed with it's1730

category, name and link to access the resource, number of citations (as of Dec 2022), and the time1731

when it was first introduced along with the time when the resource was last updated. We collected1732

the metadata about the resources manually by searching the digital libraries, repositories, and1733

authors' websites. The cases where we could not find the required information, are marked as1734

``–''. We also provide a short description of the resource.1735

Table 6. A list of tools useful for applying machine learning to source code

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 43 of 98

Category Name #Cita-

tion

Introd. Up-

dated

Description

Code
Representation

ncc [57] 234 Dec

2018

Aug

2021

Learns representations

of code semantics

Code2vec [32] 487 Jan

2019

Feb

2022

Generates distributed

representation of code

Code2seq [31] 536 May

2019

Jul 2022 Generates sequences

from structured repre-

sentation of code

Vector represen-

tation for coding

style [235]

3 Sep

2020

Jul 2022 Implements vector rep-

resentation of individual

coding style

CC2Vec [194] 69 Oct

2020

– Implements distributed

representation of code

changes

Autoen-

CODE [490]

75 – – Encodes source code

fragments into vector

representations

Graph-based

code model-

ing [28]

544 May

2018

May

2021

Generates code model-

ing with graphs

Vocabulary learn-

ing on code [115]

34 Jan

2019

– Generates an aug-

mented ast from Java

source code

User2code2vec [44] 29 Mar

2019

May

2019

Generates embeddings

for developers based on

distributed representa-

tion of code

Code Search

Deep Code

Search [168]

472 May

2018

May

2022

Searches code by using

code embeddings

FRAPT[208] 43 Jul 2017 – Searches relevant tuto-

rial fragments for APIs

Obfuscated-

code2vec [108]

23 Oct

2022

– Embeds Java Classes

with Code2vec

DeepTyper [192] 87 Oct

2018

Feb

2020

Annotates types for

JavaScript and Type-

Script

CallNN [285] 9 Oct

2019

– Implements a code sum-

marization approach by

using call dependencies

Neural-

CodeSum [9]

277 May

2020

Oct

2021

Implements a code sum-

marization method by

using transformers

Summariza-

tion_tf [443]

30 Jul 2019 – Summarizes code with

Extended Tree-lstm
CoaCor [548] 36 Jul 2019 May

2020

Explores the role of rich

annotation for code re-

trieval

1736

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 44 of 98

https://github.com/spcl/ncc
https://github.com/tech-srl/code2vec/
https://github.com/tech-srl/code2seq
http://zenodo.org/record/3647645
http://zenodo.org/record/3647645
http://zenodo.org/record/3647645
https://github.com/CC2Vec/CC2Vec
https://github.com/micheletufano/AutoenCODE
https://github.com/micheletufano/AutoenCODE
https://github.com/Microsoft/graph-based-code-modelling
https://github.com/Microsoft/graph-based-code-modelling
https://github.com/Microsoft/graph-based-code-modelling
https://github.com/mwcvitkovic/Open-Vocabulary-Learning-on-Source-Code-with-a-Graph-Structured-Cache--Code-Preprocessor
https://github.com/mwcvitkovic/Open-Vocabulary-Learning-on-Source-Code-with-a-Graph-Structured-Cache--Code-Preprocessor
https://github.com/dazcona/user2code2vec
https://github.com/guxd/deep-code-search/
https://github.com/guxd/deep-code-search/
http://oscar-lab.org/people/~jxzhang/FRAPT/
https://github.com/basedrhys/obfuscated-code2vec
https://github.com/basedrhys/obfuscated-code2vec
https://github.com/DeepTyper/DeepTyper
https://github.com/yorhaz40/CallNN
https://github.com/wasiahmad/NeuralCodeSum
https://github.com/wasiahmad/NeuralCodeSum
https://github.com/sh1doy/summarization_tf
https://github.com/sh1doy/summarization_tf
https://github.com/LittleYUYU/CoaCor

DeepCom [260] 102 Nov

2020

May

2021

Generates code com-

ments

Rencos [565] 79 Oct

2020

– Generates code sum-

mary by using both

neural and retrieval-

based techniques

codes [371] 121 Jul 2012 Jul 2016 Extractsmethoddescrip-

tion from StackOverflow

discussions

cfs – – – Summarizes code frag-

ments using svm and nb

Program Com-

prehension

tassal – – – Summarizes code using

autofolding

Change-

Scribe [109]

180 Dec

2014

Dec

2015

Generates commit mes-

sages

CodeInsight [399] 59 Nov

2015

May

2019

Recommends insightful

comments for source

code

CodeNN [204] 681 Aug

2016

May

2017

Summarizes code using

neural attention model

Code2Que [151] 25 Jul 2020 Aug

2021

Suggests improvements

in question titles from

mined code in Stack-

Overflow

bi-tbcnn [72] 34 Mar

2019

May

2019

Implements a bi-tbcnn
model to classify algo-

rithms

DeepSim [571] 139 Oct

2018

– Implements a dl ap-

proach to measure code

functional similarity

FCDetector [142] 48 Jul 2020 – Proposes a fine-grained

granularity of source

code for functionality

identification

LASCAD [35] 12 Aug

2018

– Categorizes software

into relevant categories

FunCom[252] 46 May

2019

– Summarizes code

Quality

Assessment

SonarQube – – – Analyzes code quality

svf [464] 317 Mar

2016

Jul 2022 Enables inter-

procedural dependency

analysis for llvm-based
languages

Designite [436] 101 Mar

2016

Jul 2023 Detects code smells and

computes quality met-

rics in Java and C# code

1737

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 45 of 98

https://github.com/xing-hu/EMSE-DeepCom
https://github.com/zhangj111/rencos
http://www.ing.unisannio.it/spanichella/pages/tools/CODES/
http://oscar-lab.org/CFS/
https://github.com/mast-group/tassal
https://github.com/SEMERU-WM/ChangeScribe
https://github.com/SEMERU-WM/ChangeScribe
https://github.com/masud-technope/CodeInsight-Replication-Package-SCAM2015
https://github.com/sriniiyer/codenn
https://github.com/beyondacm/Code2Que
https://github.com/bdqnghi/bi-tbcnn
https://github.com/parasol-aser/deepsim
https://github.com/shiyy123/FCDetector
https://github.com/doaa-altarawy/LASCAD
https://github.com/mcmillco/funcom
http://www.sonarqube.org/
https://github.com/SVF-tools/SVF
http://www.designite-tools.com

CloneCogni-

tion [339]

10 Nov

2018

May

2019

Proposes a ml frame-

work to validate code

clones

smad [52] 25 Mar

2020

Feb

2021

Implements smell detec-

tion (God class and Fea-

ture envy) using ml
Checkstyle – – – Checks for coding con-

vention in Java code

FindBugs – – – Implements a static anal-

ysis tool for Java

pmd – – – Finds common program-

ming flaws in Java and

six other languages

py-ccflex [356] 12 Mar

2017

Oct

2020

Mimics code metrics by

using ml
Deep learning

smells [437]

27 Jul 2021 Nov

2020

Implements dl (cnn, rnn,
and autoencoder-based

models) to identify four

smells

crec [558] 26 Nov

2018

– Recommends clones for

refactoring

ml for software

refactoring [40]

31 Sep

2020

– Recommends refactor-

ing by using ml
dtldp [90] 28 Aug

2019

– Implements a deep

transfer learning frame-

work

BugDetec-

tion [266]

66 Oct

2019

May

2021

Trains models for defect

prediction

DeepBugs [387] 210 Nov

2018

May

2021

Implements a frame-

work for learning name-

based bug detectors

Program

Synthesis

CoCoNuT [305] 97 Jul 2020 Sep

2021

Repairs Java programs

DeepFix [177] 498 Feb

2017

Dec

2017

Fixes common C errors

tranx [552] 187 Oct

2018

– Translates natural lan-

guage text to formal

meaning representa-

tions

TreeGen 83 Nov

2019

– Generates code

Testing

AppFlow [197] 47 Oct

2018

– Automates ui tests gen-

eration

DeepFuzz [293] 72 Jul 2019 Mar

2020

Grammar fuzzer that

generates C programs

Agilika [505] 7 Aug

2020

Mar

2022

Generates tests from ex-

ecution traces

1738

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 46 of 98

https://github.com/pseudoPixels/CloneCognition
https://github.com/pseudoPixels/CloneCognition
https://github.com/antoineBarbez/SMAD
https://checkstyle.sourceforge.io/
http://findbugs.sourceforge.net/findbugs2.htm
https://pmd.github.io/latest/
https://github.com/mochodek/py-ccflex
https://github.com/tushartushar/DeepLearningSmells
https://github.com/tushartushar/DeepLearningSmells
https://github.com/soniapku/CREC
https://github.com/refactoring-ai/predicting-refactoring-ml
https://github.com/refactoring-ai/predicting-refactoring-ml
https://zenodo.org/record/3373409
https://github.com/OOPSLA-2019-BugDetection
https://github.com/OOPSLA-2019-BugDetection
https://github.com/michaelpradel/DeepBugs
https://github.com/lin-tan/CoCoNut-Artifact
https://bitbucket.org/iiscseal/deepfix/src/master/
https://github.com/pcyin/tranX
https://github.com/zysszy/TreeGen
https://github.com/columbia/appflow
https://github.com/s3team/DeepFuzz
https://github.com/utting/agilkia

TestDescriber – – – Implements test case

summary generator and

evaluator

Randoop – – Jul 2022 Generates tests auto-

matic for Java code

Vulnerability

Analysis

wap [330] 9 Oct

2013

Nov

2015

Detects and corrects in-

put validation vulnerabil-

ities

swan[383] 8 Oct

2019

May

2022

Identifies vulnerabilities

vccfinder [379] 174 Oct

2015

May

2017

Finds potentially danger-

ous code in repositories

General

bert [123] 76,767 Oct

2018

Mar

2020

nlp pre-trained models

bc3 Annotation

Framework

– – – Annotates emails/con-

versations easily

JGibLDA – – – Implements Latent

Dirichlet Allocation

Stanford NLP

Parser

– – – A statistical NLP parser

srcML – – May

2022

Generates xml represen-
tation of sourcecode

CallGraph – Oct

2017

Oct

2018

Generates static and dy-

namic call graphs for

Java code

ML for program-

ming

– – – Offers various tools

such as JSNice, Nice2Pre-

dict, and debin

1739

The list of datasets found in our exploration is presented in Table 7. Similar to the Tools' table,1740

Table 7 lists each resource with its category, name and link to access the resource, number of1741

citations (as of July 2022), the time when it was first introduced along with the time when the1742

resource was last updated, and a short description of the resource.1743

Table 7. A list of datasets useful for applying machine learning to source code

Category Name #Cita-

tion

Introd. Up-

dated

Description

Code
Representation

Code2seq [32] 418 Jan

2019

Feb

2022

Sequences generated

from structured repre-

sentation of code

GHTorrent [163] 728 Oct

2013

Sep

2020

Meta-data from GitHub
repositories

Code
Completion

Neural Code Com-

pletion

148 Nov

2017

Sep

2019

Dataset and code for

code completion with

neural attention and

pointer networks

1744

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 47 of 98

https://www.ifi.uzh.ch/en/seal/people/panichella/tools/TestDescriber.html
https://github.com/randoop/randoop
http://awap.sourceforge.net/download.html
https://github.com/secure-software-engineering/swan
https://github.com/hperl/vccfinder
https://github.com/google-research/bert
http://www.cs.ubc.ca/nest/lci/bc3/framework.html
http://www.cs.ubc.ca/nest/lci/bc3/framework.html
http://jgibblda.sourceforge.net/
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml
http://www.srcml.org
https://github.com/gousiosg/java-callgraph
https://www.sri.inf.ethz.ch/research/plml
https://www.sri.inf.ethz.ch/research/plml
https://github.com/tech-srl/code2seq
https://ghtorrent.org/
https://github.com/jack57lee/neuralCodeCompletion
https://github.com/jack57lee/neuralCodeCompletion

Program

Synthesis

CoNaLa cor-

pus [553]

201 Dec

2018

Oct

2021

Python snippets and cor-

responding natural lan-

guage description

IntroClass [250] 299 Jul 2015 Feb

2016

Program repair dataset

of C programs

Code contest[270] 84 Dec

2022

– Code generation

dataset for AlphaCode

Program

Comprehension

Program com-

prehension

dataset [462]

61 May

2018

Aug

2021

Contains code for a pro-

gram comprehension

user survey

CommitGen [212] 116 – – Commit messages and

the diffs from 1,006 Java

projects

StaQC [547] 80 Nov

2019

Aug

2021

148K Python and 120K

sql question-code pairs

from StackOverflow

TL-CodeSum [199] 241 Feb

2019

Sep

2020

Dataset for code sum-

marization

DeepCom [198] – May

2018

– Dataset for code com-

pletion

Quality

Assessment

src-d datasets – – – Various labeled datasets

(commit messages, du-

plicates, DockerHub,

and Nuget)

Big-

CloneBench [472]

272 Dec

2014

Mar

2021

Known clones in the IJa-

Dataset source reposi-

tory

Multi-label

smells [169]

28 May

2020

– A dataset of 445 in-

stances of two code

smells and 82 metrics

Deep learning

smells [437]

27 Jul 2021 Nov

2020

A dataset of four smells

in tokenized form from

1,072 C# and 100 Java

repositories

ml for software

refactoring [40]

31 Nov

2019

– Dataset for applying ml
to recommend refactor-

ing

QScored [431] 11 Aug

2021

– Code smell and met-

rics dataset for more

than 86 thousand open-

source repositories

Landfill [363] 34 May

2015

– Code smell dataset with

public evaluation

KeepItSimple [139] 16 Jul 2018 – A dataset of linguistic

antipatterns of 1,753 in-

stances of source code

elements

1745

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 48 of 98

https://conala-corpus.github.io/
https://conala-corpus.github.io/
https://github.com/ProgramRepair/IntroClass
https://github.com/deepmind/code_contests
https://dijkstra.eecs.umich.edu/code-summary/
https://dijkstra.eecs.umich.edu/code-summary/
https://dijkstra.eecs.umich.edu/code-summary/
https://sjiang1.github.io/commitgen/
https://github.com/LittleYUYU/StackOverflow-Question-Code-Dataset
https://github.com/xing-hu/TL-CodeSum
https://github.com/xing-hu/DeepCom
https://github.com/src-d/datasets
https://github.com/clonebench/BigCloneBench
https://github.com/clonebench/BigCloneBench
https://github.com/thiru578/Multilabel-Dataset
https://github.com/thiru578/Multilabel-Dataset
https://github.com/tushartushar/DeepLearningSmells
https://github.com/tushartushar/DeepLearningSmells
https://zenodo.org/record/3547639
https://zenodo.org/record/3547639
https://zenodo.org/record/4468361
https://zenodo.org/record/6080422
https://github.com/Smfakhoury/SANER-2018-KeepItSimple-

Code smell

dataset [110]

8 Sept

2018

– A dataset of four code

smells

Defects4J [218] 858 Jul 2014 Jul 2022 Java reproducible bugs

promise [424] 434 – Jan

2021

Various datasets includ-

ing defect prediction

and cost estimation

BugDetection [266] 59 Oct

2019

May

2021

A bug prediction dataset

containing 4.973M

methods belonging to

92 different Java project

versions

DeepBugs [387] 155 Oct

2018

Apr

2021

A JavaScript code corpus

with 150K code snippets

dtldp [90] 28 Oct

2020

– Dataset for deep trans-

fer learning for defect

prediction

Testing
damt [345] 15 Aug

2019

Dec

2019

Metamorphic testing

dataset

Vulnerability

Analysis

wpscan – – – a php dataset for Word-

Press plugin vulnerabili-

ties

Genome [577] 2,898 Jul 2012 Dec

2015

1,200 malware samples

covering the majority of

existing malware fami-

lies

Juliet [63] 147 – – 81K synthetic C/C++

and Java programs with

known flaws

AndroZoo [29] – – – 15.7M apks from

Google's Play Store

trl [279] 108 Apr

2018

Jan

2019

Vulnerabilities in six C

programs

Draper vdisc [410] 479 Jul 2018 Nov

2018

1.27 million functions

mined from c and c++
applications

samate [62] – – – A set of known security

flaws from nist for c, c++,
and Java programs

jsVulner [146] 3 – – JavaScript Vulnerability

Analysis dataset

swan [383] 8 Jul 2019 Jul 2022 A Vulnerability Analysis

collection of 12 Java ap-

plications

Project-KB [384] 49 Aug

2019

– A Manually-Curated

dataset of fixes to

vulnerabilities of open-

source software

1746

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 49 of 98

https://dvscross.github.io/BadSmellsDetectionStudy/
https://dvscross.github.io/BadSmellsDetectionStudy/
https://github.com/rjust/defects4j
https://promise.site.uottawa.ca/SERepository/datasets-page.html
https://github.com/OOPSLA-2019-BugDetection/OOPSLA-2019-BugDetection
https://www.sri.inf.ethz.ch/js150
https://zenodo.org/record/3373409
https://github.com/aravi11/data-augmented-metamorphic-testing
https://wpscan.com/wordpresses
https://www.malgenomeproject.org/
https://www.nist.gov/publications/juliet-11-cc-and-java-test-suite
http://androzoo.uni.lu/lists
https://github.com/DanielLin1986/TransferRepresentationLearning
https://osf.io/d45bw/
samate.nist.gov/SRD/view.php
https://www.inf.u-szeged.hu/~ferenc/papers/JSVulnerability AnalysisDataSet/
https://github.com/secure-software-engineering/swan
https://github.com/SAP/project-kb/tree/master/MSR2019

General

GitHub Java Cor-

pus [22]

411 – – A large collection of Java

repositories

150k Python

dataset [401]

89 – – Contains parsed ast for

150K Python files

uci source code

dataset [298]

38 Apr

2010

Nov

2013

Various large scale

source code analysis

datasets

1747

5. Challenges and Perceived Deficiencies1748

The aim of this section is to focus on RO4 of the study by consolidating the perceived deficien-1749

cies, challenges, and opportunities in applying ml techniques to source code observed from the1750

selected studies. We document challenges or deficiencies mentioned in the considered studies1751

while studying and summarizing them. After the summarization phase was over, we consolidated1752

all the documented notes and prepared a summary that we present below.1753

• Standard datasets: ml is by nature data hungry; specifically, supervised learning methods1754

need a considerably large, cleaned, and annotated dataset. Though the size of available open1755

software engineering artifacts is increasing day by day, the lack of high-quality datasets (i.e.,1756

clean and reliably annotated) is one of the biggest challenges in the domain [153, 501, 157,1757

243, 132, 90, 52, 34, 487, 459, 483, 474, 160, 419, 290, 513, 440, 216]. Therefore, there is a1758

need for defining standardized datasets. Authors have cited low performance, poor gener-1759

alizability, and over-fitting due to poor dataset quality as the results of the lack of standard1760

validated high-quality datasets.1761

Mitigation: Although available datasets have increased, given a wide number of software engi-1762

neering tasks and variations in these tasks as well as the need of application-specific datasets,1763

the community still looks for application-specific, large, and high-quality datasets. To miti-1764

gate the issue, the community has focused on developing new datasets and making them1765

publicly available by organizing a dedicated track, for example, the msr data showcase track.1766

Dataset search engines such as the Google dataset search6, Zenodo7, and Kaggle datasets81767

could be used to search available datasets. Researchers may also propose generic datasets1768

that can serve multiple application domains or at least different variations of a software1769

engineering task. In addition, recent advancements in ml techniques such as active learn-1770

ing [389, 428, 405] may reduce the need of large datasets. Besides, the way the data is used1771

for model validation must be improved. For example, Jimenez et al. [216] showed that pre-1772

vious studies on vulnerability prediction trained predictive models by using perfect labelling1773

information (i.e., including future labels, as yet undiscovered vulnerabilities) and showed that1774

such an unrealistic labelling assumption can profoundly affect the scientific conclusions of a1775

study as the prediction performance worsen dramatically when one fully accounts for real-1776

istically available labelling. Such issues can be avoided by proposing standards for datasets1777

laying out the minimum expectations from any public dataset.1778

• Reproducibility and replicability: Reproducibility and replicability of any ml implementation1779

can be compromised by the factors discussed below.1780

– Insufficient information: Aspects such as the ml model, their hyper-parameters, data size1781

and ratio (of benign and faulty samples, for instance) are required to understand and1782

replicate the study. During our exploration, we found numerous studies that do not1783

present even the bare-minimum pieces of information to replicate and reproduce their1784

results. Likewise, Di Nucci et al. [127] carried out a detailed replication study and re-1785

6https://datasetsearch.research.google.com/
7https://zenodo.org/
8https://www.kaggle.com/datasets

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 50 of 98

https://groups.inf.ed.ac.uk/cup/javaGithub/
https://groups.inf.ed.ac.uk/cup/javaGithub/
https://www.sri.inf.ethz.ch/py150
https://www.sri.inf.ethz.ch/py150
https://www.ics.uci.edu/~lopes/datasets/
https://www.ics.uci.edu/~lopes/datasets/
https://datasetsearch.research.google.com/
https://zenodo.org/
https://www.kaggle.com/datasets

ported that the replicated results were lower by up to 90% compared to what was re-1786

ported in the original study.1787

– Handling of data imbalance: It is very common to have imbalanced datasets in software1788

engineering applications. Authors use techniques such as under-sampling and over-1789

sampling to overcome the challenge for training. However, test datasets must retain1790

the original sample ratio as found in the real world [127]; carrying out a performance1791

evaluation based on a balanced dataset is flawed. Obviously, the model will perform1792

significantly inferior when it is put at work in a real-world context. We noted many stud-1793

ies [8, 360, 169, 149, 148, 481, 114] that used balanced samples and often did not provide1794

the size and ratio of the training and testing dataset. Such improper handling of data1795

imbalance contributes to poor reproducibility.1796

Mitigation: The importance of reproducibility and replicability has been emphasized and un-1797

derstood by the software engineering community [286]. It has lead to a concrete artifact1798

evaluation mechanism adopted by leading software engineering conferences. For example,1799

fse artifact evaluation divides artifacts into five categories—functional, reusable, available, re-1800

sults reproduced, and results replicated.9 Such thorough evaluation encouraging software en-1801

gineering authors to produce high-quality documentation along with easily replicate experi-1802

ment results using their developed artifacts. In addition, efforts (such as model engineering1803

process [50]) are being made to support ml research reproducible and replicable. Finally,1804

identifying practices (such as assumptions related to hardware or dependencies) that may1805

hinder reproducibility improve reproducibility.1806

• Maturity in ml development: Development of ml systems are inherently different from tra-1807

ditional software development [513]. Phases of ml development are very exploratory in na-1808

ture and highly domain and problem dependent [513]. Identifying the most appropriate ml1809

model, their appropriate parameters, and configuration is largely driven by trial and error1810

manner [513, 45, 440]. Such an ad hoc and immature software development environment1811

poses a huge challenge to the community.1812

A related challenge is lack of tools and techniques for various phases and tasks involved in ml1813

software development. It includes effective tools for testing ml programs, ensuring that the1814

dataset are pre-processed adequately, debugging, and effective data management [513, 373,1815

155]. In addition, quality aspects such as explainability and trust-worthiness are new desired1816

quality aspects especially applicable for ml code where current practices and knowledge is1817

inadequate [155].1818

Mitigation: The ad-hoc trial and error ml development can be addressed by improved tools1819

and techniques. Even though the variety of ml development environments including man-1820

aged services such as aws Sagemaker and Google Notebooks attempt to make ml develop-1821

ment easier, they essentially do not offer much help in reducing the ad-hoc nature of the1822

development. A significant research push from the community would make ml development1823

relatively systematic and organized.1824

Recent advancements in the form of available tools not only help a developer to comprehend1825

the process but also let them effectively manage code, data, and experimental results. Exam-1826

ples of such tools and methods include darviz [420] for dl model visualization, MLFlow10 for1827

managing the ml lifecycle, and DeepFault [136] for identifying faults in dl programs. Such1828

efforts are expected to address the challenge.1829

Software Engineering for Machine Learning (SE4ML) brings another perspective to this issue1830

by bringing best practices from software engineering to ml development. Efforts in this di-1831

rection not only can make ml specific code maintainable and reliable but also can contribute1832

back to reproducibility and replicability.1833

9https://2021.esec-fse.org/track/fse-2021-artifacts
10https://mlflow.org/

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 51 of 98

https://2021.esec-fse.org/track/fse-2021-artifacts
https://mlflow.org/

• Data privacy and bias: Data hungry ml models are considered as good as the data they are1834

consuming. Data collection and preparation without data diversity leads to bias and unfair-1835

ness. Although we are witnessing more efforts to understand these sensitive aspects [566,1836

70], the present set ofmethods and practices lack the support to deal with data privacy issues1837

at large as well as data diversity and fairness [70, 155].1838

Mitigation: Data standards and best practices focusing on data privacy could be considered1839

as an evaluation criterion to mitigate issues concerning data privacy and bias. In addition,1840

mitigation of the issue is also linked with appropriate data pre-processing. Adoption of effec-1841

tive anonymization techniques and data quality assurance practices will further help us deal1842

with the concern.1843

• Effective feature engineering: Features represent the problem-specific knowledge in pieces1844

extracted from the data; the effectiveness of anymlmodel depends on the features fed into it.1845

Many studies identified the importance of effective feature engineering and the challenges in1846

gathering the same [487, 440, 373, 513, 203]. Specifically, software engineering researchers1847

have notified that identifying and extracting relevant features beyond code quality metrics is1848

non-trivial. For example, Ivers et al. [203] discusses that identifying features that establishes a1849

relationship among different code elements is a significant challenge for ml implementations1850

applied on source code analysis. Sharma et al. [437] have shown in their study that smell1851

detection using ml techniques perform poorly especially for design smells where multiple1852

code elements and their properties has to be observed.1853

Mitigation: Recent advancements in the field of large languagemodels (LLMs) trained on huge1854

corpus of code and text have significantly eased the task for researchers. For example, tasks1855

such as generating code embeddings and fine-tuning are supported natively by the LLMs.1856

However, encoding code features specific to downstream tasks is required often andmaking1857

the task easier requires a significant push from the research community.1858

• Skill gap: Wan et al. [513] identified that ml software development requires an extended set1859

of skills beyond software development including ml techniques, statistics, and mathematics1860

apart from the application domain. Similarly, Hall and Bowes [181] also reports a serious lack1861

of ml expertise in academic software engineering efforts. Other authors [373] have empha-1862

sized the importance of domain knowledge to design effective ml models.1863

Mitigation: Raising awareness and training sessions customized for the audience is consid-1864

ered the mitigation strategy for skill gap. Software engineering conferences organize tutori-1865

als that typically helps new researchers in the field. Availability of various hands-on courses1866

and lecture series from known universities also help bringing the gap.1867

• Hardware resources: Given the need of large training datasets andmany hidden layers, often1868

ml training requires high-end processing units (such as gpus and memory) [513, 155]. A user-1869

survey study [513] highlights the need to special hardware forml training. Such requirements1870

poses a challenge to researchers constrained with limited hardware resources.1871

Mitigation: ml development is resource hungry. Certain dl models (such as models based1872

on rnn) consume excessive hardware resources. The need for a large-scale hardware infras-1873

tructure is increasing with the increase in size of the captured features and the training sam-1874

ples. To address the challenge, infrastructure at institution and country level are maintained1875

in some countries; however, a generic and widely-applicable solution is needed for more1876

globally-inclusive research. Additionally, efforts in the direction of proposed pretrained mod-1877

els, various data pruning techniques, and effective preprocessing techniques are expected to1878

reduce the need of large infrastructure requirements.1879

6. Threats to validity1880

The first internal threats to validity relates to the concern of covering all the relevant articles in the1881

selected domain. It is prohibitively time consuming to search each machine learning technique1882

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 52 of 98

during the literature search. Tomitigate the concern, we defined our scope i.e., studies that use ml1883

techniques to solve a software engineering problem by analyzing source code. We also carefully1884

defined inclusion and exclusion criteria for selecting relevant studies. We carry out an extensive1885

manual search process on commonly used digital libraries with the help of a comprehensive set1886

of search terms. Furthermore, we identified a set of frequently occurring keywords in the articles1887

obtained initially for each category individually and carried out another round of literature search1888

with the help of newly identified keywords to enrich the search results.1889

Another threat to validity is the validity of data extraction and their interpretation applicable to1890

the generated summary andmetadata for each selected study. Wemitigated this threat by dividing1891

the task of summarization to all the authors and cross verifying the generated information. During1892

the manual summarization phase, metadata of each paper was reviewed by, at least, two authors.1893

External validity concerns the generalizability and reproducibility of the produced results and1894

observations. We provide a spreadsheet [438] containing all the metadata for all the articles se-1895

lected in each of the phases of article selection. In addition, inspired by previous surveys [27, 195],1896

we have developed a website11 as a living documentation and literature survey to facilitate easy navi-1897

gation, exploration, and extension. The website can be easily extended as the new studies emerge1898

in the domain; we have made the repository12 open-source to allow the community to extend the1899

living literature survey.1900

7. Conclusions1901

With the increasing presence of ml techniques in software engineering research, it has become1902

challenging to have a comprehensive overview of its advancements. This survey aims to provide1903

a detailed overview of the studies at the intersection of source code analysis and ml. We have se-1904

lected 494 studies spanning since 2011 covering 12 software engineering categories. We present a1905

comprehensive summary of the selected studies arranged in categories, subcategories, and their1906

corresponding involved steps. Also, the survey consolidates useful resources (datasets and tools)1907

that could ease the task for future studies. Finally, we present perceived challenges and opportuni-1908

ties in the field. The presented opportunities invite practitioners as well as researchers to propose1909

new methods, tools, and techniques to make the integration of ml techniques for software engi-1910

neering applications easy, flexible, and maintainable.1911

Looking ahead: In the recent past, we have witnessed game-changing advancements and all-1912

around adoption of Large language models (llms) [572]. llms such as GPTx [68, 396] and BERT1913

[123] learn generic language representation. They helpmlmodels performbetterwith limited train-1914

ing (i.e., fine-tuning) for a targeted downstream task. Universal contextual representation learned1915

from huge corpora (such as all available textbooks and publicly available articles on the internet)1916

makes them suitable for various natural language tasks.1917

Similarly, languagemodels for code, such as CodeBERT [145], CodeT5 [529], CodeGraphBERT [171],1918

and Llama 2 [485] are gaining popularity rapidly among software engineering researchers. Such1919

pre-trained models are trained with generic objectives with large corpora of code and natural lan-1920

guage. The models learn the syntax, semantics, and fundamental relationships among the con-1921

cepts and entities that make fine-tuning the model for a specific software engineering task easier1922

(in terms of training time). These models are not only extensively used in software engineering re-1923

search [300, 89, 294, 205, 381] already but also will be shaping the software engineering research1924

for the years to come.1925

Acknowledgements1926

We would like to thank Mootez Saad and Abhinav Reddy Mandli for helping us categorize the1927

ML techniques. We also thank anonymous reviewers who helped us significantly improve our1928

11http://www.tusharma.in/ML4SCA
12https://github.com/tushartushar/ML4SCA

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 53 of 98

http://www.tusharma.in/ML4SCA
https://github.com/tushartushar/ML4SCA

manuscript. Maria Kechagia and Federica Sarro are supported by the ERC grant no. 741278 (EPIC).1929

References1930

[1] Github archive, 2020. URL https://www.gharchive.org/.1931

[2] Raja Abbas, Fawzi Abdulaziz Albalooshi, and Mustafa Hammad. Software change proneness1932

prediction using machine learning. In 2020 International Conference on Innovation and Intelli-1933

gence for Informatics, Computing and Technologies (3ICT), pages 1--7. IEEE, 2020.1934

[3] Rabe Abdalkareem, Suhaib Mujahid, and Emad Shihab. A machine learning approach to1935

improve the detection of ci skip commits. IEEE Transactions on Software Engineering, 2020.1936

[4] Osama Abdeljaber, Onur Avci, Serkan Kiranyaz, Moncef Gabbouj, and Daniel J Inman. Real-1937

time vibration-based structural damage detection using one-dimensional convolutional neu-1938

ral networks. Journal of Sound and Vibration, 388:154--170, 2017.1939

[5] Mohammed Abuhamad, Tamer AbuHmed, Aziz Mohaisen, and DaeHun Nyang. Large-scale1940

and language-oblivious code authorship identification. In Proceedings of the 2018 ACM SIGSAC1941

Conference on Computer and Communications Security, CCS '18, page 101–114, 2018. ISBN1942

9781450356930. doi: 10.1145/3243734.3243738.1943

[6] Ibrahim Abunadi and Mamdouh Alenezi. Towards cross project vulnerability prediction in1944

open source web applications. In Proceedings of the The International Conference on Engineer-1945

ing & MIS 2015, ICEMIS '15, New York, NY, USA, 2015. Association for Computing Machinery.1946

ISBN 9781450334181. doi: 10.1145/2832987.2833051. URL https://doi.org/10.1145/2832987.1947

2833051.1948

[7] SimranAggarwal. Software code analysis using ensemble learning techniques. In Proceedings1949

of the International Conference on Advanced Information Science and System, AISS '19, 2019.1950

ISBN 9781450372916. doi: 10.1145/3373477.3373486.1951

[8] Mansi Agnihotri and Anuradha Chug. Application of machine learning algorithms for code1952

smell prediction using object-oriented softwaremetrics. Journal of Statistics and Management1953

Systems, 23(7):1159--1171, 2020. doi: 10.1080/09720510.2020.1799576.1954

[9] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. A transformer-based1955

approach for source code summarization. In Proceedings of the 58th Annual Meeting of the1956

Association for Computational Linguistics, pages 4998--5007, July 2020. doi: 10.18653/v1/2020.1957

acl-main.449.1958

[10] Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, and Sumit Gulwani. Com-1959

pilation error repair: For the student programs, from the student programs. In Proceedings1960

of the 40th International Conference on Software Engineering: Software Engineering Education1961

and Training, ICSE-SEET '18, page 78–87, 2018. ISBN 9781450356602. doi: 10.1145/3183377.1962

3183383.1963

[11] H. A. Al-Jamimi and M. Ahmed. Machine learning-based software quality prediction models:1964

State of the art. In 2013 International Conference on Information Science and Applications (ICISA),1965

pages 1--4, 2013. doi: 10.1109/ICISA.2013.6579473.1966

[12] Osama Al Qasem, Mohammed Akour, andMamdouh Alenezi. The influence of deep learning1967

algorithms factors in software fault prediction. IEEE Access, 8:63945--63960, 2020.1968

[13] A. AL-Shaaby, Hamoud I. Aljamaan, and M. Alshayeb. Bad smell detection using machine1969

learning techniques: A systematic literature review. Arabian Journal for Science and Engineer-1970

ing, 45:2341--2369, 2020.1971

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 54 of 98

https://www.gharchive.org/
https://doi.org/10.1145/2832987.2833051
https://doi.org/10.1145/2832987.2833051
https://doi.org/10.1145/2832987.2833051

[14] Amal Alazba and Hamoud Aljamaan. Code smell detection using feature selection and stack-1972

ing ensemble: An empirical investigation. Information and Software Technology, 138:106648,1973

2021.1974

[15] Saiqa Aleem, Luiz Fernando Capretz, Faheem Ahmed, et al. Comparative performance anal-1975

ysis of machine learning techniques for software bug detection. In Proceedings of the 4th1976

International Conference on Software Engineering and Applications, number 1, pages 71--79.1977

AIRCC Press Chennai, Tamil Nadu, India, 2015.1978

[16] Aldeida Aleti and Matias Martinez. E-apr: mapping the effectiveness of automated program1979

repair techniques. Empirical Software Engineering, 26(5):1--30, 2021.1980

[17] Sultan Alhusain, SimonCoupland, Robert John, andMaria Kavanagh. Towardsmachine learn-1981

ing based design pattern recognition. In 2013 13th UKWorkshop on Computational Intelligence1982

(UKCI), pages 244--251. IEEE, 2013.1983

[18] Nasir Ali, Zohreh Sharafi, Yann-Ga"�el Guéhéneuc, and Giuliano Antoniol. An empirical study1984

on the importance of source code entities for requirements traceability. Empirical software1985

engineering, 20(2):442--478, 2015.1986

[19] Huda Ali Alatwi, Tae Oh, Ernest Fokoue, and Bill Stackpole. Android malware detection using1987

category-based machine learning classifiers. In Proceedings of the 17th Annual Conference on1988

Information Technology Education, SIGITE '16, page 54–59, 2016. ISBN 9781450344524. doi:1989

10.1145/2978192.2978218.1990

[20] E. A. Alikhashashneh, R. R. Raje, and J. H. Hill. Using machine learning techniques to classify1991

and predict static code analysis tool warnings. In 2018 IEEE/ACS 15th International Conference1992

on Computer Systems and Applications (AICCSA), pages 1--8, 2018. doi: 10.1109/AICCSA.2018.1993

8612819.1994

[21] HamoudAljamaan and Amal Alazba. Software defect prediction using tree-based ensembles.1995

In Proceedings of the 16th ACM international conference on predictive models and data analytics1996

in software engineering, pages 1--10, 2020.1997

[22] M. Allamanis and C. Sutton. Mining source code repositories at massive scale using lan-1998

guagemodeling. In 2013 10thWorking Conference onMining Software Repositories (MSR), pages1999

207--216, 2013. doi: 10.1109/MSR.2013.6624029.2000

[23] Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive scale2001

using language modeling. In 10th Working Conference on Mining Software Repositories (MSR),2002

pages 207--216, 2013. doi: 10.1109/MSR.2013.6624029.2003

[24] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. Suggesting accurate2004

method and class names. In Proceedings of the 2015 10th Joint Meeting on Foundations of2005

Software Engineering, ESEC/FSE 2015, page 38–49, 2015. ISBN 9781450336758. doi: 10.1145/2006

2786805.2786849.2007

[25] Miltiadis Allamanis, Daniel Tarlow, Andrew D. Gordon, and Yi Wei. Bimodal modelling of2008

source code and natural language. In Proceedings of the 32nd International Conference on2009

International Conference on Machine Learning - Volume 37, ICML'15, page 2123–2132, 2015.2010

[26] Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network for2011

extreme summarization of source code, 2016.2012

[27] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. A survey of ma-2013

chine learning for big code and naturalness. ACM Comput. Surv., 51(4), July 2018. ISSN 0360-2014

0300. doi: 10.1145/3212695.2015

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 55 of 98

[28] Miltiadis Allamanis, Marc Brockschmidt, andMahmoud Khademi. Learning to represent pro-2016

grams with graphs. In International Conference on Learning Representations, 2018.2017

[29] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. Androzoo: Collecting2018

millions of android apps for the research community. In Proceedings of the 13th International2019

Conference on Mining Software Repositories, MSR '16, pages 468--471, 2016. ISBN 978-1-4503-2020

4186-8. doi: 10.1145/2901739.2903508.2021

[30] Uri Alon,Meital Zilberstein, Omer Levy, and Eran Yahav. A general path-based representation2022

for predicting program properties. SIGPLAN Not., 53(4):404–419, June 2018. ISSN 0362-1340.2023

doi: 10.1145/3296979.3192412.2024

[31] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from2025

structured representations of code, 2019.2026

[32] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2vec: Learning distributed2027

representations of code. Proc. ACM Program. Lang., 3(POPL), January 2019. doi: 10.1145/2028

3290353.2029

[33] Dalal Alrajeh, Jeff Kramer, Alessandra Russo, and Sebastian Uchitel. Automated support2030

for diagnosis and repair. Commun. ACM, 58(2):65–72, January 2015. ISSN 0001-0782. doi:2031

10.1145/2658986.2032

[34] Hadeel Alsolai and Marc Roper. A systematic literature review of machine learning tech-2033

niques for software maintainability prediction. Information and Software Technology, 119:2034

106214, 2020. ISSN 0950-5849. doi: https://doi.org/10.1016/j.infsof.2019.106214.2035

[35] Doaa Altarawy, Hossameldin Shahin, Ayat Mohammed, and Na Meng. Lascad: Language-2036

agnostic software categorization and similar application detection. Journal of Systems and2037

Software, 142:21--34, 2018.2038

[36] H. Alves, B. Fonseca, and N. Antunes. Experimenting machine learning techniques to predict2039

vulnerabilities. In 2016 Seventh Latin-American Symposium on Dependable Computing (LADC),2040

pages 151--156, 2016. doi: 10.1109/LADC.2016.32.2041

[37] Boukhdhir Amal, Marouane Kessentini, Slim Bechikh, Josselin Dea, and Lamjed Ben Said. On2042

the use of machine learning and search-based software engineering for ill-defined fitness2043

function: A case study on software refactoring. In Claire Le Goues and Shin Yoo, editors,2044

Search-Based Software Engineering, pages 31--45, 2014. ISBN 978-3-319-09940-8.2045

[38] L. Amorim, E. Costa, N. Antunes, B. Fonseca, and M. Ribeiro. Experience report: Evaluating2046

the effectiveness of decision trees for detecting code smells. In 2015 IEEE 26th International2047

Symposium on Software Reliability Engineering (ISSRE), pages 261--269, 2015. doi: 10.1109/2048

ISSRE.2015.7381819.2049

[39] L. A. Amorim, M. F. Freitas, A. Dantas, E. F. de Souza, C. G. Camilo-Junior, and W. S. Martins.2050

A new word embedding approach to evaluate potential fixes for automated program repair.2051

In 2018 International Joint Conference on Neural Networks (IJCNN), pages 1--8, 2018. doi: 10.2052

1109/IJCNN.2018.8489079.2053

[40] M. Aniche, E. Maziero, R. Durelli, and V. Durelli. The effectiveness of supervised machine2054

learning algorithms in predicting software refactoring. IEEE Transactions on Software Engi-2055

neering, pages 1--1, 2020. doi: 10.1109/TSE.2020.3021736.2056

[41] "�Omer Faruk Arar andK"�urşat Ayan. Software defect prediction using cost-sensitive neural2057

network. Applied Soft Computing, 33:263--277, 2015.2058

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 56 of 98

[42] Francesca Arcelli Fontana and Marco Zanoni. Code smell severity classification using ma-2059

chine learning techniques. Knowledge-Based Systems, 128:43 -- 58, 2017. ISSN 0950-7051.2060

doi: https://doi.org/10.1016/j.knosys.2017.04.014.2061

[43] Vamsi Krishna Aribandi, Lov Kumar, Lalita Bhanu Murthy Neti, and Aneesh Krishna. Predic-2062

tion of refactoring-prone classes using ensemble learning. In Tom Gedeon, Kok Wai Wong,2063

andMinho Lee, editors, Neural Information Processing, pages 242--250, 2019. ISBN 978-3-030-2064

36802-9.2065

[44] David Azcona, Piyush Arora, I-Han Hsiao, and Alan Smeaton. User2code2vec: Embeddings2066

for profiling students based on distributional representations of source code. In Proceedings2067

of the 9th International Conference on Learning Analytics & Knowledge, LAK19, page 86–95,2068

2019. ISBN 9781450362566. doi: 10.1145/3303772.3303813.2069

[45] Muhammad Ilyas Azeem, Fabio Palomba, Lin Shi, and Qing Wang. Machine learning tech-2070

niques for code smell detection: A systematic literature review and meta-analysis. Informa-2071

tion and Software Technology, 108:115 -- 138, 2019. ISSN 0950-5849. doi: https://doi.org/10.2072

1016/j.infsof.2018.12.009.2073

[46] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. Getafix: Learning to2074

fix bugs automatically. Proc. ACM Program. Lang., 3(OOPSLA), October 2019. doi: 10.1145/2075

3360585.2076

[47] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.2077

Deepcoder: Learning to write programs. CoRR, abs/1611.01989, 2016.2078

[48] Xinbo Ban, Shigang Liu, Chao Chen, and Caslon Chua. A performance evaluation of deep-2079

learnt features for software vulnerability detection. Concurrency and Computation: Practice2080

and Experience, 31(19):e5103, 2019. ISSN 1532-0634. doi: 10.1002/cpe.5103. URL https:2081

//onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5103. _eprint: https://onlinelibrary.wiley.com/-2082

doi/pdf/10.1002/cpe.5103.2083

[49] U. Bandara and G. Wijayarathna. A machine learning based tool for source code plagiarism2084

detection. International Journal of Machine Learning and Computing, pages 337--343, 2011.2085

[50] Vishnu Banna, Akhil Chinnakotla, Zhengxin Yan, Anirudh Vegesana, Naveen Vivek, Kruthi Kr-2086

ishnappa, Wenxin Jiang, Yung-Hsiang Lu, George K. Thiruvathukal, and James C. Davis. An2087

experience report on machine learning reproducibility: Guidance for practitioners and ten-2088

sorflow model garden contributors. CoRR, abs/2107.00821, 2021. URL https://arxiv.org/abs/2089

2107.00821.2090

[51] A. Bansal, S. Haque, and C. McMillan. Project-level encoding for neural source code sum-2091

marization of subroutines. In 2021 2021 IEEE/ACM 29th International Conference on Pro-2092

gram Comprehension (ICPC) (ICPC), pages 253--264. IEEE Computer Society, may 2021. doi:2093

10.1109/ICPC52881.2021.00032.2094

[52] Antoine Barbez, Foutse Khomh, and Yann-Gaël Guéhéneuc. A machine-learning based en-2095

semble method for anti-patterns detection. Journal of Systems and Software, 161:110486,2096

2020. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2019.110486.2097

[53] Antonio Valerio Miceli Barone and Rico Sennrich. A parallel corpus of python functions and2098

documentation strings for automated code documentation and code generation, 2017.2099

[54] Canan Batur Şahin and Laith Abualigah. A novel deep learning-based feature selection2100

model for improving the static analysis of vulnerability detection. Neural Comput. Appl.,2101

33(20):14049–14067, oct 2021. ISSN 0941-0643. doi: 10.1007/s00521-021-06047-x. URL2102

https://doi.org/10.1007/s00521-021-06047-x.2103

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 57 of 98

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5103
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5103
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5103
https://arxiv.org/abs/2107.00821
https://arxiv.org/abs/2107.00821
https://arxiv.org/abs/2107.00821
https://doi.org/10.1007/s00521-021-06047-x

[55] Gabriele Bavota, Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea De Lucia.2104

Methodbook: Recommending move method refactorings via relational topic models. IEEE2105

Transactions on Software Engineering, 40(7):671--694, 2013.2106

[56] Gabriele Bavota, Malcom Gethers, Rocco Oliveto, Denys Poshyvanyk, and Andrea de Lucia.2107

Improving software modularization via automated analysis of latent topics and dependen-2108

cies. ACM Transactions on Software Engineering and Methodology (TOSEM), 23(1):1--33, 2014.2109

[57] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. Neural code comprehension:2110

A learnable representation of code semantics. In Proceedings of the 32nd International Con-2111

ference on Neural Information Processing Systems, NIPS'18, page 3589–3601, 2018.2112

[58] G. P. Bhandari and R. Gupta. Machine learning based software fault prediction utilizing2113

source code metrics. In 2018 IEEE 3rd International Conference on Computing, Communication2114

and Security (ICCCS), pages 40--45, 2018. doi: 10.1109/CCCS.2018.8586805.2115

[59] Sahil Bhatia, Pushmeet Kohli, and Rishabh Singh. Neuro-symbolic program corrector for2116

introductory programming assignments. In Proceedings of the 40th International Conference2117

on Software Engineering, ICSE '18, page 60–70, 2018. ISBN 9781450356381. doi: 10.1145/2118

3180155.3180219.2119

[60] Pavol Bielik, Veselin Raychev, and Martin T. Vechev. Program synthesis for character level2120

language modeling. In ICLR, 2017.2121

[61] Z. Bilgin, M. A. Ersoy, E. U. Soykan, E. Tomur, P. Çomak, and L. Karaçay. Vulnerability pre-2122

diction from source code using machine learning. IEEE Access, 8:150672--150684, 2020. doi:2123

10.1109/ACCESS.2020.3016774.2124

[62] Paul E. Black. Software Assurance with SAMATE Reference Dataset, Tool Standards, and2125

Studies. October 2007.2126

[63] Frederick Boland and Paul Black. The juliet 1.1 c/c++ and java test suite. (45), 2012-10-012127

2012. doi: https://doi.org/10.1109/MC.2012.345.2128

[64] David Bowes, Tracy Hall, Mark Harman, Yue Jia, Federica Sarro, and FanWu. Mutation-aware2129

fault prediction. In Proceedings of the 25th International Symposium on Software Testing and2130

Analysis, ISSTA 2016, page 330–341, New York, NY, USA, 2016. Association for Computing2131

Machinery. ISBN 9781450343909. doi: 10.1145/2931037.2931039. URL https://doi.org/10.2132

1145/2931037.2931039.2133

[65] Ronyérison Braga, Pedro Santos Neto, Ricardo Rabêlo, José Santiago, and Matheus Souza.2134

A machine learning approach to generate test oracles. In Proceedings of the XXXII Brazilian2135

Symposium on Software Engineering, SBES '18, page 142–151, 2018. ISBN 9781450365031.2136

doi: 10.1145/3266237.3266273.2137

[66] Alexander Brauckmann, Andrés Goens, Sebastian Ertel, and Jeronimo Castrillon. Compiler-2138

based graph representations for deep learning models of code. In Proceedings of the 29th2139

International Conference on Compiler Construction, CC 2020, page 201–211, 2020. ISBN2140

9781450371209.2141

[67] Marc Brockschmidt, Miltiadis Allamanis, Alexander L. Gaunt, and Oleksandr Polozov. Gen-2142

erative code modeling with graphs. In International Conference on Learning Representations,2143

2019.2144

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 58 of 98

https://doi.org/10.1145/2931037.2931039
https://doi.org/10.1145/2931037.2931039
https://doi.org/10.1145/2931037.2931039

[68] TomB. Brown, BenjaminMann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,2145

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel2146

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.2147

Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz2148

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec2149

Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.2150

URL https://arxiv.org/abs/2005.14165.2151

[69] Marcel Bruch, MartinMonperrus, andMiraMezini. Learning from examples to improve code2152

completion systems. In Proceedings of the 7th Joint Meeting of the European Software Engineer-2153

ing Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering,2154

ESEC/FSE '09, page 213–222, 2009. ISBN 9781605580012. doi: 10.1145/1595696.1595728.2155

[70] Yuriy Brun and Alexandra Meliou. Software fairness. In Proceedings of the 2018 26th ACM2156

Joint Meeting on European Software Engineering Conference and Symposium on the Foundations2157

of Software Engineering, ESEC/FSE 2018, page 754–759, New York, NY, USA, 2018. Association2158

for Computing Machinery. ISBN 9781450355735. doi: 10.1145/3236024.3264838. URL https:2159

//doi.org/10.1145/3236024.3264838.2160

[71] N. D. Q. Bui, Y. Yu, and L. Jiang. Bilateral dependency neural networks for cross-language2161

algorithm classification. In 2019 IEEE 26th International Conference on Software Analysis, Evolu-2162

tion and Reengineering (SANER), pages 422--433, 2019. doi: 10.1109/SANER.2019.8667995.2163

[72] Nghi D. Q. Bui, Lingixao Jiang, and Y. Yu. Cross-language learning for program classification2164

using bilateral tree-based convolutional neural networks. In AAAI Workshops, 2018.2165

[73] L. Butgereit. Using machine learning to prioritize automated testing in an agile environment.2166

In 2019 Conference on Information Communications Technology and Society (ICTAS), pages 1--6,2167

2019. doi: 10.1109/ICTAS.2019.8703639.2168

[74] Cheng-Hao Cai, Jing Sun, andGillian Dobbie. Automatic b-model repair usingmodel checking2169

and machine learning. Automated Software Engineering, 26(3), January 2019. ISSN 1573-7535.2170

doi: 10.1007/s10515-019-00264-4.2171

[75] Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures gen-2172

eralize via recursion. CoRR, abs/1704.06611, 2017.2173

[76] José P Cambronero and Martin C Rinard. Al: autogenerating supervised learning programs.2174

Proceedings of the ACM on Programming Languages, 3(OOPSLA):1--28, 2019.2175

[77] Frederico Luiz Caram, Bruno Rafael De Oliveira Rodrigues, Amadeu Silveira Campanelli, and2176

Fernando Silva Parreiras. Machine learning techniques for code smells detection: a system-2177

atic mapping study. International Journal of Software Engineering and Knowledge Engineering,2178

29(02):285--316, 2019.2179

[78] Frederico Luiz Caram, Bruno Rafael De Oliveira Rodrigues, Amadeu Silveira Campanelli, and2180

Fernando Silva Parreiras. Machine learning techniques for code smells detection: A system-2181

atic mapping study. International Journal of Software Engineering and Knowledge Engineering,2182

29(02):285--316, 2019. doi: 10.1142/S021819401950013X.2183

[79] Silvio Cesare, Yang Xiang, and Jun Zhang. Clonewise -- detecting package-level clones us-2184

ing machine learning. In Tanveer Zia, Albert Zomaya, Vijay Varadharajan, and Morley Mao,2185

editors, Security and Privacy in Communication Networks, pages 197--215, 2013. ISBN 978-3-2186

319-04283-1.2187

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 59 of 98

https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/3236024.3264838
https://doi.org/10.1145/3236024.3264838
https://doi.org/10.1145/3236024.3264838

[80] M. Cetiner and O. K. Sahingoz. A comparative analysis for machine learning based software2188

defect prediction systems. In 2020 11th International Conference on Computing, Communica-2189

tion and Networking Technologies (ICCCNT), pages 1--7, 2020. doi: 10.1109/ICCCNT49239.2020.2190

9225352.2191

[81] E. Ceylan, F. O. Kutlubay, and A. B. Bener. Software defect identification usingmachine learn-2192

ing techniques. In 32nd EUROMICRO Conference on Software Engineering and Advanced Appli-2193

cations (EUROMICRO'06), pages 240--247, 2006. doi: 10.1109/EUROMICRO.2006.56.2194

[82] S. Chakraborty, Y. Ding, M. Allamanis, and B. Ray. Codit: Code editing with tree-based neural2195

models. IEEE Transactions on Software Engineering, pages 1--1, 2020. doi: 10.1109/TSE.2020.2196

3020502.2197

[83] Saikat Chakraborty and Baishakhi Ray. On multi-modal learning of editing source code. In2198

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages2199

443--455, 2021. doi: 10.1109/ASE51524.2021.1003_Chakraborty2021.2200

[84] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray. Codit: Code2201

editing with tree-based neural models. IEEE Transactions on Software Engineering, 48(4):2202

1385--1399, 2022. doi: 10.1109/TSE.2020.3020502.2203

[85] VENKATA UDAYA B. CHALLAGULLA, FAROKH B. BASTANI, I-LING YEN, and RAYMOND A.2204

PAUL. Empirical assessment of machine learning based software defect prediction tech-2205

niques. International Journal on Artificial Intelligence Tools, 17(02):389--400, 2008. doi:2206

10.1142/S0218213008003947.2207

[86] T. Chappelly, C. Cifuentes, P. Krishnan, and S. Gevay. Machine learning for finding bugs:2208

An initial report. In 2017 IEEE Workshop on Machine Learning Techniques for Software Quality2209

Evaluation (MaLTeSQuE), pages 21--26, 2017. doi: 10.1109/MALTESQUE.2017.7882012.2210

[87] Shivam Chaturvedi, Amrita Chaturvedi, Anurag Tiwari, and Shalini Agarwal. Design pattern2211

detection using machine learning techniques. In 2018 7th International Conference on Relia-2212

bility, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO), pages 1--6.2213

IEEE, 2018.2214

[88] Deyu Chen, Xiang Chen, Hao Li, Junfeng Xie, and Yanzhou Mu. Deepcpdp: Deep learning2215

based cross-project defect prediction. IEEE Access, 7:184832--184848, 2019.2216

[89] Fuxiang Chen, Mijung Kim, and Jaegul Choo. Novel natural language summarization of2217

program code via leveraging multiple input representations. In Findings of the Association2218

for Computational Linguistics: EMNLP 2021, pages 2510--2520, Punta Cana, Dominican Re-2219

public, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.2220

findings-emnlp.214. URL https://aclanthology.org/2021.findings-emnlp.214.2221

[90] Jinyin Chen, Keke Hu, Yue Yu, Zhuangzhi Chen, Qi Xuan, Yi Liu, and Vladimir Filkov. Soft-2222

ware visualization and deep transfer learning for effective software defect prediction. In2223

Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, ICSE '20,2224

page 578–589, 2020. ISBN 9781450371216. doi: 10.1145/3377811.3380389.2225

[91] Long Chen, Wei Ye, and Shikun Zhang. Capturing source code semantics via tree-based2226

convolution over api-enhanced ast. In Proceedings of the 16th ACM International Conference2227

on Computing Frontiers, CF '19, page 174–182, 2019. ISBN 9781450366854. doi: 10.1145/2228

3310273.3321560.2229

[92] M. Chen and X.Wan. Neural comment generation for source codewith auxiliary code classifi-2230

cation task. In 2019 26th Asia-Pacific Software Engineering Conference (APSEC), pages 522--529,2231

2019. doi: 10.1109/APSEC48747.2019.00076.2232

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 60 of 98

https://aclanthology.org/2021.findings-emnlp.214

[93] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared2233

Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large2234

language models trained on code. arXiv preprint arXiv:2107.03374, 2021.2235

[94] Q. Chen and M. Zhou. A neural framework for retrieval and summarization of source code.2236

In 2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE), pages2237

826--831, 2018. doi: 10.1145/3238147.3240471.2238

[95] Qiuyuan Chen, Han Hu, and Zhaoyi Liu. Code summarization with abstract syntax tree. In2239

Tom Gedeon, Kok Wai Wong, and Minho Lee, editors, Neural Information Processing, pages2240

652--660, 2019. ISBN 978-3-030-36802-9.2241

[96] Qiuyuan Chen, Xin Xia, Han Hu, David Lo, and Shanping Li. Why my code summarization2242

model does not work: Code comment improvement with category prediction. ACM Transac-2243

tions on Software Engineering and Methodology (TOSEM), 30(2):1--29, 2021.2244

[97] Xinyun Chen, Chang Liu, Richard Shin, Dawn Song, and Mingcheng Chen. Latent attention2245

for if-then program synthesis. In Proceedings of the 30th International Conference on Neural2246

Information Processing Systems, NIPS'16, page 4581–4589, 2016. ISBN 9781510838819.2247

[98] Xinyun Chen, Chang Liu, and Dawn Song. Towards synthesizing complex programs from2248

input-output examples, 2018.2249

[99] Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In2250

International Conference on Learning Representations, 2019.2251

[100] Yang Chen, Andrew E. Santosa, Ang Ming Yi, Abhishek Sharma, Asankhaya Sharma, and2252

David Lo. A Machine Learning Approach for Vulnerability Curation, page 32–42. Associa-2253

tion for Computing Machinery, New York, NY, USA, 2020. ISBN 9781450375177. URL2254

https://doi.org/10.1145/3379597.3387461.2255

[101] Z. Chen, S. J. Kommrusch, M. Tufano, L. Pouchet, D. Poshyvanyk, and M. Monperrus. Se-2256

quencer: Sequence-to-sequence learning for end-to-end program repair. IEEE Transactions2257

on Software Engineering, pages 1--1, 2019. doi: 10.1109/TSE.2019.2940179.2258

[102] Boris Chernis and Rakesh Verma. Machine learningmethods for software vulnerability detec-2259

tion. In Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics,2260

IWSPA '18, page 31–39, 2018. ISBN 9781450356343. doi: 10.1145/3180445.3180453.2261

[103] S. R. Chidamber andC. F. Kemerer. Ametrics suite for object oriented design. IEEE Transaction2262

of Software Engineering, 20(6):476--493, June 1994. ISSN 0098-5589. doi: 10.1109/32.295895.2263

[104] Y. Choi, S. Kim, and J. Lee. Source code summarization using attention-based keyword mem-2264

ory networks. In 2020 IEEE International Conference on Big Data and Smart Computing (Big-2265

Comp), pages 564--570, 2020. doi: 10.1109/BigComp48618.2020.00011.2266

[105] Garvit Rajesh Choudhary, Sandeep Kumar, Kuldeep Kumar, Alok Mishra, and Cagatay Catal.2267

Empirical analysis of change metrics for software fault prediction. Computers & Electrical2268

Engineering, 67:15--24, 2018.2269

[106] A. Chug and S. Dhall. Software defect prediction using supervised learning algorithm and un-2270

supervised learning algorithm. In Confluence 2013: The Next Generation Information Technol-2271

ogy Summit (4th International Conference), pages 173--179, 2013. doi: 10.1049/cp.2013.2313.2272

[107] C. J. Clemente, F. Jaafar, and Y.Malik. Is predicting software security bugs using deep learning2273

better than the traditionalmachine learning algorithms? In 2018 IEEE International Conference2274

on Software Quality, Reliability and Security (QRS), pages 95--102, 2018. doi: 10.1109/QRS.2018.2275

00023.2276

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 61 of 98

https://doi.org/10.1145/3379597.3387461

[108] Rhys Compton, Eibe Frank, Panos Patros, and Abigail Koay. Embedding java classes with2277

code2vec: Improvements from variable obfuscation. In Proceedings of the 17th Interna-2278

tional Conference on Mining Software Repositories, MSR '20, page 243–253, 2020. ISBN2279

9781450375177. doi: 10.1145/3379597.3387445.2280

[109] Luis Fernando Cortes-Coy, M. Vásquez, Jairo Aponte, and D. Poshyvanyk. On automatically2281

generating commit messages via summarization of source code changes. 2014 IEEE 14th2282

International Working Conference on Source Code Analysis and Manipulation, pages 275--284,2283

2014.2284

[110] Daniel Cruz, Amanda Santana, and Eduardo Figueiredo. Detecting bad smells with machine2285

learning algorithms: an empirical study. In Proceedings of the 3rd International Conference on2286

Technical Debt, pages 31--40, 2020.2287

[111] Daniel Cruz, Amanda Santana, and Eduardo Figueiredo. Detecting bad smells with machine2288

learning algorithms: An empirical study. In Proceedings of the 3rd International Conference on2289

Technical Debt, TechDebt '20, page 31–40, 2020. ISBN 9781450379601. doi: 10.1145/3387906.2290

3388618.2291

[112] Jianfeng Cui, LixinWang, Xin Zhao, andHongyi Zhang. Towards predictive analysis of android2292

vulnerability using statistical codes andmachine learning for iot applications. Computer Com-2293

munications, 155:125 -- 131, 2020. ISSN 0140-3664. doi: https://doi.org/10.1016/j.comcom.2294

2020.02.078.2295

[113] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather. Synthesizing benchmarks for predic-2296

tivemodeling. In 2017 IEEE/ACM International Symposium on Code Generation and Optimization2297

(CGO), pages 86--99, 2017. doi: 10.1109/CGO.2017.7863731.2298

[114] Warteruzannan Soyer Cunha, Guisella Angulo Armijo, and Valter Vieira de Camargo. Inves-2299

tigating Non-Usually Employed Features in the Identification of Architectural Smells: A Machine2300

Learning-Based Approach, page 21–30. 2020. ISBN 9781450387545.2301

[115] Milan Cvitkovic, Badal Singh, and Animashree Anandkumar. Open vocabulary learning on2302

source code with a graph-structured cache. volume 97 of Proceedings of Machine Learning2303

Research, pages 1475--1485, 09--15 Jun 2019.2304

[116] Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John Grundy, Aditya Ghose,2305

Taeksu Kim, and Chul-Joo Kim. Lessons learned from using a deep tree-based model for2306

software defect prediction in practice. In Proceedings of the 16th International Conference on2307

Mining Software Repositories, MSR '19, page 46–57, 2019. doi: 10.1109/MSR.2019.00017.2308

[117] Marco D'Ambros, Michele Lanza, and Romain Robbes. Evaluating defect prediction ap-2309

proaches: A benchmark and an extensive comparison. Empirical Softw. Engg., 17(4–5):2310

531–577, August 2012. ISSN 1382-3256. doi: 10.1007/s10664-011-9173-9. URL https:2311

//doi.org/10.1007/s10664-011-9173-9.2312

[118] Altino Dantas, Eduardo F. de Souza, Jerffeson Souza, and Celso G. Camilo-Junior. Code nat-2313

uralness to assist search space exploration in search-based program repair methods. In2314

Shiva Nejati and Gregory Gay, editors, Search-Based Software Engineering, pages 164--170,2315

2019. ISBN 978-3-030-27455-9.2316

[119] Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Annibale Panichella, and Sebastiano2317

Panichella. Labeling source code with information retrieval methods: an empirical study.2318

Empirical Software Engineering, 19(5):1383--1420, 2014.2319

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 62 of 98

https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9

[120] Karel Dejaeger, Thomas Verbraken, and Bart Baesens. Toward comprehensible software2320

fault prediction models using bayesian network classifiers. IEEE Transactions on Software2321

Engineering, 39(2):237--257, 2012.2322

[121] Jacob Devlin, Rudy Bunel, Rishabh Singh, Matthew Hausknecht, and Pushmeet Kohli. Neural2323

program meta-induction. In Proceedings of the 31st International Conference on Neural Infor-2324

mation Processing Systems, NIPS'17, page 2077–2085, 2017. ISBN 9781510860964.2325

[122] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed,2326

and Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In Proceedings2327

of the 34th International Conference on Machine Learning - Volume 70, ICML'17, page 990–998,2328

2017.2329

[123] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of2330

deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,2331

2018.2332

[124] Seema Dewangan, Rajwant Singh Rao, Alok Mishra, and Manjari Gupta. A novel approach2333

for code smell detection: An empirical study. IEEE Access, 9:162869--162883, 2021.2334

[125] N. Dhamayanthi and B. Lavanya. Improvement in software defect prediction outcome using2335

principal component analysis and ensemble machine learning algorithms. In Jude Hemanth,2336

Xavier Fernando, Pavel Lafata, and Zubair Baig, editors, International Conference on Intelligent2337

Data Communication Technologies and Internet of Things (ICICI) 2018, pages 397--406, 2019.2338

ISBN 978-3-030-03146-6.2339

[126] Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, and Federica Sarro. A genetic algo-2340

rithm to configure support vectormachines for predicting fault-prone components. InDanilo2341

Caivano, Markku Oivo, Maria Teresa Baldassarre, and Giuseppe Visaggio, editors, Product-2342

Focused Software Process Improvement, pages 247--261, Berlin, Heidelberg, 2011. Springer2343

Berlin Heidelberg. ISBN 978-3-642-21843-9.2344

[127] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lucia. Detecting code2345

smells using machine learning techniques: Are we there yet? In 2018 IEEE 25th International2346

Conference on Software Analysis, Evolution and Reengineering (SANER), pages 612--621, 2018.2347

doi: 10.1109/SANER.2018.8330266.2348

[128] Li Dong and Mirella Lapata. Language to logical form with neural attention. In Proceedings of2349

the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),2350

pages 33--43, Berlin, Germany, August 2016. Association for Computational Linguistics. doi:2351

10.18653/v1/P16-1004. URL https://aclanthology.org/P16-1004.2352

[129] Geanderson Esteves Dos Santos, E. Figueiredo, Adriano Veloso, Markos Viggiato, and N. Zi-2353

viani. Understanding machine learning software defect predictions. Autom. Softw. Eng., 27:2354

369--392, 2020.2355

[130] Xiaoning Du, Bihuan Chen, Yuekang Li, Jianmin Guo, Yaqin Zhou, Yang Liu, and Yu Jiang.2356

Leopard: Identifying vulnerable code for vulnerability assessment through programmetrics.2357

In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages 60--71,2358

2019. doi: 10.1109/ICSE.2019.00024.2359

[131] YaoDu, XiaoqingWang, and JunfengWang. A static androidmalicious codedetectionmethod2360

based on multi-source fusion. Sec. and Commun. Netw., 8(17):3238–3246, nov 2015. ISSN2361

1939-0114. doi: 10.1002/sec.1248. URL https://doi.org/10.1002/sec.1248.2362

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 63 of 98

https://aclanthology.org/P16-1004
https://doi.org/10.1002/sec.1248

[132] V. H. S. Durelli, R. S. Durelli, S. S. Borges, A. T. Endo, M. M. Eler, D. R. C. Dias, and M. P.2363

Guimarães. Machine learning applied to software testing: A systematic mapping study. IEEE2364

Transactions on Reliability, 68(3):1189--1212, 2019. doi: 10.1109/TR.2019.2892517.2365

[133] Ashish Kumar Dwivedi, Anand Tirkey, Ransingh Biswajit Ray, and Santanu Kumar Rath. Soft-2366

ware design pattern recognition using machine learning techniques. In 2016 ieee region 102367

conference (tencon), pages 222--227. IEEE, 2016.2368

[134] Vasiliki Efstathiou and Diomidis Spinellis. Semantic source code models using identifier em-2369

beddings. In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories2370

(MSR), pages 29--33, 2019. doi: 10.1109/MSR.2019.00015.2371

[135] Yuval Elovici, Asaf Shabtai, Robert Moskovitch, Gil Tahan, and Chanan Glezer. Applying ma-2372

chine learning techniques for detection of malicious code in network traffic. In Joachim2373

Hertzberg, Michael Beetz, and Roman Englert, editors, KI 2007: Advances in Artificial Intelli-2374

gence, pages 44--50, 2007. ISBN 978-3-540-74565-5.2375

[136] Hasan Ferit Eniser, Simos Gerasimou, and Alper Sen. Deepfault: Fault localization for deep2376

neural networks. In Reiner Hähnle andWil van der Aalst, editors, Fundamental Approaches to2377

Software Engineering, pages 171--191, Cham, 2019. Springer International Publishing. ISBN2378

978-3-030-16722-6.2379

[137] Ezgi Erturk and Ebru Akcapinar Sezer. A comparison of some soft computing methods for2380

software fault prediction. Expert systems with applications, 42(4):1872--1879, 2015.2381

[138] Khashayar Etemadi and Martin Monperrus. On the relevance of cross-project learning with2382

nearest neighbours for commit message generation. In Proceedings of the IEEE/ACM 42nd2383

International Conference on Software Engineering Workshops, pages 470--475, 2020.2384

[139] S. Fakhoury, V. Arnaoudova, C. Noiseux, F. Khomh, and G. Antoniol. Keep it simple: Is deep2385

learning good for linguistic smell detection? In 2018 IEEE 25th International Conference on2386

Software Analysis, Evolution and Reengineering (SANER), pages 602--611, 2018. doi: 10.1109/2387

SANER.2018.8330265.2388

[140] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus.2389

Fine-grained and accurate source code differencing. In Proceedings of the 29th ACM/IEEE In-2390

ternational Conference on Automated Software Engineering, ASE '14, page 313–324, 2014. ISBN2391

9781450330138. doi: 10.1145/2642937.2642982.2392

[141] Guisheng Fan, XuyangDiao, Huiqun Yu, Kang Yang, and Liqiong Chen. Deep semantic feature2393

learning with embedded static metrics for software defect prediction. In 2019 26th Asia-2394

Pacific Software Engineering Conference (APSEC), pages 244--251. IEEE, 2019.2395

[142] Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. Functional code clone2396

detection with syntax and semantics fusion learning. In Proceedings of the 29th ACM SIGSOFT2397

International Symposium on Software Testing and Analysis, ISSTA 2020, page 516–527, 2020.2398

ISBN 9781450380089. doi: 10.1145/3395363.3397362.2399

[143] Yong Fang, Yongcheng Liu, Cheng Huang, and Liang Liu. FastEmbed: Predicting vulnerabil-2400

ity exploitation possibility based on ensemble machine learning algorithm. PLoS ONE, 15:2401

e0228439, February 2020. doi: 10.1371/journal.pone.0228439. URL https://ui.adsabs.harvard.2402

edu/abs/2020PLoSO..1528439F. ADS Bibcode: 2020PLoSO..1528439F.2403

[144] Ebubeogu Amarachukwu Felix and Sai Peck Lee. Integrated approach to software defect2404

prediction. IEEE Access, 5:21524--21547, 2017.2405

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 64 of 98

https://ui.adsabs.harvard.edu/abs/2020PLoSO..1528439F
https://ui.adsabs.harvard.edu/abs/2020PLoSO..1528439F
https://ui.adsabs.harvard.edu/abs/2020PLoSO..1528439F

[145] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,2406

Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model for program-2407

ming andnatural languages. In Findings of the Association for Computational Linguistics: EMNLP2408

2020, pages 1536--1547, Online, November 2020. Association for Computational Linguistics.2409

doi: 10.18653/v1/2020.findings-emnlp.139. URL https://aclanthology.org/2020.findings-emnlp.2410

139.2411

[146] Rudolf Ferenc, Péter Hegedundefineds, Péter Gyimesi, Gábor Antal, Dénes Bán, and Tibor2412

Gyimóthy. Challenging machine learning algorithms in predicting vulnerable javascript func-2413

tions. In Proceedings of the 7th International Workshop on Realizing Artificial Intelligence Syner-2414

gies in Software Engineering, RAISE '19, page 8–14, 2019. doi: 10.1109/RAISE.2019.00010.2415

[147] Fabio Ferreira, Luciana Lourdes Silva, and Marco Tulio Valente. Software engineering meets2416

deep learning: A mapping study. In Proceedings of the 36th Annual ACM Symposium on Applied2417

Computing, SAC '21, page 1542–1549, New York, NY, USA, 2021. Association for Computing2418

Machinery. ISBN 9781450381048. doi: 10.1145/3412841.3442029. URL https://doi.org/10.2419

1145/3412841.3442029.2420

[148] F. Fontana, M. Mäntylä, Marco Zanoni, and Alessandro Marino. Comparing and experiment-2421

ing machine learning techniques for code smell detection. Empirical Software Engineering, 21:2422

1143--1191, 2015.2423

[149] F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mäntylä. Code smell detection: Towards a2424

machine learning-based approach. In 2013 IEEE International Conference on Software Mainte-2425

nance, pages 396--399, 2013.2426

[150] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-2427

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-2428

sional. Part of the Addison-Wesley Professional Computing Series series., 1st edi-2429

tion, October 1994. ISBN 978-0-201-63361-0. URL https://www.informit.com/store/2430

design-patterns-elements-of-reusable-object-oriented-9780201633610?w_ptgrevartcl=Grady+2431

Booch+on+Design+Patterns%2c+OOP%2c+and+Coffee_1405569.2432

[151] Zhipeng Gao, Xin Xia, John Grundy, David Lo, and Yuan-Fang Li. Generating question titles for2433

stack overflow frommined code snippets. ACM Trans. Softw. Eng. Methodol., 29(4), September2434

2020. ISSN 1049-331X. doi: 10.1145/3401026.2435

[152] Lobna Ghadhab, Ilyes Jenhani, Mohamed Wiem Mkaouer, and Montassar Ben Messaoud.2436

Augmenting commit classification by using fine-grained source code changes and a pre-2437

trained deep neural languagemodel. Information and Software Technology, 135:106566, 2021.2438

[153] SeyedMohammadGhaffarian andHamid Reza Shahriari. Software vulnerability analysis and2439

discovery using machine-learning and data-mining techniques: A survey. ACM Comput. Surv.,2440

50(4), August 2017. ISSN 0360-0300. doi: 10.1145/3092566.2441

[154] Sirine Gharbi, Mohamed Wiem Mkaouer, Ilyes Jenhani, and Montassar Ben Messaoud. On2442

the classification of software change messages using multi-label active learning. In Proceed-2443

ings of the 34th ACM/SIGAPP Symposium on Applied Computing, pages 1760--1767, 2019.2444

[155] Görkem Giray. A software engineering perspective on engineering machine learning sys-2445

tems: State of the art and challenges. Journal of Systems and Software, 180:111031, 2021.2446

ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2021.111031. URL https://www.sciencedirect.2447

com/science/article/pii/S016412122100128X.2448

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 65 of 98

https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139
https://doi.org/10.1145/3412841.3442029
https://doi.org/10.1145/3412841.3442029
https://doi.org/10.1145/3412841.3442029
https://www.informit.com/store/design-patterns-elements-of-reusable-object-oriented-9780201633610?w_ptgrevartcl=Grady+Booch+on+Design+Patterns%2c+OOP%2c+and+Coffee_1405569
https://www.informit.com/store/design-patterns-elements-of-reusable-object-oriented-9780201633610?w_ptgrevartcl=Grady+Booch+on+Design+Patterns%2c+OOP%2c+and+Coffee_1405569
https://www.informit.com/store/design-patterns-elements-of-reusable-object-oriented-9780201633610?w_ptgrevartcl=Grady+Booch+on+Design+Patterns%2c+OOP%2c+and+Coffee_1405569
https://www.informit.com/store/design-patterns-elements-of-reusable-object-oriented-9780201633610?w_ptgrevartcl=Grady+Booch+on+Design+Patterns%2c+OOP%2c+and+Coffee_1405569
https://www.informit.com/store/design-patterns-elements-of-reusable-object-oriented-9780201633610?w_ptgrevartcl=Grady+Booch+on+Design+Patterns%2c+OOP%2c+and+Coffee_1405569
https://www.sciencedirect.com/science/article/pii/S016412122100128X
https://www.sciencedirect.com/science/article/pii/S016412122100128X
https://www.sciencedirect.com/science/article/pii/S016412122100128X

[156] P. Godefroid, H. Peleg, and R. Singh. Learn fuzz: Machine learning for input fuzzing. In 20172449

32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 50--59,2450

2017. doi: 10.1109/ASE.2017.8115618.2451

[157] Iker Gondra. Applying machine learning to software fault-proneness prediction. Journal of2452

Systems and Software, 81(2):186 -- 195, 2008. ISSN 0164-1212. doi: https://doi.org/10.1016/j.2453

jss.2007.05.035. Model-Based Software Testing.2454

[158] R. Gopalakrishnan, P. Sharma, M. Mirakhorli, and M. Galster. Can latent topics in source2455

code predict missing architectural tactics? In 2017 IEEE/ACM 39th International Conference on2456

Software Engineering (ICSE), pages 15--26, 2017. doi: 10.1109/ICSE.2017.10.2457

[159] Raghuram Gopalakrishnan, Palak Sharma, Mehdi Mirakhorli, and Matthias Galster. Can la-2458

tent topics in source code predict missing architectural tactics? In 2017 IEEE/ACM 39th Inter-2459

national Conference on Software Engineering (ICSE), pages 15--26. IEEE, 2017.2460

[160] D. Gopinath, K.Wang, J. Hua, and S. Khurshid. Repairing intricate faults in codeusingmachine2461

learning and path exploration. In 2016 IEEE International Conference on Software Maintenance2462

and Evolution (ICSME), pages 453--457, 2016. doi: 10.1109/ICSME.2016.75.2463

[161] Divya Gopinath, Sarfraz Khurshid, Diptikalyan Saha, and Satish Chandra. Data-guided re-2464

pair of selection statements. In Proceedings of the 36th International Conference on Software2465

Engineering, ICSE 2014, page 243–253, 2014. ISBN 9781450327565. doi: 10.1145/2568225.2466

2568303.2467

[162] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated program repair. Com-2468

mun. ACM, 62(12):56–65, November 2019. ISSN 0001-0782. doi: 10.1145/3318162.2469

[163] Georgios Gousios. The GHTorrent dataset and tool suite. In Proceedings of the 10th Working2470

Conference on Mining Software Repositories, MSR '13, pages 233--236, Piscataway, NJ, USA,2471

2013. IEEE Press. ISBN 978-1-4673-2936-1. URL http://dl.acm.org/citation.cfm?id=2487085.2472

2487132.2473

[164] G. Grano, T. V. Titov, S. Panichella, and H. C. Gall. How high will it be? using machine learning2474

models to predict branch coverage in automated testing. In 2018 IEEE Workshop on Machine2475

Learning Techniques for Software Quality Evaluation (MaLTeSQuE), pages 19--24, 2018. doi: 10.2476

1109/MALTESQUE.2018.8368454.2477

[165] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid speech recognition with2478

deep bidirectional lstm. In Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE2479

Workshop on, pages 273--278. IEEE, 2013.2480

[166] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen Schmidhuber.2481

Lstm: A search space odyssey. IEEE transactions on neural networks and learning systems, 282482

(10):2222--2232, 2017.2483

[167] Hanna Grodzicka, Arkadiusz Ziobrowski, Zofia Łakomiak, Michał Kawa, and Lech Madeyski.2484

Code Smell Prediction Employing Machine Learning Meets Emerging Java Language Constructs,2485

pages 137--167. 2020. ISBN 978-3-030-34706-2. doi: 10.1007/978-3-030-34706-2_8.2486

[168] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search. In 2018 IEEE/ACM 40th2487

International Conference on Software Engineering (ICSE), pages 933--944, 2018. doi: 10.1145/2488

3180155.3180167.2489

[169] Thirupathi Guggulothu and S. A. Moiz. Code smell detection using multi-label classification2490

approach. Software Quality Journal, pages 1--24, 2020.2491

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 66 of 98

http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2487085.2487132

[170] Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data manipulation using2492

examples. Commun. ACM, 55(8):97–105, aug 2012. ISSN 0001-0782. doi: 10.1145/2240236.2493

2240260.2494

[171] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,2495

Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations2496

with data flow. arXiv preprint arXiv:2009.08366, 2020.2497

[172] Aakanshi Gupta, Bharti Suri, Vijay Kumar, and Pragyashree Jain. Extracting rules for vulner-2498

abilities detection with static metrics using machine learning. International Journal of System2499

Assurance Engineering and Management, 12:65--76, 2021.2500

[173] Aakanshi Gupta, Bharti Suri, and Lakshay Lamba. Tracing bad code smells behavior using2501

machine learning with software metrics. Smart and Sustainable Intelligent Systems, pages2502

245--257, 2021.2503

[174] H. Gupta, L. Kumar, and L. B. M. Neti. An empirical framework for code smell prediction using2504

extreme learning machine*. In 2019 9th Annual Information Technology, Electromechanical2505

Engineering and Microelectronics Conference (IEMECON), pages 189--195, 2019. doi: 10.1109/2506

IEMECONX.2019.8877082.2507

[175] Himanshu Gupta, Abhiram Anand Gulanikar, Lov Kumar, and Lalita Bhanu Murthy Neti. Em-2508

pirical analysis on effectiveness of nlp methods for predicting code smell. In International2509

Conference on Computational Science and Its Applications, pages 43--53. Springer, 2021.2510

[176] Himanshu Gupta, Tanmay Girish Kulkarni, Lov Kumar, Lalita BhanuMurthy Neti, and Aneesh2511

Krishna. An empirical study on predictability of software code smell using deep learningmod-2512

els. In International Conference on Advanced Information Networking and Applications, pages2513

120--132. Springer, 2021.2514

[177] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. DeepFix: Fixing common c2515

language errors by deep learning. In AAAI, pages 1345--1351, 2017.2516

[178] Rahul Gupta, Aditya Kanade, and Shirish Shevade. Deep reinforcement learning for syntactic2517

error repair in student programs. Proceedings of the AAAI Conference on Artificial Intelligence,2518

33:930--937, 07 2019. doi: 10.1609/aaai.v33i01.3301930.2519

[179] Mouna Hadj-Kacem and Nadia Bouassida. A hybrid approach to detect code smells using2520

deep learning. In ENASE, pages 137--146, 2018.2521

[180] Mouna Hadj-Kacem and Nadia Bouassida. Deep representation learning for code smells2522

detection using variational auto-encoder. In 2019 International Joint Conference on Neural2523

Networks (IJCNN), pages 1--8. IEEE, 2019.2524

[181] T. Hall andD. Bowes. The state ofmachine learningmethodology in software fault prediction.2525

In 2012 11th International Conference on Machine Learning and Applications, volume 2, pages2526

308--313, 2012. doi: 10.1109/ICMLA.2012.226.2527

[182] Maurice H. Halstead. Elements of Software Science (Operating and Programming Systems Series).2528

USA, 1977. ISBN 0444002057.2529

[183] Muhammad Hammad, "�Onder Babur, Hamid Abdul Basit, and Mark van den Brand. Clone-2530

advisor: recommending code tokens and clonemethodswith deep learning and information2531

retrieval. PeerJ Computer Science, 7:e737, 2021.2532

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 67 of 98

[184] AwniHammouri, MustafaHammad,MohammadAlnabhan, and FatimaAlsarayrah. Software2533

bug prediction using machine learning approach. International Journal of Advanced Computer2534

Science and Applications, 9, 01 2018. doi: 10.14569/IJACSA.2018.090212.2535

[185] S. Han, D. R. Wallace, and R. C. Miller. Code completion from abbreviated input. In 20092536

IEEE/ACM International Conference on Automated Software Engineering, pages 332--343, 2009.2537

doi: 10.1109/ASE.2009.64.2538

[186] Sangmok Han, David R. Wallace, and Robert C. Miller. Code completion of multiple keywords2539

from abbreviated input. Automated Software Engg., 18(3–4):363–398, December 2011. ISSN2540

0928-8910. doi: 10.1007/s10515-011-0083-2.2541

[187] Hazim Hanif, Mohd Hairul Nizam Md Nasir, Mohd Faizal Ab Razak, Ahmad Firdaus, and2542

Nor Badrul Anuar. The rise of software vulnerability: Taxonomy of software vulnerabili-2543

ties detection and machine learning approaches. Journal of Network and Computer Appli-2544

cations, 179:103009, April 2021. ISSN 1084-8045. doi: 10.1016/j.jnca.2021.103009. URL2545

https://www.sciencedirect.com/science/article/pii/S1084804521000369.2546

[188] Sakib Haque, Alexander LeClair, Lingfei Wu, and Collin McMillan. Improved automatic sum-2547

marization of subroutines via attention to file context. In Proceedings of the 17th International2548

Conference on Mining Software Repositories, pages 300--310, 2020.2549

[189] Sakib Haque, Aakash Bansal, Lingfei Wu, and Collin McMillan. Action word prediction for2550

neural source code summarization. In 2021 IEEE International Conference on Software Analysis,2551

Evolution and Reengineering (SANER), pages 330--341. IEEE, 2021.2552

[190] Mark Harman, Syed Islam, Yue Jia, Leandro L. Minku, Federica Sarro, and Komsan Srivisut.2553

Less ismore: Temporal fault predictive performance overmultiple hadoop releases. In Claire2554

Le Goues and Shin Yoo, editors, Search-Based Software Engineering, pages 240--246, Cham,2555

2014. Springer International Publishing. ISBN 978-3-319-09940-8.2556

[191] Vincent J. Hellendoorn and Premkumar Devanbu. Are deep neural networks the best choice2557

for modeling source code? In Proceedings of the 2017 11th Joint Meeting on Foundations of2558

Software Engineering, ESEC/FSE 2017, page 763–773, 2017. ISBN 9781450351058. doi: 10.2559

1145/3106237.3106290.2560

[192] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. Deep learning2561

type inference. ESEC/FSE 2018, page 152–162, 2018. ISBN 9781450355735. doi: 10.1145/2562

3236024.3236051.2563

[193] Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. Machine-learning-guided selectively unsound2564

static analysis. In Proceedings of the 39th International Conference on Software Engineering, ICSE2565

'17, page 519–529, 2017. ISBN 9781538638682. doi: 10.1109/ICSE.2017.54.2566

[194] Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. Cc2vec: Distributed representations2567

of code changes. In Proceedings of the ACM/IEEE 42nd International Conference on Software2568

Engineering, ICSE '20, page 518–529, 2020. ISBN 9781450371216. doi: 10.1145/3377811.2569

3380361.2570

[195] Max Hort, Maria Kechagia, Federica Sarro, and Mark Harman. A survey of performance2571

optimization for mobile applications. IEEE Transactions on Software Engineering (TSE), 2021.2572

[196] Yung-Tsung Hou, Yimeng Chang, Tsuhan Chen, Chi-Sung Laih, and Chia-Mei Chen. Malicious2573

web content detection by machine learning. Expert Systems with Applications, 37(1):55 -- 60,2574

2010. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2009.05.023.2575

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 68 of 98

https://www.sciencedirect.com/science/article/pii/S1084804521000369

[197] Gang Hu, Linjie Zhu, and Junfeng Yang. Appflow: Using machine learning to synthesize ro-2576

bust, reusable ui tests. In Proceedings of the 2018 26th ACM Joint Meeting on European Software2577

Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE2578

2018, page 269–282, 2018. ISBN 9781450355735. doi: 10.1145/3236024.3236055.2579

[198] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin. Deep code comment generation. In 2018 IEEE/ACM 26th2580

International Conference on Program Comprehension (ICPC), pages 200--20010, 2018.2581

[199] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. Summarizing source code with trans-2582

ferred api knowledge. In Proceedings of the Twenty-Seventh International Joint Conference on2583

Artificial Intelligence, IJCAI-18, pages 2269--2275. International Joint Conferences on Artificial2584

Intelligence Organization, 7 2018. doi: 10.24963/ijcai.2018/314.2585

[200] Yuan Huang, Xinyu Hu, Nan Jia, Xiangping Chen, Zibin Zheng, and Xiapu Luo. Commtpst:2586

Deep learning source code for commenting positions prediction. Journal of Systems and Soft-2587

ware, 170:110754, 2020. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2020.110754.2588

[201] Yuan Huang, Shaohao Huang, Huanchao Chen, Xiangping Chen, Zibin Zheng, Xiapu Luo, Nan2589

Jia, Xinyu Hu, and Xiaocong Zhou. Towards automatically generating block comments for2590

code snippets. Information and Software Technology, 127:106373, 2020.2591

[202] Yasir Hussain, Zhiqiu Huang, Yu Zhou, and Senzhang Wang. Codegru: Context-aware deep2592

learning with gated recurrent unit for source code modeling. Information and Software Tech-2593

nology, 125:106309, 2020. ISSN 0950-5849. doi: https://doi.org/10.1016/j.infsof.2020.106309.2594

[203] J. Ivers, I. Ozkaya, and R. L. Nord. Can ai close the design-code abstraction gap? In 2019 34th2595

IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW), pages2596

122--125, 2019. doi: 10.1109/ASEW.2019.00041.2597

[204] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing source2598

code using a neural attention model. In Proceedings of the 54th Annual Meeting of the Asso-2599

ciation for Computational Linguistics (Volume 1: Long Papers), pages 2073--2083, August 2016.2600

doi: 10.18653/v1/P16-1195.2601

[205] Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph Gonzalez, and Ion Stoica. Con-2602

trastive code representation learning. In Proceedings of the 2021 Conference on Empirical2603

Methods in Natural Language Processing. Association for Computational Linguistics, 2021. doi:2604

10.18653/v1/2021.emnlp-main.482.2605

[206] Shivani Jain and Anju Saha. Improving performancewith hybrid feature selection and ensem-2606

ble machine learning techniques for code smell detection. Science of Computer Programming,2607

212:102713, 2021.2608

[207] T. Ji, J. Pan, L. Chen, and X.Mao. Identifying supplementary bug-fix commits. In 2018 IEEE 42nd2609

Annual Computer Software and Applications Conference (COMPSAC), volume 01, pages 184--193,2610

2018. doi: 10.1109/COMPSAC.2018.00031.2611

[208] He Jiang, Jingxuan Zhang, Zhilei Ren, and Tao Zhang. An unsupervised approach for discov-2612

ering relevant tutorial fragments for apis. In 2017 IEEE/ACM 39th International Conference on2613

Software Engineering (ICSE), pages 38--48. IEEE, 2017.2614

[209] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. Shaping program2615

repair space with existing patches and similar code. In Proceedings of the 27th ACM SIGSOFT2616

International Symposium on Software Testing and Analysis, ISSTA 2018, page 298–309, 2018.2617

ISBN 9781450356992. doi: 10.1145/3213846.3213871.2618

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 69 of 98

[210] Lin Jiang, Hui Liu, and He Jiang. Machine learning based recommendation of method names:2619

How far are we. In Proceedings of the 34th IEEE/ACM International Conference on Automated2620

Software Engineering, ASE '19, page 602–614, 2019. ISBN 9781728125084. doi: 10.1109/ASE.2621

2019.00062.2622

[211] Nan Jiang, Thibaud Lutellier, and Lin Tan. Cure: Code-aware neural machine translation2623

for automatic program repair. In 2021 IEEE/ACM 43rd International Conference on Software2624

Engineering (ICSE), pages 1161--1173. IEEE, 2021.2625

[212] S. Jiang, A. Armaly, and C. McMillan. Automatically generating commit messages from diffs2626

using neural machine translation. In 2017 32nd IEEE/ACM International Conference on Auto-2627

mated Software Engineering (ASE), pages 135--146, 2017. doi: 10.1109/ASE.2017.8115626.2628

[213] Shuyao Jiang. Boosting neural commit message generation with code semantic analysis. In2629

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages2630

1280--1282. IEEE, 2019.2631

[214] Siyuan Jiang and Collin McMillan. Towards automatic generation of short summaries of com-2632

mits. In 2017 IEEE/ACM 25th International Conference on Program Comprehension (ICPC), pages2633

320--323. IEEE, 2017.2634

[215] Gong Jie, Kuang Xiao-Hui, and Liu Qiang. Survey on software vulnerability analysis method2635

based on machine learning. In 2016 IEEE First International Conference on Data Science in2636

Cyberspace (DSC), pages 642--647, 2016. doi: 10.1109/DSC.2016.33.2637

[216] Matthieu Jimenez, Renaud Rwemalika, Mike Papadakis, Federica Sarro, Yves Le Traon, and2638

Mark Harman. The importance of accounting for real-world labelling when predicting soft-2639

ware vulnerabilities. In Proceedings of the 2019 27th ACM Joint Meeting on European Soft-2640

ware Engineering Conference and Symposium on the Foundations of Software Engineering, ES-2641

EC/FSE 2019, page 695–705, New York, NY, USA, 2019. Association for Computing Machinery.2642

ISBN 9781450355728. doi: 10.1145/3338906.3338941. URL https://doi.org/10.1145/3338906.2643

3338941.2644

[217] Xiao-Yuan Jing, Shi Ying, Zhi-Wu Zhang, Shan-ShanWu, and Jin Liu. Dictionary learning based2645

software defect prediction. In Proceedings of the 36th international conference on software2646

engineering, pages 414--423, 2014.2647

[218] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: A database of existing faults to2648

enable controlled testing studies for java programs. In Proceedings of the 2014 International2649

Symposium on Software Testing and Analysis, ISSTA 2014, page 437–440, New York, NY, USA,2650

2014. Association for Computing Machinery. ISBN 9781450326452. doi: 10.1145/2610384.2651

2628055. URL https://doi.org/10.1145/2610384.2628055.2652

[219] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning and eval-2653

uating contextual embedding of source code. In Hal Daumé III and Aarti Singh, editors,2654

Proceedings of the 37th International Conference on Machine Learning, volume 119 of Pro-2655

ceedings of Machine Learning Research, pages 5110--5121. PMLR, 13--18 Jul 2020. URL https:2656

//proceedings.mlr.press/v119/kanade20a.html.2657

[220] Hong Jin Kang, Tegawendé F. Bissyandé, and David Lo. Assessing the generalizability of2658

code2vec token embeddings. In 2019 34th IEEE/ACM International Conference on Automated2659

Software Engineering (ASE), pages 1--12, 2019. doi: 10.1109/ASE.2019.00011.2660

[221] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and Andrea Janes.2661

Big code != big vocabulary: Open-vocabulary models for source code. In Proceedings of the2662

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 70 of 98

https://doi.org/10.1145/3338906.3338941
https://doi.org/10.1145/3338906.3338941
https://doi.org/10.1145/3338906.3338941
https://doi.org/10.1145/2610384.2628055
https://proceedings.mlr.press/v119/kanade20a.html
https://proceedings.mlr.press/v119/kanade20a.html
https://proceedings.mlr.press/v119/kanade20a.html

ACM/IEEE 42nd International Conference on Software Engineering, ICSE '20, page 1073–1085,2663

2020. ISBN 9781450371216. doi: 10.1145/3377811.3380342.2664

[222] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent net-2665

works. arXiv preprint arXiv:1506.02078, 2015.2666

[223] A. Kaur, S. Jain, and S. Goel. A support vector machine based approach for code smell de-2667

tection. In 2017 International Conference on Machine Learning and Data Science (MLDS), pages2668

9--14, 2017. doi: 10.1109/MLDS.2017.8.2669

[224] Arvinder Kaur and Kamaldeep Kaur. An empirical study of robustness and stability of ma-2670

chine learning classifiers in software defect prediction. In Advances in intelligent informatics,2671

pages 383--397. Springer, 2015.2672

[225] Arvinder Kaur, Kamaldeep Kaur, and Deepti Chopra. An empirical study of software en-2673

tropy based bug prediction using machine learning. International Journal of System Assur-2674

ance Engineering and Management, 8(2):599--616, November 2017. ISSN 0976-4348. doi:2675

10.1007/s13198-016-0479-2.2676

[226] Inderpreet Kaur and Arvinder Kaur. A novel four-way approach designed with ensemble2677

feature selection for code smell detection. IEEE Access, 9:8695--8707, 2021.2678

[227] Patrick Keller, Abdoul Kader Kaboré, Laura Plein, Jacques Klein, Yves Le Traon, and2679

Tegawendé F. Bissyandé. What you see is what it means! semantic representation learn-2680

ing of code based on visualization and transfer learning. ACM Trans. Softw. Eng. Methodol., 312681

(2), dec 2021. ISSN 1049-331X. doi: 10.1145/3485135. URL https://doi.org/10.1145/3485135.2682

[228] Muhammad Noman Khalid, Humera Farooq, Muhammad Iqbal, Muhammad Talha Alam,2683

and Kamran Rasheed. Predicting Web Vulnerabilities in Web Applications Based onMachine2684

Learning. In Imran Sarwar Bajwa, Fairouz Kamareddine, and Anna Costa, editors, Intelligent2685

Technologies and Applications, Communications in Computer and Information Science, pages2686

473--484, Singapore, 2019. Springer. ISBN 9789811360527. doi: 10.1007/978-981-13-6052-7_2687

41.2688

[229] Bilal Khan, Danish Iqbal, and Sher Badshah. Cross-project software fault prediction using2689

data leveraging technique to improve software quality. In Proceedings of the Evaluation and2690

Assessment in Software Engineering, EASE '20, page 434–438, 2020. ISBN 9781450377317. doi:2691

10.1145/3383219.3383281.2692

[230] J. Kim, M. Kwon, and S. Yoo. Generating test input with deep reinforcement learning. In 20182693

IEEE/ACM 11th International Workshop on Search-Based Software Testing (SBST), pages 51--58,2694

2018.2695

[231] Junae Kim, David Hubczenko, and Paul Montague. Towards attention based vulnerability2696

discovery using source code representation. In Igor V. Tetko, Věra Kůrková, Pavel Karpov,2697

and Fabian Theis, editors, Artificial Neural Networks and Machine Learning -- ICANN 2019: Text2698

and Time Series, pages 731--746, 2019. ISBN 978-3-030-30490-4.2699

[232] Sangwoo Kim, Seokmyung Hong, Jaesang Oh, and Heejo Lee. Obfuscated vba macro detec-2700

tion usingmachine learning. In 2018 48th Annual IEEE/IFIP International Conference on Depend-2701

able Systems and Networks (DSN), pages 490--501, 2018. doi: 10.1109/DSN.2018.00057.2702

[233] Patrick Knab, Martin Pinzger, and Abraham Bernstein. Predicting defect densities in source2703

code files with decision tree learners. In Proceedings of the 2006 International Workshop on2704

Mining Software Repositories, MSR '06, page 119–125, 2006. ISBN 1595933972. doi: 10.1145/2705

1137983.1138012.2706

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 71 of 98

https://doi.org/10.1145/3485135

[234] Yasemin Kosker, Burak Turhan, and Ayse Bener. An expert system for determining candidate2707

software classes for refactoring. Expert Systems with Applications, 36(6):10000 -- 10003, 2009.2708

ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2008.12.066.2709

[235] Vladimir Kovalenko, Egor Bogomolov, Timofey Bryksin, and Alberto Bacchelli. Building im-2710

plicit vector representations of individual coding style. In Proceedings of the IEEE/ACM 42nd2711

International Conference on Software Engineering Workshops, ICSEW'20, page 117–124, 2020.2712

ISBN 9781450379632. doi: 10.1145/3387940.3391494.2713

[236] Rrezarta Krasniqi and Jane Cleland-Huang. Enhancing source code refactoring detection2714

with explanations from commit messages. In 2020 IEEE 27th International Conference on2715

Software Analysis, Evolution and Reengineering (SANER), pages 512--516, 2020. doi: 10.1109/2716

SANER48275.2020.770_Krasniqi2020.2717

[237] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep2718

convolutional neural networks. In Advances in neural information processing systems, pages2719

1097--1105, 2012.2720

[238] Jorrit Kronjee, Arjen Hommersom, and Harald Vranken. Discovering software vulnerabilities2721

using data-flow analysis and machine learning. In Proceedings of the 13th International Con-2722

ference on Availability, Reliability and Security, ARES 2018, 2018. ISBN 9781450364485. doi:2723

10.1145/3230833.3230856.2724

[239] L. Kumar and A. Sureka. Application of lssvm and smote on seven open source projects for2725

predicting refactoring at class level. In 2017 24th Asia-Pacific Software Engineering Conference2726

(APSEC), pages 90--99, 2017. doi: 10.1109/APSEC.2017.15.2727

[240] L. Kumar and A. Sureka. An empirical analysis on web service anti-pattern detection using a2728

machine learning framework. In 2018 IEEE 42nd Annual Computer Software and Applications2729

Conference (COMPSAC), volume 01, pages 2--11, 2018. doi: 10.1109/COMPSAC.2018.00010.2730

[241] Lov Kumar, Santanu Kumar Rath, and Ashish Sureka. Using source code metrics to predict2731

change-proneweb services: A case-study on ebay services. In 2017 IEEE workshop onmachine2732

learning techniques for software quality evaluation (MaLTeSQuE), pages 1--7. IEEE, 2017.2733

[242] Lov Kumar, Shashank Mouli Satapathy, and Lalita Bhanu Murthy. Method level refactoring2734

prediction on five open source java projects using machine learning techniques. In Proceed-2735

ings of the 12th Innovations on Software Engineering Conference (Formerly Known as India Soft-2736

ware Engineering Conference), ISEC'19, 2019. ISBN 9781450362153. doi: 10.1145/3299771.2737

3299777.2738

[243] PradeepKumar and Yogesh Singh. Assessment of software testing timeusing soft computing2739

techniques. SIGSOFT Softw. Eng. Notes, 37(1):1–6, January 2012. ISSN 0163-5948. doi: 10.1145/2740

2088883.2088895.2741

[244] Zarina Kurbatova, Ivan Veselov, Yaroslav Golubev, and Timofey Bryksin. Recommendation2742

of move method refactoring using path-based representation of code. In Proceedings of the2743

IEEE/ACM 42nd International Conference on Software Engineering Workshops, ICSEW'20, page2744

315–322, 2020. ISBN 9781450379632. doi: 10.1145/3387940.3392191.2745

[245] H. Lal and G. Pahwa. Code review analysis of software system using machine learning tech-2746

niques. In 2017 11th International Conference on Intelligent Systems and Control (ISCO), pages2747

8--13, 2017. doi: 10.1109/ISCO.2017.7855962.2748

[246] Issam H Laradji, Mohammad Alshayeb, and Lahouari Ghouti. Software defect prediction2749

using ensemble learning on selected features. Information and Software Technology, 58:2750

388--402, 2015.2751

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 72 of 98

[247] Michael R. Law and Karen A. Grépin. Is newer always better? Re-evaluating the benefits of2752

newer pharmaceuticals. Journal of Health Economics, 29(5):743--750, September 2010. ISSN2753

1879-1646. doi: 10.1016/j.jhealeco.2010.06.007.2754

[248] Triet H.M. Le, Hao Chen, andMuhammad Ali Babar. Deep learning for source codemodeling2755

and generation: Models, applications, and challenges. ACM Comput. Surv., 53(3), June 2020.2756

ISSN 0360-0300. doi: 10.1145/3383458.2757

[249] X. D. Le, T. B. Le, and D. Lo. Should fixing these failures be delegated to automated program2758

repair? In 2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE),2759

pages 427--437, 2015. doi: 10.1109/ISSRE.2015.7381836.2760

[250] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar Devanbu,2761

Stephanie Forrest, and Westley Weimer. The manybugs and introclass benchmarks for au-2762

tomated repair of c programs. IEEE Transactions on Software Engineering, 41(12):1236--1256,2763

2015. doi: 10.1109/TSE.2015.2454513.2764

[251] Alexander LeClair and Collin McMillan. Recommendations for datasets for source code sum-2765

marization, 2019.2766

[252] Alexander LeClair, Siyuan Jiang, and Collin McMillan. A neural model for generating natural2767

language summaries of program subroutines. In Proceedings of the 41st International Confer-2768

ence on Software Engineering, ICSE '19, page 795–806, 2019. doi: 10.1109/ICSE.2019.00087.2769

[253] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. Improved code summa-2770

rization via a graph neural network. In Proceedings of the 28th International Conference2771

on Program Comprehension, ICPC '20, page 184–195, 2020. ISBN 9781450379588. doi:2772

10.1145/3387904.3389268.2773

[254] Alexander LeClair, Aakash Bansal, and Collin McMillan. Ensemble models for neural source2774

code summarization of subroutines. In 2021 IEEE International Conference on Software Main-2775

tenance and Evolution (ICSME), pages 286--297. IEEE, 2021.2776

[255] Song-Mi Lee, Sang Min Yoon, and Heeryon Cho. Human activity recognition from accelerom-2777

eter data using convolutional neural network. In Big Data and Smart Computing (BigComp),2778

2017 IEEE International Conference on, pages 131--134. IEEE, 2017.2779

[256] Suin Lee, Youngseok Lee, Chan-Gun Lee, and Honguk Woo. Deep learning-based logging2780

recommendation using merged code representation. In Hyuncheol Kim and Kuinam J. Kim,2781

editors, IT Convergence and Security, pages 49--53, 2021. ISBN 978-981-15-9354-3.2782

[257] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating search-based program2783

synthesis using learned probabilistic models. In Proceedings of the 39th ACM SIGPLAN Confer-2784

ence on Programming Language Design and Implementation, PLDI 2018, page 436–449, 2018.2785

ISBN 9781450356985. doi: 10.1145/3192366.3192410.2786

[258] Stanislav Levin and Amiram Yehudai. Boosting automatic commit classification into mainte-2787

nance activities by utilizing source code changes. In Proceedings of the 13th International Con-2788

ference on Predictive Models and Data Analytics in Software Engineering, pages 97--106, 2017.2789

[259] Tomasz Lewowski and LechMadeyski. Code smells detection using artificial intelligence tech-2790

niques: A business-driven systematic review. Developments in Information I& Knowledge Man-2791

agement for Business Applications, pages 285--319, 2022.2792

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 73 of 98

[260] Boao Li, Meng Yan, Xin Xia, Xing Hu, Ge Li, and David Lo. Deepcommenter: A deep code2793

comment generation tool with hybrid lexical and syntactical information. In Proceedings2794

of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium2795

on the Foundations of Software Engineering, ESEC/FSE 2020, page 1571–1575, 2020. ISBN2796

9781450370431. doi: 10.1145/3368089.3417926.2797

[261] Daoyuan Li, Li Li, Dongsun Kim, Tegawendé F Bissyandé, David Lo, and Yves Le Traon. Watch2798

out for this commit! a study of influential software changes. Journal of Software: Evolution2799

and Process, 31(12):e2181, 2019.2800

[262] Jia Li, Yongmin Li, Ge Li, Xing Hu, Xin Xia, and Zhi Jin. Editsum: A retrieve-and-edit framework2801

for source code summarization. In 2021 36th IEEE/ACM International Conference on Automated2802

Software Engineering (ASE), pages 155--166. IEEE, 2021.2803

[263] Jian Li, Pinjia He, Jieming Zhu, and Michael R Lyu. Software defect prediction via convolu-2804

tional neural network. In 2017 IEEE International Conference on Software Quality, Reliability2805

and Security (QRS), pages 318--328. IEEE, 2017.2806

[264] Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. Code completion with neural attention2807

and pointer networks. In Proceedings of the 27th International Joint Conference on Artificial2808

Intelligence, IJCAI'18, page 4159–25, 2018. ISBN 9780999241127.2809

[265] M. Li, H. Zhang, Rongxin Wu, and Z. Zhou. Sample-based software defect prediction with2810

active and semi-supervised learning. Automated Software Engineering, 19:201--230, 2011.2811

[266] Yi Li, Shaohua Wang, Tien N. Nguyen, and Son Van Nguyen. Improving bug detection via2812

context-based code representation learning and attention-based neural networks. Proc. ACM2813

Program. Lang., 3(OOPSLA), October 2019. doi: 10.1145/3360588.2814

[267] Yi Li, ShaohuaWang, and Tien N. Nguyen. Dlfix: Context-based code transformation learning2815

for automated program repair. In Proceedings of the ACM/IEEE 42nd International Conference2816

on Software Engineering, ICSE '20, page 602–614, 2020. ISBN 9781450371216. doi: 10.1145/2817

3377811.3380345.2818

[268] Yi Li, Shaohua Wang, and Tien N Nguyen. A context-based automated approach for method2819

name consistency checking and suggestion. In 2021 IEEE/ACM 43rd International Conference2820

on Software Engineering (ICSE), pages 574--586. IEEE, 2021.2821

[269] Yuancheng Li, Rong Ma, and Runhai Jiao. A hybrid malicious code detection method based2822

on deep learning. International journal of security and its applications, 9:205--216, 2015.2823

[270] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,2824

Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code2825

generation with alphacode. Science, 378(6624):1092--1097, 2022.2826

[271] Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun, and H. Jin. A comparative study of deep learning-based2827

vulnerability detection system. IEEE Access, 7:103184--103197, 2019. doi: 10.1109/ACCESS.2828

2019.2930578.2829

[272] Chen Liang, Jonathan Berant, Quoc V. Le, Kenneth D. Forbus, and N. Lao. Neural symbolic2830

machines: Learning semantic parsers on freebase with weak supervision. In ACL, 2017.2831

[273] Hongliang Liang, Yue Yu, Lin Jiang, and Zhuosi Xie. Seml: A semantic lstmmodel for software2832

defect prediction. IEEE Access, 7:83812--83824, 2019.2833

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 74 of 98

[274] H. Lim. Applying code vectors for presenting software features in machine learning. In 20182834

IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), volume 01, pages2835

803--804, 2018. doi: 10.1109/COMPSAC.2018.00128.2836

[275] R. Lima, A. M. R. da Cruz, and J. Ribeiro. Artificial intelligence applied to software testing: A2837

literature review. In 2020 15th Iberian Conference on Information Systems and Technologies2838

(CISTI), pages 1--6, 2020. doi: 10.23919/CISTI49556.2020.9141124.2839

[276] BO LIN, SHANGWENWANG, MINGWEN, and XIAOGUANGMAO. Context-aware code change2840

embedding for better patch correctness assessment. J. ACM, 1(1), 2021.2841

[277] Chen Lin, Zhichao Ouyang, Junqing Zhuang, Jianqiang Chen, Hui Li, and Rongxin Wu. Improv-2842

ing code summarization with block-wise abstract syntax tree splitting. In 2021 IEEE/ACM 29th2843

International Conference on Program Comprehension (ICPC), pages 184--195. IEEE, 2021.2844

[278] Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, Yang Xiang, Olivier De Vel, and Paul Montague.2845

Cross-project transfer representation learning for vulnerable function discovery. IEEE Trans-2846

actions on Industrial Informatics, 14(7):3289--3297, 2018. doi: 10.1109/TII.2018.2821768.2847

[279] Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, Yang Xiang, Olivier De Vel, and Paul Montague.2848

Cross-project transfer representation learning for vulnerable function discovery. IEEE Trans-2849

actions on Industrial Informatics, 14(7):3289--3297, 2018. doi: 10.1109/TII.2018.2821768.2850

[280] Guanjun Lin, Wei Xiao, Jun Zhang, and Yang Xiang. Deep Learning-Based Vulnerable Func-2851

tion Detection: A Benchmark. In Jianying Zhou, Xiapu Luo, Qingni Shen, and Zhen Xu, ed-2852

itors, Information and Communications Security, Lecture Notes in Computer Science, pages2853

219--232, Cham, 2020. Springer International Publishing. ISBN 978-3-030-41579-2. doi:2854

10.1007/978-3-030-41579-2_13.2855

[281] Junhao Lin and Lu Lu. Semantic feature learning via dual sequences for defect prediction.2856

IEEE Access, 9:13112--13124, 2021.2857

[282] Chunyang Ling, Zeqi Lin, Yanzhen Zou, and Bing Xie. Adaptive deep code search. In Proceed-2858

ings of the 28th International Conference on Program Comprehension, ICPC '20, pages 48–--59.2859

Association for Computing Machinery, 2020. ISBN 9781450379588. doi: 10.1145/3387904.2860

3389278.2861

[283] Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiský, Andrew Senior,2862

Fumin Wang, and Phil Blunsom. Latent predictor networks for code generation, 2016. URL2863

https://arxiv.org/abs/1603.06744.2864

[284] E. Linstead, C. Lopes, and P. Baldi. An application of latent dirichlet allocation to analyzing2865

software evolution. In 2008 Seventh International Conference on Machine Learning and Appli-2866

cations, pages 813--818, 2008. doi: 10.1109/ICMLA.2008.47.2867

[285] Bohong Liu, Tao Wang, Xunhui Zhang, Qiang Fan, Gang Yin, and Jinsheng Deng. A neural-2868

network based code summarization approach by using source code and its call dependen-2869

cies. In Proceedings of the 11th Asia-Pacific Symposium on Internetware, Internetware '19, 2019.2870

ISBN 9781450377010. doi: 10.1145/3361242.3362774.2871

[286] Chao Liu, Cuiyun Gao, Xin Xia, David Lo, John Grundy, and Xiaohu Yang. On the replicability2872

and reproducibility of deep learning in software engineering, 2020.2873

[287] Chen Liu, Jinqiu Yang, Lin Tan, andMunawar Hafiz. R2fix: Automatically generating bug fixes2874

from bug reports. In 2013 IEEE Sixth international conference on software testing, verification2875

and validation, pages 282--291. IEEE, 2013.2876

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 75 of 98

https://arxiv.org/abs/1603.06744

[288] F. Liu, G. Li, Y. Zhao, and Z. Jin. Multi-task learning based pre-trained languagemodel for code2877

completion. In 2020 35th IEEE/ACM International Conference on Automated Software Engineering2878

(ASE), pages 473--485, 2020.2879

[289] Fang Liu, Ge Li, Bolin Wei, Xin Xia, Zhiyi Fu, and Zhi Jin. A self-attentional neural architecture2880

for code completion with multi-task learning. In Proceedings of the 28th International Con-2881

ference on Program Comprehension, ICPC '20, page 37–47, 2020. ISBN 9781450379588. doi:2882

10.1145/3387904.3389261.2883

[290] Hui Liu, Jiahao Jin, Zhifeng Xu, Yifan Bu, Yanzhen Zou, and Lu Zhang. Deep learning based2884

code smell detection. IEEE Transactions on Software Engineering, 2019.2885

[291] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F. Bissyandé, Dongsun Kim,2886

Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves Le Traon. On the efficiency of test suite2887

based program repair: A systematic assessment of 16 automated repair systems for Java2888

programs. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-2889

ing, ICSE '20, pages 615?--627, 2020. ISBN 9781450371216. doi: 10.1145/3377811.3380338.2890

[292] Shangqing Liu, Cuiyun Gao, Sen Chen, Nie Lun Yiu, and Yang Liu. Atom: Commit message2891

generation based on abstract syntax tree and hybrid ranking. IEEE Transactions on Software2892

Engineering, 2020.2893

[293] Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. Deepfuzz: Automatic generation2894

of syntax valid c programs for fuzz testing. Proceedings of the AAAI Conference on Artificial2895

Intelligence, 33(01):1044--1051, Jul. 2019. doi: 10.1609/aaai.v33i01.33011044.2896

[294] Yang Liu. Fine-tune bert for extractive summarization, 2019. URL https://arxiv.org/abs/1903.2897

10318.2898

[295] Zhongxin Liu, Xin Xia, Ahmed E. Hassan, David Lo, Zhenchang Xing, and Xinyu Wang. Neural-2899

machine-translation-based commit message generation: How far are we? In Proceedings of2900

the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, page2901

373–384, 2018. ISBN 9781450359375. doi: 10.1145/3238147.3238190.2902

[296] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. Automatic generation2903

of pull request descriptions. In 2019 34th IEEE/ACM International Conference on Automated2904

Software Engineering (ASE), pages 176--188. IEEE, 2019.2905

[297] Fan Long and Martin Rinard. Automatic patch generation by learning correct code. In Pro-2906

ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-2907

guages, POPL '16, page 298–312, 2016. ISBN 9781450335492. doi: 10.1145/2837614.2837617.2908

[298] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi. UCI source code data sets, 2010. URL2909

http://www.ics.uci.edu/\simlopes/datasets/.2910

[299] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and Lu Zhang.2911

Can automated program repair refine fault localization? a unified debugging approach. In2912

Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis,2913

pages 75--87, 2020.2914

[300] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin2915

Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,2916

Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng,2917

Shengyu Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code2918

understanding and generation, 2021. URL https://arxiv.org/abs/2102.04664.2919

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 76 of 98

https://arxiv.org/abs/1903.10318
https://arxiv.org/abs/1903.10318
https://arxiv.org/abs/1903.10318
http://www.ics.uci.edu/$\sim $lopes/datasets/
https://arxiv.org/abs/2102.04664

[301] Yangyang Lu, Zelong Zhao, Ge Li, and Zhi Jin. Learning to generate comments for api-based2920

code snippets. In Software Engineering and Methodology for Emerging Domains, pages 3--14.2921

Springer, 2017.2922

[302] Frederico Caram Luiz, Bruno Rafael de Oliveira Rodrigues, and Fernando Silva Parreiras. Ma-2923

chine learning techniques for code smells detection: An empirical experiment on a highly im-2924

balanced setup. In Proceedings of the XV Brazilian Symposium on Information Systems, SBSI'19,2925

2019. ISBN 9781450372374. doi: 10.1145/3330204.3330275.2926

[303] Savanna Lujan, Fabiano Pecorelli, Fabio Palomba, Andrea De Lucia, and Valentina Lenar-2927

duzzi. A preliminary study on the adequacy of static analysis warnings with respect to code2928

smell prediction. In Proceedings of the 4th ACM SIGSOFT International Workshop on Machine-2929

Learning Techniques for Software-Quality Evaluation, MaLTeSQuE 2020, page 1–6, 2020. ISBN2930

9781450381246. doi: 10.1145/3416505.3423559.2931

[304] Minh-Thang Luong, Eugene Brevdo, and Rui Zhao. Neural machine translation (seq2seq)2932

tutorial. https://github.com/tensorflow/nmt, 2017.2933

[305] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin Tan. Co-2934

CoNuT: Combining context-aware neural translation models using ensemble for program2935

repair. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing2936

and Analysis, ISSTA 2020, page 101–114, 2020. ISBN 9781450380089. doi: 10.1145/3395363.2937

3397369.2938

[306] Michael R. Lyu, editor. Handbook of Software Reliability Engineering. McGraw-Hill, Inc., USA,2939

1996. ISBN 0070394008.2940

[307] Ying Ma, Guangchun Luo, Xue Zeng, and Aiguo Chen. Transfer learning for cross-company2941

software defect prediction. Information and Software Technology, 54(3):248 -- 256, 2012. ISSN2942

0950-5849. doi: https://doi.org/10.1016/j.infsof.2011.09.007.2943

[308] Yuzhan Ma, Sarah Fakhoury, Michael Christensen, Venera Arnaoudova, Waleed Zogaan, and2944

Mehdi Mirakhorli. Automatic classification of software artifacts in open-source applications.2945

In Proceedings of the 15th International Conference on Mining Software Repositories, MSR '18,2946

page 414–425, 2018. ISBN 9781450357166. doi: 10.1145/3196398.3196446.2947

[309] Z.Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma. A combinationmethod for androidmalware detection2948

based on control flow graphs and machine learning algorithms. IEEE Access, 7:21235--21245,2949

2019. doi: 10.1109/ACCESS.2019.2896003.2950

[310] Chris J.Maddison andDaniel Tarlow. Structured generativemodels of natural source code. In2951

Proceedings of the 31st International Conference on International Conference on Machine Learn-2952

ing - Volume 32, ICML'14, page II–649–II–657, 2014.2953

[311] Janaki T. Madhavan and E. James Whitehead. Predicting buggy changes inside an integrated2954

development environment. In Proceedings of the 2007 OOPSLA Workshop on Eclipse Technol-2955

ogy EXchange, eclipse '07, page 36–40, 2007. ISBN 9781605580159. doi: 10.1145/1328279.2956

1328287.2957

[312] Anas Mahmoud and Gary Bradshaw. Semantic topic models for source code analysis. Em-2958

pirical Software Engineering, 22(4):1965--2000, 2017.2959

[313] AmirabbasMajd, Mojtaba Vahidi-Asl, Alireza Khalilian, Pooria Poorsarvi-Tehrani, and Hassan2960

Haghighi. SLDeep: Statement-level software defect prediction using deep-learningmodel on2961

static code features. Expert Systems with Applications, 147:113156, 2020. ISSN 0957-4174. doi:2962

https://doi.org/10.1016/j.eswa.2019.113156.2963

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 77 of 98

[314] R. Malhotra and Rupender Jangra. Prediction & assessment of change prone classes us-2964

ing statistical & machine learning techniques. Journal of Information Processing Systems, 13:2965

778--804, 01 2017. doi: 10.3745/JIPS.04.0013.2966

[315] R. Malhotra, L. Bahl, S. Sehgal, and P. Priya. Empirical comparison of machine learn-2967

ing algorithms for bug prediction in open source software. In 2017 International Confer-2968

ence on Big Data Analytics and Computational Intelligence (ICBDAC), pages 40--45, 2017. doi:2969

10.1109/ICBDACI.2017.8070806.2970

[316] Ruchika Malhotra. Comparative analysis of statistical and machine learning methods for2971

predicting faulty modules. Applied Soft Computing, 21:286 -- 297, 2014. ISSN 1568-4946. doi:2972

https://doi.org/10.1016/j.asoc.2014.03.032.2973

[317] Ruchika Malhotra and Ankita Jain. Fault prediction using statistical and machine learning2974

methods for improving software quality. Journal of Information Processing Systems, 8(2):2975

241--262, 2012.2976

[318] Ruchika Malhotra and Shine Kamal. An empirical study to investigate oversampling meth-2977

ods for improving software defect prediction using imbalanced data. Neurocomputing, 343:2978

120--140, 2019.2979

[319] RuchikaMalhotra andMegha Khanna. Investigation of relationship between object-oriented2980

metrics and change proneness. International Journal of Machine Learning and Cybernetics, 42981

(4):273--286, 2013.2982

[320] Ruchika Malhotra and Yogesh Singh. On the applicability of machine learning techniques for2983

object-oriented software fault prediction. Software Engineering: An International Journal, 1, 012984

2011.2985

[321] Ruchika Malhotra1 and Anuradha Chug. Software maintainability prediction using machine2986

learning algorithms. Software engineering: an international Journal (SeiJ), 2(2), 2012.2987

[322] R. S. Malik, J. Patra, and M. Pradel. Nl2type: Inferring javascript function types from natural2988

language information. In 2019 IEEE/ACM 41st International Conference on Software Engineering2989

(ICSE), pages 304--315, 2019. doi: 10.1109/ICSE.2019.00045.2990

[323] C Manjula and Lilly Florence. Deep neural network based hybrid approach for software2991

defect prediction using software metrics. Cluster Computing, 22(4):9847--9863, 2019.2992

[324] Richard VR Mariano, Geanderson E dos Santos, Markos V de Almeida, and Wladmir C Brand2993

textasciitilde ao. Feature changes in source code for commit classification into maintenance2994

activities. In 2019 18th IEEE International Conference On Machine Learning And Applications2995

(ICMLA), pages 515--518. IEEE, 2019.2996

[325] Richard VR Mariano, Geanderson E dos Santos, and Wladmir Cardoso Brandao. Improve2997

classification of commits maintenance activities with quantitative changes in source code.2998

2021.2999

[326] Ehsan Mashhadi and Hadi Hemmati. Applying codebert for automated program repair of3000

java simple bugs. In 2021 IEEE/ACM 18th International Conference on Mining Software Reposito-3001

ries (MSR), pages 505--509. IEEE, 2021.3002

[327] Roni Mateless, Daniel Rejabek, Oded Margalit, and Robert Moskovitch. Decompiled APK3003

based malicious code classification. Future Generation Computer Systems, 110:135--147,3004

2020. ISSN 0167-739X. doi: https://doi.org/10.1016/j.future.2020.03.052. URL https://www.3005

sciencedirect.com/science/article/pii/S0167739X19325129.3006

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 78 of 98

https://www.sciencedirect.com/science/article/pii/S0167739X19325129
https://www.sciencedirect.com/science/article/pii/S0167739X19325129
https://www.sciencedirect.com/science/article/pii/S0167739X19325129

[328] Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering, (4):3007

308--320, 1976.3008

[329] Mary L. McHugh. Interrater reliability: the kappa statistic. Biochemia Medica, 22:276 -- 282,3009

2012.3010

[330] IberiaMedeiros, Nuno F. Neves, andMiguel Correia. Securing energymetering softwarewith3011

automatic source code correction. In 2013 11th IEEE International Conference on Industrial3012

Informatics (INDIN), jul 2013. doi: 10.1109/indin.2013.6622969.3013

[331] Ibéria Medeiros, Nuno F. Neves, and Miguel Correia. Automatic detection and correction of3014

web application vulnerabilities using data mining to predict false positives. In Proceedings3015

of the 23rd International Conference on World Wide Web, WWW '14, page 63–74, 2014. ISBN3016

9781450327442. doi: 10.1145/2566486.2568024.3017

[332] Ibéria Medeiros, Nuno Neves, and Miguel Correia. Detecting and removing web applica-3018

tion vulnerabilities with static analysis and data mining. IEEE Transactions on Reliability, 65(1):3019

54--69, 2016. doi: 10.1109/TR.2015.2457411.3020

[333] Na Meng, Zijian Jiang, and Hao Zhong. Classifying code commits with convolutional neural3021

networks. In 2021 International Joint Conference on Neural Networks (IJCNN), pages 1--8. IEEE,3022

2021.3023

[334] Omar Meqdadi, Nouh Alhindawi, Jamal Alsakran, Ahmad Saifan, and Hatim Migdadi. Min-3024

ing software repositories for adaptive change commits using machine learning techniques.3025

Information and Software Technology, 109:80 -- 91, 2019. ISSN 0950-5849. doi: https:3026

//doi.org/10.1016/j.infsof.2019.01.008.3027

[335] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian. Deep-3028

Delta: Learning to repair compilation errors. In Proceedings of the 2019 27th ACM Joint3029

Meeting on European Software Engineering Conference and Symposium on the Foundations3030

of Software Engineering, ESEC/FSE 2019, page 925–936, 2019. ISBN 9781450355728. doi:3031

10.1145/3338906.3340455.3032

[336] Mohammad Y. Mhawish and Manjari Gupta. Predicting code smells and analysis of predic-3033

tions: Using machine learning techniques and software metrics. J. Comput. Sci. Technol., 35:3034

1428--1445, 2020.3035

[337] NikolaMilosevic, Ali Dehghantanha, and Kim-Kwang Raymond Choo. Machine learning aided3036

android malware classification. Computers & Electrical Engineering, 61:266 -- 274, 2017. ISSN3037

0045-7906. doi: https://doi.org/10.1016/j.compeleceng.2017.02.013.3038

[338] Robert Moskovitch, Nir Nissim, and Yuval Elovici. Malicious code detection using active learn-3039

ing. In Francesco Bonchi, Elena Ferrari, Wei Jiang, and BradleyMalin, editors, Privacy, Security,3040

and Trust in KDD, pages 74--91, 2009. ISBN 978-3-642-01718-6.3041

[339] G. Mostaeen, J. Svajlenko, B. Roy, C. K. Roy, and K. A. Schneider. [research paper] on the use3042

of machine learning techniques towards the design of cloud based automatic code clone3043

validation tools. In 2018 IEEE 18th International Working Conference on Source Code Analysis3044

and Manipulation (SCAM), pages 155--164, 2018. doi: 10.1109/SCAM.2018.00025.3045

[340] Golam Mostaeen, Jeffrey Svajlenko, Banani Roy, Chanchal K. Roy, and Kevin A. Schneider.3046

Clonecognition: Machine learning based code clone validation tool. In Proceedings of the3047

2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium3048

on the Foundations of Software Engineering, ESEC/FSE 2019, page 1105–1109, 2019. ISBN3049

9781450355728. doi: 10.1145/3338906.3341182.3050

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 79 of 98

[341] Golam Mostaeen, Banani Roy, Chanchal K. Roy, Kevin Schneider, and Jeffrey Svajlenko. A3051

machine learning based framework for code clone validation. Journal of Systems and Software,3052

169:110686, 2020. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2020.110686.3053

[342] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks over tree3054

structures for programming language processing. In Proceedings of the Thirtieth AAAI Confer-3055

ence on Artificial Intelligence, AAAI'16, page 1287–1293, 2016.3056

[343] Dana Movshovitz-Attias and William Cohen. Natural language models for predicting pro-3057

gramming comments. ACL 2013 - 51st Annual Meeting of the Association for Computational3058

Linguistics, Proceedings of the Conference, 2:35--40, 08 2013.3059

[344] Vijayaraghavan Murali, Letao Qi, S. Chaudhuri, and C. Jermaine. Neural sketch learning for3060

conditional program generation. In ICLR, 2018.3061

[345] Aravind Nair, Karl Meinke, and Sigrid Eldh. Leveraging mutants for automatic prediction of3062

metamorphic relations usingmachine learning. In Proceedings of the 3rd ACM SIGSOFT Interna-3063

tional Workshop on Machine Learning Techniques for Software Quality Evaluation, MaLTeSQuE3064

2019, page 1–6, 2019. ISBN 9781450368551. doi: 10.1145/3340482.3342741.3065

[346] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, and Yang Liu. A multi-3066

view context-aware approach to android malware detection and malicious code localiza-3067

tion. Empirical Softw. Engg., 23(3):1222–1274, jun 2018. ISSN 1382-3256. doi: 10.1007/3068

s10664-017-9539-8. URL https://doi.org/10.1007/s10664-017-9539-8.3069

[347] N. Nazar, He Jiang, Guojun Gao, Tao Zhang, Xiaochen Li, and Zhilei Ren. Source code frag-3070

ment summarization with small-scale crowdsourcing based features. Frontiers of Computer3071

Science, 10:504--517, 2015.3072

[348] N. Nazar, Y. Hu, and He Jiang. Summarizing software artifacts: A literature review. Journal of3073

Computer Science and Technology, 31:883--909, 2016.3074

[349] Samuel Ndichu, Sangwook Kim, Seiichi Ozawa, Takeshi Misu, and Kazuo Makishima. A3075

machine learning approach to detection of javascript-based attacks using ast features and3076

paragraph vectors. Applied Soft Computing, 84:105721, 2019. ISSN 1568-4946. doi: https:3077

//doi.org/10.1016/j.asoc.2019.105721.3078

[350] A. T. Nguyen, T. D. Nguyen, H. D. Phan, and T. N. Nguyen. A deep neural network language3079

model with contexts for source code. In 2018 IEEE 25th International Conference on Software3080

Analysis, Evolution and Reengineering (SANER), pages 323--334, 2018. doi: 10.1109/SANER.2018.3081

8330220.3082

[351] Duc-Man Nguyen, Hoang-Nhat Do, Quyet-Thang Huynh, Dinh-Thien Vo, and Nhu-Hang Ha.3083

Shinobi: A novel approach for context-driven testing (cdt) using heuristics andmachine learn-3084

ing for web applications. In Trung Q Duong and Nguyen-Son Vo, editors, Industrial Networks3085

and Intelligent Systems, pages 86--102, 2019. ISBN 978-3-030-05873-9.3086

[352] Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. A statistical3087

semantic language model for source code. In Proceedings of the 2013 9th Joint Meeting on3088

Foundations of Software Engineering, ESEC/FSE 2013, page 532–542, New York, NY, USA, 2013.3089

Association for Computing Machinery. ISBN 9781450322379. doi: 1086_Nguyen2013. URL3090

https://doi.org/1086_Nguyen2013.3091

[353] Lun Yiu Nie, Cuiyun Gao, Zhicong Zhong, Wai Lam, Yang Liu, and Zenglin Xu. Coregen: Con-3092

textualized code representation learning for commit message generation. Neurocomputing,3093

459:97--107, 2021.3094

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 80 of 98

https://doi.org/10.1007/s10664-017-9539-8
https://doi.org/1086_Nguyen2013

[354] A. S. Nyamawe, H. Liu, N. Niu, Q. Umer, and Z. Niu. Automated recommendation of soft-3095

ware refactorings based on feature requests. In 2019 IEEE 27th International Requirements3096

Engineering Conference (RE), pages 187--198, 2019. doi: 10.1109/RE.2019.00029.3097

[355] Ally S. Nyamawe, Hui Liu, Nan Niu, Qasim Umer, and Zhendong Niu. Feature requests-3098

based recommendation of software refactorings. Empirical Softw. Engg., 25(5):4315–4347,3099

sep 2020. ISSN 1382-3256. doi: 10.1007/s10664-020-09871-2. URL https://doi.org/10.1007/3100

s10664-020-09871-2.3101

[356] Miroslaw Ochodek, Regina Hebig, Wilhelm Meding, Gert Frost, and Miroslaw Staron. Rec-3102

ognizing lines of code violating company-specific coding guidelines using machine learning.3103

Empirical Software Engineering, 25:220--265, 2019.3104

[357] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and S. Nakamura. Learning to gen-3105

erate pseudo-code from source code using statistical machine translation. In 2015 30th3106

IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 574--584,3107

2015. doi: 10.1109/ASE.2015.36.3108

[358] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti, Tomoki Toda,3109

and Satoshi Nakamura. Learning to generate pseudo-code from source code using statistical3110

machine translation. In 2015 30th IEEE/ACM International Conference on Automated Software3111

Engineering (ASE), pages 574--584, 2015. doi: 10.1109/ASE.2015.36.3112

[359] Ahmet Okutan and Olcay Taner Yıldız. Software defect prediction using bayesian networks.3113

Empirical Software Engineering, 19(1):154--181, 2014.3114

[360] Daniel Oliveira, Wesley K. G. Assunção, Leonardo Souza, Willian Oizumi, Alessandro Garcia,3115

and Baldoino Fonseca. Applying machine learning to customized smell detection: A multi-3116

project study. SBES '20, page 233–242, 2020. ISBN 9781450387538. doi: 10.1145/3422392.3117

3422427.3118

[361] Safa Omri and Carsten Sinz. Deep learning for software defect prediction: A survey. In3119

Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops,3120

ICSEW'20, page 209–214, 2020. ISBN 9781450379632. doi: 10.1145/3387940.3391463.3121

[362] Bindu Madhavi Padmanabhuni and Hee Beng Kuan Tan. Buffer overflow vulnerability pre-3122

diction from x86 executables using static analysis and machine learning. In 2015 IEEE 39th3123

Annual Computer Software and Applications Conference, volume 2, pages 450--459, 2015. doi:3124

10.1109/COMPSAC.2015.78.3125

[363] Fabio Palomba, Dario Di Nucci, Michele Tufano, Gabriele Bavota, RoccoOliveto, Denys Poshy-3126

vanyk, and Andrea De Lucia. Landfill: An open dataset of code smells with public evaluation.3127

In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, pages 482--485,3128

2015. doi: 10.1109/MSR.2015.69.3129

[364] Fabio Palomba,Marco Zanoni, Francesca Arcelli Fontana, AndreaDe Lucia, andRoccoOliveto.3130

Smells like teen spirit: Improving bug prediction performance using the intensity of code3131

smells. In 2016 IEEE International Conference on Software Maintenance and Evolution (ICSME),3132

pages 244--255. IEEE, 2016.3133

[365] Fabio Palomba,Marco Zanoni, Francesca Arcelli Fontana, AndreaDe Lucia, andRoccoOliveto.3134

Toward a smell-aware bug prediction model. IEEE Transactions on Software Engineering, 45(2):3135

194--218, 2017.3136

[366] Cong Pan, Minyan Lu, Biao Xu, and Houleng Gao. An improved cnn model for within-project3137

software defect prediction. Applied Sciences, 9(10):2138, 2019.3138

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 81 of 98

https://doi.org/10.1007/s10664-020-09871-2
https://doi.org/10.1007/s10664-020-09871-2
https://doi.org/10.1007/s10664-020-09871-2

[367] A. K. Pandey and Manjari Gupta. Software fault classification using extreme learning ma-3139

chine: a cognitive approach. Evolutionary Intelligence, pages 1--8, 2018.3140

[368] Sushant Kumar Pandey, Ravi Bhushan Mishra, and Anil Kumar Tripathi. Machine learning3141

based methods for software fault prediction: A survey. Expert Systems with Applications, 172:3142

114595, 2021.3143

[369] Y. Pang, X. Xue, and A. S. Namin. Early identification of vulnerable software components3144

via ensemble learning. In 2016 15th IEEE International Conference on Machine Learning and3145

Applications (ICMLA), pages 476--481, 2016. doi: 10.1109/ICMLA.2016.0084.3146

[370] Yulei Pang, Xiaozhen Xue, and Huaying Wang. Predicting vulnerable software compo-3147

nents through deep neural network. In Proceedings of the 2017 International Conference3148

on Deep Learning Technologies, ICDLT '17, page 6–10, New York, NY, USA, 2017. Association3149

for Computing Machinery. ISBN 9781450352321. doi: 10.1145/3094243.3094245. URL3150

https://doi.org/10.1145/3094243.3094245.3151

[371] Sebastiano Panichella, Jairo Aponte, Massimiliano Di Penta, Andrian Marcus, and Gerardo3152

Canfora. Mining source code descriptions from developer communications. In 2012 20th3153

IEEE International Conference on Program Comprehension (ICPC), pages 63--72, 2012. doi: 10.3154

1109/ICPC.2012.6240510.3155

[372] Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. Re-evaluating method-level bug pre-3156

diction. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengi-3157

neering (SANER), pages 592--601. IEEE, 2018.3158

[373] Kayur Patel, James Fogarty, James A. Landay, and Beverly Harrison. Investigating statistical3159

machine learning as a tool for software development. In Proceedings of the SIGCHI Conference3160

on Human Factors in Computing Systems, CHI '08, page 667–676, 2008. ISBN 9781605580111.3161

doi: 10.1145/1357054.1357160.3162

[374] F. Pecorelli, F. Palomba, D. Di Nucci, and A. De Lucia. Comparing heuristic andmachine learn-3163

ing approaches for metric-based code smell detection. In 2019 IEEE/ACM 27th International3164

Conference on Program Comprehension (ICPC), pages 93--104, 2019.3165

[375] Fabiano Pecorelli, Dario Di Nucci, Coen De Roover, and Andrea De Lucia. On the role of data3166

balancing for machine learning-based code smell detection. In Proceedings of the 3rd ACM3167

SIGSOFT InternationalWorkshop onMachine Learning Techniques for SoftwareQuality Evaluation,3168

MaLTeSQuE 2019, page 19–24, 2019. ISBN 9781450368551. doi: 10.1145/3340482.3342744.3169

[376] Han Peng, Ge Li, Wenhan Wang, YunFei Zhao, and Zhi Jin. Integrating tree path in trans-3170

former for code representation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and3171

J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,3172

pages 9343--9354. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/3173

2021/file/4e0223a87610176ef0d24ef6d2dcde3a-Paper.pdf.3174

[377] Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin. Building program vector rep-3175

resentations for deep learning. In International conference on knowledge science, engineering3176

and management, pages 547--553. Springer, 2015.3177

[378] J. D. Pereira, J. R. Campos, and M. Vieira. An exploratory study on machine learning to com-3178

bine security vulnerability alerts from static analysis tools. In 2019 9th Latin-American Sym-3179

posium on Dependable Computing (LADC), pages 1--10, 2019. doi: 10.1109/LADC48089.2019.3180

8995685.3181

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 82 of 98

https://doi.org/10.1145/3094243.3094245
https://proceedings.neurips.cc/paper/2021/file/4e0223a87610176ef0d24ef6d2dcde3a-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4e0223a87610176ef0d24ef6d2dcde3a-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4e0223a87610176ef0d24ef6d2dcde3a-Paper.pdf

[379] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi, Konrad Rieck,3182

Sascha Fahl, and Yasemin Acar. Vccfinder: Finding potential vulnerabilities in open-source3183

projects to assist code audits. In Proceedings of the 22nd ACM SIGSAC Conference on Computer3184

and Communications Security, CCS '15, page 426–437, 2015. ISBN 9781450338325. doi: 10.3185

1145/2810103.2813604.3186

[380] Hung Phan and Ali Jannesari. Statistical machine translation outperforms neural machine3187

translation in software engineering: Why and how. In Proceedings of the 1st ACM SIGSOFT3188

International Workshop on Representation Learning for Software Engineering and Program Lan-3189

guages, RL+SE&PL 2020, page 3–12, 2020. ISBN 9781450381253. doi: 10.1145/3416506.3190

3423576.3191

[381] Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James Anibal, Alec Peltekian, and Yanfang Ye.3192

Cotext: Multi-task learning with code-text transformer, 2021. URL https://arxiv.org/abs/2105.3193

08645.3194

[382] Eduard Pinconschi, Rui Abreu, and Pedro Ad3195

textasciitilde ao. A comparative study of automatic program repair techniques for security3196

vulnerabilities. In 2021 IEEE 32nd International Symposium on Software Reliability Engineering3197

(ISSRE), pages 196--207. IEEE, 2021.3198

[383] Goran Piskachev, Lisa Nguyen Quang Do, and Eric Bodden. Codebase-adaptive detection of3199

security-relevant methods. In Proceedings of the 28th ACM SIGSOFT International Symposium3200

on Software Testing and Analysis, ISSTA 2019, page 181–191, 2019. ISBN 9781450362245. doi:3201

10.1145/3293882.3330556.3202

[384] Serena E. Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cédric Dangremont. A3203

manually-curated dataset of fixes to vulnerabilities of open-source software. In Proceedings3204

of the 16th International Conference on Mining Software Repositories, MSR '19, page 383–387,3205

2019. doi: 10.1109/MSR.2019.00064.3206

[385] MaryamVahdat Pour, Zhuo Li, Lei Ma, andHadi Hemmati. A search-based testing framework3207

for deepneural networks of source code embedding. In 2021 14th IEEE Conference on Software3208

Testing, Verification and Validation (ICST), pages 36--46. IEEE, 2021.3209

[386] C. L. Prabha and N. Shivakumar. Software defect prediction using machine learning3210

techniques. In 2020 4th International Conference on Trends in Electronics and Informatics3211

(ICOEI)(48184), pages 728--733, 2020. doi: 10.1109/ICOEI48184.2020.9142909.3212

[387] Michael Pradel and Koushik Sen. Deepbugs: A learning approach to name-based bug detec-3213

tion. Proc. ACM Program. Lang., 2(OOPSLA), October 2018. doi: 10.1145/3276517.3214

[388] Hosahalli Mahalingappa Premalatha and Chimanahalli Venkateshavittalachar Srikrishna.3215

Software fault prediction and classification using cost based random forest in spiral life cycle3216

model. system, 11, 2017.3217

[389] Michael Prince. Does active learning work? a review of the research. Journal of engineering3218

education, 93(3):223--231, 2004.3219

[390] N. Pritam, M. Khari, L. Hoang Son, R. Kumar, S. Jha, I. Priyadarshini, M. Abdel-Basset, and3220

H. Viet Long. Assessment of code smell for predicting class change proneness usingmachine3221

learning. IEEE Access, 7:37414--37425, 2019. doi: 10.1109/ACCESS.2019.2905133.3222

[391] Sebastian Proksch, Johannes Lerch, and Mira Mezini. Intelligent code completion with3223

bayesian networks. ACM Trans. Softw. Eng. Methodol., 25(1), December 2015. ISSN 1049-331X.3224

doi: 10.1145/2744200.3225

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 83 of 98

https://arxiv.org/abs/2105.08645
https://arxiv.org/abs/2105.08645
https://arxiv.org/abs/2105.08645

[392] Christos Psarras, Themistoklis Diamantopoulos, and Andreas Symeonidis. A mechanism3226

for automatically summarizing software functionality from source code. In 2019 IEEE 19th3227

International Conference on Software Quality, Reliability and Security (QRS), pages 121--130. IEEE,3228

2019.3229

[393] Lei Qiao, Xuesong Li, Qasim Umer, and Ping Guo. Deep learning based software defect3230

prediction. Neurocomputing, 385:100--110, 2020.3231

[394] Md Rafiqul Islam Rabin, Arjun Mukherjee, Omprakash Gnawali, and Mohammad Amin3232

Alipour. Towards demystifying dimensions of source code embeddings. In Proceedings of3233

the 1st ACM SIGSOFT International Workshop on Representation Learning for Software Engineer-3234

ing and Program Languages, RL+SE&PL 2020, page 29–38, 2020. ISBN 9781450381253.3235

doi: 10.1145/3416506.3423580.3236

[395] Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for code gen-3237

eration and semantic parsing. In Proceedings of the 55th Annual Meeting of the Association3238

for Computational Linguistics (Volume 1: Long Papers), pages 1139--1149, July 2017. doi:3239

10.18653/v1/P17-1105.3240

[396] Alec Radford and Karthik Narasimhan. Improving language understanding by generative3241

pre-training. 2018.3242

[397] Akond Rahman, Priysha Pradhan, Asif Partho, and Laurie Williams. Predicting android appli-3243

cation security and privacy risk with static codemetrics. In Proceedings of the 4th International3244

Conference on Mobile Software Engineering and Systems, MOBILESoft '17, page 149–153, 2017.3245

ISBN 9781538626696. doi: 10.1109/MOBILESoft.2017.14.3246

[398] M. Rahman, YutakaWatanobe, and K. Nakamura. A neural network based intelligent support3247

model for program code completion. Sci. Program., 2020:7426461:1--7426461:18, 2020. doi:3248

10.1155/2020/7426461.3249

[399] M. M. Rahman, C. K. Roy, and I. Keivanloo. Recommending Insightful Comments for Source3250

Code using Crowdsourced Knowledge. In Proc. SCAM, pages 81--90, 2015.3251

[400] Santosh S Rathore and Sandeep Kumar. Software fault prediction based on the dynamic3252

selection of learning technique: findings from the eclipse project study. Applied Intelligence,3253

51(12):8945--8960, 2021.3254

[401] Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic model for code with decision3255

trees. SIGPLAN Not., 51(10):731–747, October 2016. ISSN 0362-1340. doi: 10.1145/3022671.3256

2984041.3257

[402] Sandeep Reddivari and Jayalakshmi Raman. Software quality prediction: an investigation3258

based on machine learning. In 2019 IEEE 20th International Conference on Information Reuse3259

and Integration for Data Science (IRI), pages 115--122. IEEE, 2019.3260

[403] Jiadong Ren, Zhangqi Zheng, Qian Liu, ZhiyaoWei, andHuaizhi Yan. A Buffer Overflow Predic-3261

tion ApproachBased on SoftwareMetrics andMachine Learning. Security and Communication3262

Networks, 2019:e8391425, March 2019. ISSN 1939-0114. doi: 10.1155/2019/8391425. URL3263

https://www.hindawi.com/journals/scn/2019/8391425/. Publisher: Hindawi.3264

[404] Jinsheng Ren, Ke Qin, Ying Ma, and Guangchun Luo. On software defect prediction using3265

machine learning. Journal of Applied Mathematics, 2014, 2014.3266

[405] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin3267

Wang. A survey of deep active learning. arXiv preprint arXiv:2009.00236, 2020.3268

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 84 of 98

https://www.hindawi.com/journals/scn/2019/8391425/

[406] Joseph Renzullo, Westley Weimer, and Stephanie Forrest. Multiplicative weights algorithms3269

for parallel automated software repair. In 2021 IEEE International Parallel and Distributed3270

Processing Symposium (IPDPS), pages 984--993. IEEE, 2021.3271

[407] Guillermo Rodriguez, Cristian Mateos, Luciano Listorti, Brian Hammer, and Sanjay Misra. A3272

novel unsupervised learning approach for assessing web services refactoring. In Robertas3273

Damaševičius and Giedrė Vasiljevienė, editors, Information and Software Technologies, pages3274

273--284, 2019. ISBN 978-3-030-30275-7.3275

[408] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsuper-3276

vised translation of programming languages. Advances in Neural Information Processing Sys-3277

tems, 33:20601--20611, 2020.3278

[409] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. Ellingwood, and M. Mc-3279

Conley. Automated vulnerability detection in source code using deep representation learn-3280

ing. In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA),3281

pages 757--762, 2018. doi: 10.1109/ICMLA.2018.00120.3282

[410] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur Ozdemir, Paul3283

Ellingwood, and Marc McConley. Automated vulnerability detection in source code using3284

deep representation learning. In 2018 17th IEEE International Conference on Machine Learning3285

and Applications (ICMLA), pages 757--762, 2018. doi: 10.1109/ICMLA.2018.00120.3286

[411] Antonino Sabetta and Michele Bezzi. A practical approach to the automatic classification of3287

security-relevant commits. In 2018 IEEE International conference on software maintenance and3288

evolution (ICSME), pages 579--582. IEEE, 2018.3289

[412] N. Saccente, J. Dehlinger, L. Deng, S. Chakraborty, and Y. Xiong. Project achilles: A prototype3290

tool for static method-level vulnerability detection of java source code using a recurrent neu-3291

ral network. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering3292

Workshop (ASEW), pages 114--121, 2019. doi: 10.1109/ASEW.2019.00040.3293

[413] Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen, and Satish Chandra.3294

Retrieval on source code: A neural code search. In Proceedings of the 2nd ACM SIGPLAN Inter-3295

national Workshop on Machine Learning and Programming Languages, MAPL 2018, page 31–41,3296

2018. ISBN 9781450358347. doi: 10.1145/3211346.3211353.3297

[414] Priyadarshni Suresh Sagar, Eman Abdulah AlOmar, Mohamed Wiem Mkaouer, Ali Ouni, and3298

Christian D. Newman. Comparing commit messages and source code metrics for the pre-3299

diction refactoring activities. Algorithms, 14(10), 2021. ISSN 1999-4893. doi: 10.3390/733_3300

Sagar2021. URL https://www.mdpi.com/1999-4893/14/10/289.3301

[415] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad. Elixir: Effective object-oriented program3302

repair. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering3303

(ASE), pages 648--659, 2017. doi: 10.1109/ASE.2017.8115675.3304

[416] S. Saha, R. k. Saha, and M. r. Prasad. Harnessing evolution for multi-hunk program repair. In3305

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages 13--24, 2019.3306

doi: 10.1109/ICSE.2019.00020.3307

[417] Islem Saidani, Ali Ouni, and Mohamed Wiem Mkaouer. Web service api anti-patterns de-3308

tection as a multi-label learning problem. In International Conference on Web Services, pages3309

114--132. Springer, 2020.3310

[418] Tara N Sainath, Brian Kingsbury, George Saon, Hagen Soltau, Abdel-rahman Mohamed,3311

George Dahl, and Bhuvana Ramabhadran. Deep convolutional neural networks for large-3312

scale speech tasks. Neural Networks, 64:39--48, 2015.3313

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 85 of 98

https://www.mdpi.com/1999-4893/14/10/289

[419] Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, and Ranjit Jhala.3314

Type error feedback via analytic program repair. In Proceedings of the 41st ACM SIGPLAN Con-3315

ference on Programming Language Design and Implementation, PLDI 2020, page 16–30, 2020.3316

ISBN 9781450376136. doi: 10.1145/3385412.3386005.3317

[420] Anush Sankaran, Rahul Aralikatte, Senthil Mani, Shreya Khare, Naveen Panwar, and Neela-3318

madhav Gantayat. DARVIZ: deep abstract representation, visualization, and verification of3319

deep learning models. CoRR, abs/1708.04915, 2017. URL http://arxiv.org/abs/1708.04915.3320

[421] E. A. Santos, J. C. Campbell, D. Patel, A. Hindle, and J. N. Amaral. Syntax and sensibility:3321

Using language models to detect and correct syntax errors. In 2018 IEEE 25th International3322

Conference on Software Analysis, Evolution and Reengineering (SANER), pages 311--322, 2018.3323

doi: 10.1109/SANER.2018.8330219.3324

[422] Igor Santos, Jaime Devesa, Félix Brezo, Javier Nieves, and Pablo Garcia Bringas. Opem: A3325

static-dynamic approach for machine-learning-based malware detection. In Álvaro Herrero,3326

Václav Snášel, Ajith Abraham, Ivan Zelinka, Bruno Baruque, Héctor Quintián, José Luis Calvo,3327

Javier Sedano, and Emilio Corchado, editors, International Joint Conference CISIS'12-ICEUTE´12-3328

SOCO´12 Special Sessions, pages 271--280, 2013. ISBN 978-3-642-33018-6.3329

[423] F. Sarro, S. Di Martino, F. Ferrucci, and C. Gravino. A further analysis on the use of genetic3330

algorithm to configure support vector machines for inter-release fault prediction. In Pro-3331

ceedings of the 27th Annual ACM Symposium on Applied Computing, SAC '12, page 1215–1220,3332

New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450308571. doi:3333

10.1145/2245276.2231967. URL https://doi.org/10.1145/2245276.2231967.3334

[424] J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of Software Engineering3335

Databases. School of Information Technology and Engineering, University ofOttawa, Canada,3336

2005. URL http://promise.site.uottawa.ca/SERepository.3337

[425] Max Eric Henry Schumacher, Kim Tuyen Le, and Artur Andrzejak. Improving code recom-3338

mendations by combining neural and classical machine learning approaches. In Proceedings3339

of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, ICSEW'20,3340

page 476–482, 2020. ISBN 9781450379632. doi: 10.1145/3387940.3391489.3341

[426] R. Schuster, Congzheng Song, Eran Tromer, and Vitaly Shmatikov. You autocompleteme: Poi-3342

soning vulnerabilities in neural code completion. In 30th USENIX Security Symposium (USENIX3343

Security 21), August 2021.3344

[427] T. Sethi and Gagandeep. Improved approach for software defect prediction using artifi-3345

cial neural networks. In 2016 5th International Conference on Reliability, Infocom Technolo-3346

gies and Optimization (Trends and Future Directions) (ICRITO), pages 480--485, 2016. doi:3347

10.1109/ICRITO.2016.7785003.3348

[428] Burr Settles. Active learning literature survey. 2009.3349

[429] Asaf Shabtai, Robert Moskovitch, Yuval Elovici, and Chanan Glezer. Detection of malicious3350

code by applying machine learning classifiers on static features: A state-of-the-art survey.3351

Information Security Technical Report, 14(1):16 -- 29, 2009. ISSN 1363-4127. doi: https://doi.3352

org/10.1016/j.istr.2009.03.003. Malware.3353

[430] L. K. Shar, L. C. Briand, and H. B. K. Tan. Web application vulnerability prediction using hy-3354

brid program analysis and machine learning. IEEE Transactions on Dependable and Secure3355

Computing, 12(6):688--707, 2015. doi: 10.1109/TDSC.2014.2373377.3356

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 86 of 98

http://arxiv.org/abs/1708.04915
https://doi.org/10.1145/2245276.2231967
http://promise.site.uottawa.ca/SERepository

[431] T. Sharma andM. Kessentini. Qscored: A large dataset of code smells and quality metrics. In3357

2021 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR) (MSR),3358

pages 590--594, Los Alamitos, CA, USA, may 2021. IEEE Computer Society. doi: 10.1109/3359

MSR52588.2021.00080. URL https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00080.3360

[432] Tushar Sharma. DesigniteJava, December 2018. URL https://doi.org/10.5281/zenodo.2566861.3361

https://github.com/tushartushar/DesigniteJava.3362

[433] Tushar Sharma. CodeSplit for C#, February 2019. URL https://doi.org/10.5281/zenodo.2566905.3363

[434] Tushar Sharma. CodeSplitJava, February 2019. URL https://doi.org/10.5281/zenodo.2566865.3364

https://github.com/tushartushar/CodeSplitJava.3365

[435] Tushar Sharma and Diomidis Spinellis. A survey on software smells. Journal of Systems and3366

Software, 138:158--173, 2018. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2017.12.034.3367

URL https://www.sciencedirect.com/science/article/pii/S0164121217303114.3368

[436] Tushar Sharma, Pratibha Mishra, and Rohit Tiwari. Designite --- A Software Design Quality3369

Assessment Tool. In Proceedings of the First International Workshop on Bringing Architecture De-3370

sign Thinking into Developers' Daily Activities, BRIDGE '16, 2016. doi: 10.1145/2896935.2896938.3371

[437] Tushar Sharma, Vasiliki Efstathiou, Panos Louridas, and Diomidis Spinellis. Code smell de-3372

tection by deep direct-learning and transfer-learning. Journal of Systems and Software, 176:3373

110936, 2021. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2021.110936.3374

[438] Tushar Sharma, Maria Kechagia, Stefanos Georgiou, Rohit Tiwari, Indira Vats, Hadi Moazen,3375

and Federica Sarro. Replication package for Machine Learning for Source Code Analysis3376

survey paper, Sept 2022. URL https://github.com/tushartushar/ML4SCA.3377

[439] Andrey Shedko, Ilya Palachev, Andrey Kvochko, Aleksandr Semenov, and Kwangwon Sun. Ap-3378

plying probabilistic models to c++ code on an industrial scale. In Proceedings of the IEEE/ACM3379

42nd International Conference on Software Engineering Workshops, ICSEW'20, page 595–602,3380

2020. ISBN 9781450379632. doi: 10.1145/3387940.3391477.3381

[440] Zhidong Shen and S. Chen. A survey of automatic software vulnerability detection,3382

program repair, and defect prediction techniques. Secur. Commun. Networks, 2020:3383

8858010:1--8858010:16, 2020.3384

[441] A. Sheneamer and J. Kalita. Semantic clone detection using machine learning. In 2016 15th3385

IEEE International Conference on Machine Learning and Applications (ICMLA), pages 1024--1028,3386

2016. doi: 10.1109/ICMLA.2016.0185.3387

[442] Ke Shi, Yang Lu, Jingfei Chang, and ZhenWei. Pathpair2vec: An ast path pair-based code rep-3388

resentation method for defect prediction. Journal of Computer Languages, 59:100979, 2020.3389

ISSN 2590-1184. doi: https://doi.org/10.1016/j.cola.2020.100979.3390

[443] Y. Shido, Y. Kobayashi, A. Yamamoto, A. Miyamoto, and T. Matsumura. Automatic source3391

code summarization with extended tree-lstm. In 2019 International Joint Conference on Neural3392

Networks (IJCNN), pages 1--8, 2019. doi: 10.1109/IJCNN.2019.8851751.3393

[444] S. Shim, P. Patil, R. R. Yadav, A. Shinde, and V. Devale. DeeperCoder: Code generation using3394

machine learning. In 2020 10th Annual Computing and Communication Workshop and Confer-3395

ence (CCWC), pages 0194--0199, 2020. doi: 10.1109/CCWC47524.2020.9031149.3396

[445] K. Shimonaka, S. Sumi, Y. Higo, and S. Kusumoto. Identifying auto-generated code by us-3397

ing machine learning techniques. In 2016 7th International Workshop on Empirical Software3398

Engineering in Practice (IWESEP), pages 18--23, 2016. doi: 10.1109/IWESEP.2016.18.3399

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 87 of 98

https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00080
https://doi.org/10.5281/zenodo.2566861
https://doi.org/10.5281/zenodo.2566905
https://doi.org/10.5281/zenodo.2566865
https://www.sciencedirect.com/science/article/pii/S0164121217303114
https://github.com/tushartushar/ML4SCA

[446] Eui Chul Shin, Miltiadis Allamanis, Marc Brockschmidt, and Alex Polozov. Program synthesis3400

and semantic parsing with learned code idioms. In Advances in Neural Information Processing3401

Systems, pages 10825--10835, 2019.3402

[447] Richard Shin, Neel Kant, Kavi Gupta, Chris Bender, Brandon Trabucco, Rishabh Singh, and3403

Dawn Song. Synthetic datasets for neural program synthesis. In International Conference on3404

Learning Representations, 2019.3405

[448] L. Shiqi, T. Shengwei, Y. Long, Y. Jiong, and S. Hua. Android malicious code Classification3406

using Deep Belief Network. KSII Transactions on Internet and Information Systems, 12:454--475,3407

January 2018. doi: 10.3837/tiis.2018.01.022.3408

[449] Chengxun Shu and Hongyu Zhang. Neural programming by example. CoRR, abs/1703.04990,3409

2017.3410

[450] Jianhang Shuai, Ling Xu, Chao Liu, Meng Yan, Xin Xia, and Yan Lei. Improving code search3411

with co-attentive representation learning. In Proceedings of the 28th International Conference3412

on Program Comprehension, ICPC '20, page 196–207, 2020. ISBN 9781450379588. doi: 10.3413

1145/3387904.3389269.3414

[451] Brahmaleen Kaur Sidhu, Kawaljeet Singh, and Neeraj Sharma. A machine learning approach3415

to software model refactoring. International Journal of Computers and Applications, 44(2):3416

166--177, 2022. doi: 10.1080/1206212X.2020.1711616. URL https://doi.org/10.1080/1206212X.3417

2020.1711616.3418

[452] Ajmer Singh, Rajesh Bhatia, and Anita Singhrova. Taxonomy of machine learning algorithms3419

in software fault prediction using object oriented metrics. Procedia computer science, 132:3420

993--1001, 2018.3421

[453] P. Singh and A. Chug. Software defect prediction analysis usingmachine learning algorithms.3422

In 2017 7th International Conference on Cloud Computing, Data Science Engineering - Confluence,3423

pages 775--781, 2017. doi: 10.1109/CONFLUENCE.2017.7943255.3424

[454] P. Singh and R. Malhotra. Assessment of machine learning algorithms for determining defec-3425

tive classes in an object-oriented software. In 2017 6th International Conference on Reliability,3426

Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), pages 204--209,3427

2017. doi: 10.1109/ICRITO.2017.8342425.3428

[455] R. Singh, J. Singh, M. S. Gill, R. Malhotra, and Garima. Transfer learning code vector-3429

izer based machine learning models for software defect prediction. In 2020 International3430

Conference on Computational Performance Evaluation (ComPE), pages 497--502, 2020. doi:3431

10.1109/ComPE49325.2020.9200076.3432

[456] Behjat Soltanifar, Shirin Akbarinasaji, Bora Caglayan, Ayse Basar Bener, Asli Filiz, andBryanM3433

Kramer. Software analytics in practice: a defect prediction model using code smells. In3434

Proceedings of the 20th International Database Engineering & Applications Symposium, pages3435

148--155, 2016.3436

[457] Qinbao Song, Yuchen Guo, and Martin Shepperd. A comprehensive investigation of the role3437

of imbalanced learning for software defect prediction. IEEE Transactions on Software Engineer-3438

ing, 45(12):1253--1269, 2019. doi: 10.1109/TSE.2018.2836442.3439

[458] Xiaotao Song, Hailong Sun, Xu Wang, and Jiafei Yan. A survey of automatic generation of3440

source code comments: Algorithms and techniques. IEEE Access, 7:111411--111428, 2019.3441

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 88 of 98

https://doi.org/10.1080/1206212X.2020.1711616
https://doi.org/10.1080/1206212X.2020.1711616
https://doi.org/10.1080/1206212X.2020.1711616

[459] M. Soto and C. Le Goues. Common statement kind changes to inform automatic program3442

repair. In 2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR),3443

pages 102--105, 2018.3444

[460] Bruno Sotto-Mayor and Meir Kalech. Cross-project smell-based defect prediction. Soft Com-3445

puting, 25(22):14171--14181, 2021.3446

[461] Michael Spreitzenbarth, Thomas Schreck, F. Echtler, D. Arp, and Johannes Hoffmann. Mobile-3447

sandbox: combining static and dynamic analysis with machine-learning techniques. Interna-3448

tional Journal of Information Security, 14:141--153, 2014.3449

[462] Sean Stapleton, Yashmeet Gambhir, Alexander LeClair, Zachary Eberhart, Westley Weimer,3450

Kevin Leach, and Yu Huang. A human study of comprehension and code summarization. In3451

Proceedings of the 28th International Conference on Program Comprehension, ICPC '20, page3452

2–13, 2020. ISBN 9781450379588. doi: 10.1145/3387904.3389258.3453

[463] M.-A. Storey. Theories, methods and tools in program comprehension: past, present and3454

future. In 13th International Workshop on Program Comprehension (IWPC'05), pages 181--191,3455

2005. doi: 10.1109/WPC.2005.38.3456

[464] Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow analysis in llvm. In Proceed-3457

ings of the 25th international conference on compiler construction, pages 265--266. ACM, 2016.3458

[465] Yulei Sui, Xiao Cheng, Guanqin Zhang, and HaoyuWang. Flow2vec: Value-flow-based precise3459

code embedding. Proc. ACM Program. Lang., 4(OOPSLA), November 2020. doi: 10.1145/3460

3428301.3461

[466] Kazi Zakia Sultana. Towards a software vulnerability prediction model using traceable code3462

patterns and software metrics. In 2017 32nd IEEE/ACM International Conference on Automated3463

Software Engineering (ASE), pages 1022--1025, 2017. doi: 10.1109/ASE.2017.8115724.3464

[467] Kazi Zakia Sultana, Vaibhav Anu, and Tai-Yin Chong. Using software metrics for predicting3465

vulnerable classes and methods in Java projects: A machine learning approach. Journal of3466

Software: Evolution and Process, 33(3):e2303, 2021. ISSN 2047-7481. doi: 10.1002/smr.2303.3467

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2303.3468

[468] Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. Treegen: A tree-3469

based transformer architecture for code generation. In Proceedings of the AAAI Conference on3470

Artificial Intelligence, volume 34, pages 8984--8991, 2020.3471

[469] Zhongbin Sun, Qinbao Song, and Xiaoyan Zhu. Using coding-based ensemble learning to3472

improve software defect prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part3473

C (Applications and Reviews), 42(6):1806--1817, 2012.3474

[470] Yeresime Suresh, Lov Kumar, and Santanu Ku Rath. Statistical and machine learning meth-3475

ods for software fault prediction using ck metric suite: a comparative analysis. International3476

Scholarly Research Notices, 2014, 2014.3477

[471] Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. Refactoring for Software De-3478

sign Smells: Managing Technical Debt. Morgan Kaufmann, 1 edition, 2014. ISBN 0128013974.3479

[472] Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy, and Mohammad Mamun3480

Mia. Towards a big data curated benchmark of inter-project code clones. In 2014 IEEE In-3481

ternational Conference on Software Maintenance and Evolution, pages 476--480, 2014. doi:3482

10.1109/ICSME.2014.77.3483

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 89 of 98

https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2303

[473] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. Pythia: Ai-assisted code3484

completion system. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-3485

edge Discovery & Data Mining, KDD '19, page 2727–2735, 2019. ISBN 9781450362016.3486

doi: 10.1145/3292500.3330699.3487

[474] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. Intellicode com-3488

pose: Code generation using transformer. In Proceedings of the 28th ACM Joint Meeting on3489

European Software Engineering Conference and Symposium on the Foundations of Software Engi-3490

neering, ESEC/FSE 2020, page 1433–1443, 2020. ISBN 9781450370431. doi: 10.1145/3368089.3491

3417058.3492

[475] Alexey Svyatkovskiy, Sebastian Lee, AnnaHadjitofi, Maik Riechert, Juliana Vicente Franco, and3493

Miltiadis Allamanis. Fast and memory-efficient neural code completion. In 2021 IEEE/ACM3494

18th International Conference on Mining Software Repositories (MSR), pages 329--340. IEEE,3495

2021.3496

[476] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,3497

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-3498

tions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages3499

1--9, 2015.3500

[477] Tomasz Szydlo, Joanna Sendorek, and Robert Brzoza-Woch. Enabling machine learning on3501

resource constrained devices by source code generation of the learned models. In Yong Shi,3502

Haohuan Fu, Yingjie Tian, Valeria V. Krzhizhanovskaya, Michael Harold Lees, Jack Dongarra,3503

and Peter M. A. Sloot, editors, Computational Science -- ICCS 2018, pages 682--694, 2018. ISBN3504

978-3-319-93701-4.3505

[478] Akiyoshi Takahashi, Hiromitsu Shiina, and Nobuyuki Kobayashi. Automatic generation of3506

program comments based on problem statements for computational thinking. In 2019 8th3507

International Congress on Advanced Applied Informatics (IIAI-AAI), pages 629--634. IEEE, 2019.3508

[479] K. Terada and Y. Watanobe. Code completion for programming education based on recur-3509

rent neural network. In 2019 IEEE 11th International Workshop on Computational Intelligence3510

and Applications (IWCIA), pages 109--114, 2019. doi: 10.1109/IWCIA47330.2019.8955090.3511

[480] H. Thaller, L. Linsbauer, and A. Egyed. Feature maps: A comprehensible software repre-3512

sentation for design pattern detection. In 2019 IEEE 26th International Conference on Software3513

Analysis, Evolution and Reengineering (SANER), pages 207--217, 2019. doi: 10.1109/SANER.2019.3514

8667978.3515

[481] P. Thongkum and S. Mekruksavanich. Design flaws prediction for impact on software main-3516

tainability using extreme learning machine. In 2020 Joint International Conference on Digi-3517

tal Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics,3518

Computer and Telecommunications Engineering (ECTI DAMT NCON), pages 79--82, 2020. doi:3519

10.1109/ECTIDAMTNCON48261.2020.9090717.3520

[482] Patanamon Thongtanunam, Chanathip Pornprasit, and Chakkrit Tantithamthavorn. Auto-3521

transform: Automated code transformation to support modern code review process. 2022.3522

[483] H. Tian, K. Liu, A. K. Kaboré, A. Koyuncu, L. Li, J. Klein, and T. F. Bissyandé. Evaluating repre-3523

sentation learning of code changes for predicting patch correctness in program repair. In3524

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages3525

981--992, 2020.3526

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 90 of 98

[484] Irene Tollin, Francesca Arcelli Fontana, Marco Zanoni, and Riccardo Roveda. Change pre-3527

diction through coding rules violations. In Proceedings of the 21st International Conference3528

on Evaluation and Assessment in Software Engineering, EASE'17, page 61–64, 2017. ISBN3529

9781450348041. doi: 10.1145/3084226.3084282.3530

[485] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,3531

Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas3532

Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernan-3533

des, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal,3534

Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez,3535

Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,3536

Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mi-3537

haylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi3538

Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian,3539

Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng3540

Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien3541

Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation3542

and fine-tuned chat models, 2023.3543

[486] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. Refactoringminer 2.0. IEEE Transactions3544

on Software Engineering, 2020. doi: 10.1109/TSE.2020.3007722.3545

[487] Angeliki-Agathi Tsintzira, Elvira-Maria Arvanitou, Apostolos Ampatzoglou, and Alexander3546

Chatzigeorgiou. Applying machine learning in technical debt management: Future oppor-3547

tunities and challenges. In Martin Shepperd, Fernando Brito e Abreu, Alberto Rodrigues da3548

Silva, and Ricardo Pérez-Castillo, editors, Quality of Information and Communications Technol-3549

ogy, pages 53--67, 2020. ISBN 978-3-030-58793-2.3550

[488] Naohiko Tsuda, Hironori Washizaki, Yoshiaki Fukazawa, Yuichiro Yasuda, and Shunsuke Sug-3551

imura. Machine learning to evaluate evolvability defects: Codemetrics thresholds for a given3552

context. In 2018 IEEE International Conference on Software Quality, Reliability and Security (QRS),3553

pages 83--94, 2018. doi: 10.1109/QRS.2018.00022.3554

[489] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk. On learning meaningful3555

code changes via neural machine translation. In 2019 IEEE/ACM 41st International Conference3556

on Software Engineering (ICSE), pages 25--36, 2019. doi: 10.1109/ICSE.2019.00021.3557

[490] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and3558

Denys Poshyvanyk. Deep learning similarities from different representations of source code.3559

MSR '18, page 542–553, 2018. ISBN 9781450357166. doi: 10.1145/3196398.3196431.3560

[491] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and3561

Denys Poshyvanyk. Learning how to mutate source code from bug-fixes. In 2019 IEEE In-3562

ternational Conference on Software Maintenance and Evolution (ICSME), pages 301--312. IEEE,3563

2019.3564

[492] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and3565

Denys Poshyvanyk. An empirical study on learning bug-fixing patches in the wild via neural3566

machine translation. ACM Trans. Softw. Eng. Methodol., 28(4), September 2019. ISSN 1049-3567

331X. doi: 10.1145/3340544.3568

[493] Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, and Gabriele Bavota.3569

Towards automating code review activities. In 2021 IEEE/ACM 43rd International Conference3570

on Software Engineering (ICSE), pages 163--174. IEEE, 2021.3571

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 91 of 98

[494] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys Poshyvanyk,3572

and Gabriele Bavota. Using pre-trained models to boost code review automation. arXiv3573

preprint arXiv:2201.06850, 2022.3574

[495] Sahithi Tummalapalli, Lov Kumar, and Lalita BhanuMurthy Neti. An empirical framework for3575

web service anti-pattern prediction using machine learning techniques. In 2019 9th Annual3576

Information Technology, Electromechanical Engineering and Microelectronics Conference (IEME-3577

CON), pages 137--143. IEEE, 2019.3578

[496] Sahithi Tummalapalli, Lov Kumar, and N. L. Bhanu Murthy. Prediction of web service anti-3579

patterns using aggregate software metrics and machine learning techniques. In Proceedings3580

of the 13th Innovations in Software Engineering Conference on Formerly Known as India Soft-3581

ware Engineering Conference, ISEC 2020, 2020. ISBN 9781450375948. doi: 10.1145/3385032.3582

3385042.3583

[497] Sahithi Tummalapalli, NL Murthy, Aneesh Krishna, et al. Detection of web service anti-3584

patterns using neural networks with multiple layers. In International Conference on Neural3585

Information Processing, pages 571--579. Springer, 2020.3586

[498] Sahithi Tummalapalli, Lov Kumar, Lalitha BhanuMurthy Neti, Vipul Kocher, and Srinivas Pad-3587

manabhuni. A novel approach for the detection of web service anti-patterns using word3588

embedding techniques. In International Conference on Computational Science and Its Applica-3589

tions, pages 217--230. Springer, 2021.3590

[499] Sahithi Tummalapalli, Juhi Mittal, Lov Kumar, Lalitha BhanuMurthy Neti, and Santanu Kumar3591

Rath. An empirical analysis on the prediction of web service anti-patterns using source code3592

metrics and ensemble techniques. In International Conference on Computational Science and3593

Its Applications, pages 263--276. Springer, 2021.3594

[500] Sahithi Tummalapalli, Lov Kumar, NL Bhanu Murthy, and Aneesh Krishna. Detection of web3595

service anti-patterns using weighted extreme learning machine. Computer Standards & Inter-3596

faces, page 103621, 2022.3597

[501] Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. Survey ofmachine learning techniques3598

for malware analysis. Computers & Security, 81:123 -- 147, 2019. ISSN 0167-4048. doi: https:3599

//doi.org/10.1016/j.cose.2018.11.001.3600

[502] S. Uchiyama, A. Kubo, H. Washizaki, and Y. Fukazawa. Detecting design patterns in object-3601

oriented program source code by using metrics and machine learning. Journal of Software3602

Engineering and Applications, 07:983--998, 2014.3603

[503] Anderson Uchôa, Caio Barbosa, Daniel Coutinho, Willian Oizumi, Wesley KG Assunçao, Sil-3604

via Regina Vergilio, Juliana Alves Pereira, Anderson Oliveira, and Alessandro Garcia. Predict-3605

ing design impactful changes in modern code review: A large-scale empirical study. In 20213606

IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), pages 471--482.3607

IEEE, 2021.3608

[504] Secil Ugurel, Robert Krovetz, and C. Lee Giles. What's the code? automatic classification of3609

source code archives. In Proceedings of the Eighth ACM SIGKDD International Conference on3610

Knowledge Discovery and Data Mining, KDD '02, page 632–638, 2002. ISBN 158113567X. doi:3611

10.1145/775047.775141.3612

[505] M. Utting, B. Legeard, F. Dadeau, F. Tamagnan, and F. Bouquet. Identifying and generating3613

missing tests using machine learning on execution traces. In 2020 IEEE International Confer-3614

ence On Artificial Intelligence Testing (AITest), pages 83--90, 2020. doi: 10.1109/AITEST49225.3615

2020.00020.3616

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 92 of 98

[506] Hoang Van Thuy, Phan Viet Anh, and Nguyen Xuan Hoai. Automated large program repair3617

based on big code. In Proceedings of the Ninth International Symposium on Information and3618

Communication Technology, SoICT 2018, pages 375?--381, 2018. ISBN 9781450365390. doi:3619

10.1145/3287921.3287958.3620

[507] Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh Singh. Neural pro-3621

gram repair by jointly learning to localize and repair, 04 2019.3622

[508] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,3623

Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,3624

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neu-3625

ral Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https:3626

//proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.3627

[509] B. A. Vishnu and K. P. Jevitha. Prediction of cross-site scripting attack using machine learning3628

algorithms. In Proceedings of the 2014 International Conference on Interdisciplinary Advances3629

in Applied Computing, ICONIAAC '14, New York, NY, USA, 2014. Association for Computing3630

Machinery. ISBN 9781450329088. doi: 10.1145/2660859.2660969. URL https://doi.org/10.3631

1145/2660859.2660969.3632

[510] Nickolay Viuginov and Andrey Filchenkov. A machine learning based automatic folding of3633

dynamically typed languages. In Proceedings of the 3rd ACM SIGSOFT International Workshop3634

onMachine Learning Techniques for Software Quality Evaluation, MaLTeSQuE 2019, page 31–36,3635

2019. ISBN 9781450368551. doi: 10.1145/3340482.3342746.3636

[511] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and Philip S. Yu.3637

Improving automatic source code summarization via deep reinforcement learning. In Pro-3638

ceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE3639

2018, page 397–407, 2018. ISBN 9781450359375. doi: 10.1145/3238147.3238206.3640

[512] Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, and Philip S. Yu. Multi-3641

modal attention network learning for semantic source code retrieval. In Proceedings of3642

the 34th IEEE/ACM International Conference on Automated Software Engineering, ASE '19, page3643

13–25, 2019. ISBN 9781728125084. doi: 10.1109/ASE.2019.00012.3644

[513] Z. Wan, X. Xia, D. Lo, and G. C. Murphy. How does machine learning change software3645

development practices? IEEE Transactions on Software Engineering, pages 1--1, 2019. doi:3646

10.1109/TSE.2019.2937083.3647

[514] Deze Wang, Wei Dong, and Shanshan Li. A multi-task representation learning approach3648

for source code. In Proceedings of the 1st ACM SIGSOFT International Workshop on Representa-3649

tion Learning for Software Engineering and Program Languages, RL+SE&PL 2020, page 1–2,3650

2020. ISBN 9781450381253. doi: 10.1145/3416506.3423575.3651

[515] Haoye Wang, Xin Xia, David Lo, Qiang He, Xinyu Wang, and John Grundy. Context-aware3652

retrieval-based deep commit message generation. ACM Transactions on Software Engineering3653

and Methodology (TOSEM), 30(4):1--30, 2021.3654

[516] R. Wang, H. Zhang, G. Lu, L. Lyu, and C. Lyu. Fret: Functional reinforced transformer with3655

bert for code summarization. IEEE Access, 8:135591--135604, 2020. doi: 10.1109/ACCESS.3656

2020.3011744.3657

[517] S. Wang and X. Yao. Using class imbalance learning for software defect prediction. IEEE3658

Transactions on Reliability, 62(2):434--443, 2013. doi: 10.1109/TR.2013.2259203.3659

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 93 of 98

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/2660859.2660969
https://doi.org/10.1145/2660859.2660969
https://doi.org/10.1145/2660859.2660969

[518] S. Wang, M. Wen, L. Chen, X. Yi, and X. Mao. How different is it between machine-generated3660

and developer-provided patches? : An empirical study on the correct patches generated by3661

automated program repair techniques. In 2019 ACM/IEEE International Symposium on Empiri-3662

cal Software Engineering and Measurement (ESEM), pages 1--12, 2019. doi: 10.1109/ESEM.2019.3663

8870172.3664

[519] Shuai Wang, Jinyang Liu, Ye Qiu, Zhiyi Ma, Junfei Liu, and Zhonghai Wu. Deep learning3665

based code completion models for programming codes. In Proceedings of the 2019 3rd In-3666

ternational Symposium on Computer Science and Intelligent Control, ISCSIC 2019, 2019. ISBN3667

9781450376617. doi: 10.1145/3386164.3389083.3668

[520] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning semantic features for defect3669

prediction. In Proceedings of the 38th International Conference on Software Engineering, ICSE3670

'16, page 297–308, 2016. ISBN 9781450339001. doi: 10.1145/2884781.2884804.3671

[521] Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan. Deep semantic feature learning for soft-3672

ware defect prediction. IEEE Transactions on Software Engineering, 46(12):1267--1293, 2018.3673

[522] Tiejian Wang, Zhiwu Zhang, Xiaoyuan Jing, and Liqiang Zhang. Multiple kernel ensemble3674

learning for software defect prediction. Automated Software Engineering, 23(4):569--590,3675

2016.3676

[523] W. Wang, Y. Zhang, Y. Sui, Y. Wan, Z. Zhao, J. Wu, P. Yu, and G. Xu. Reinforcement-learning-3677

guided source code summarization via hierarchical attention. IEEE Transactions on Software3678

Engineering, pages 1--1, 2020. doi: 10.1109/TSE.2020.2979701.3679

[524] Wei Wang and Michael W. Godfrey. Recommending clones for refactoring using design, con-3680

text, and history. In 2014 IEEE International Conference on Software Maintenance and Evolution,3681

pages 331--340, 2014. doi: 10.1109/ICSME.2014.55.3682

[525] Wenhan Wang, Ge Li, Sijie Shen, Xin Xia, and Zhi Jin. Modular tree network for source code3683

representation learning. ACM Trans. Softw. Eng. Methodol., 29(4), September 2020. ISSN 1049-3684

331X. doi: 10.1145/3409331.3685

[526] Wenhua Wang, Yuqun Zhang, Yulei Sui, Yao Wan, Zhou Zhao, Jian Wu, Philip Yu, and Guan-3686

dong Xu. Reinforcement-learning-guided source code summarization via hierarchical atten-3687

tion. IEEE Transactions on software Engineering, 2020.3688

[527] Xinda Wang, Shu Wang, Kun Sun, Archer Batcheller, and Sushil Jajodia. A machine learning3689

approach to classify security patches into vulnerability types. In 2020 IEEE Conference on3690

Communications and Network Security (CNS), pages 1--9, 2020. doi: 10.1109/CNS48642.2020.3691

9162237.3692

[528] Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang. Learning semantic program embed-3693

dings with graph interval neural network. Proc. ACM Program. Lang., 4(OOPSLA), November3694

2020. doi: 10.1145/3428205.3695

[529] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5: Identifier-aware uni-3696

fied pre-trained encoder-decoder models for code understanding and generation. In Pro-3697

ceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages3698

8696--8708, Online and Punta Cana, Dominican Republic, November 2021. Association for3699

Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.685. URL https://aclanthology.3700

org/2021.emnlp-main.685.3701

[530] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. Code generation as a dual task of code sum-3702

marization. Advances in neural information processing systems, 32, 2019.3703

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 94 of 98

https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685

[531] Linfeng Wei, Weiqi Luo, Jian Weng, Yanjun Zhong, Xiaoqian Zhang, and Zheng Yan. Machine3704

learning-basedmalicious application detection of android. IEEE Access, 5:25591--25601, 2017.3705

doi: 10.1109/ACCESS.2017.2771470.3706

[532] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. Deep learn-3707

ing code fragments for code clone detection. In Proceedings of the 31st IEEE/ACM Interna-3708

tional Conference on Automated Software Engineering, ASE 2016, page 87–98, 2016. ISBN3709

9781450338455. doi: 10.1145/2970276.2970326.3710

[533] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys Poshyvanyk.3711

Sorting and transforming program repair ingredients via deep learning code similarities.3712

In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering3713

(SANER), pages 479--490. IEEE, 2019.3714

[534] Liwei Wu, Fei Li, Youhua Wu, and Tao Zheng. GGF: A graph-based method for programming3715

language syntax error correction. In Proceedings of the 28th International Conference on Pro-3716

gram Comprehension, ICPC '20, pages 139–--148. Association for ComputingMachinery, 2020.3717

ISBN 9781450379588. doi: 10.1145/3387904.3389252.3718

[535] L. Xiao, HuaiKou Miao, Tingting Shi, and Y. Hong. Lstm-based deep learning for spatial–tem-3719

poral software testing. Distributed and Parallel Databases, pages 1--26, 2020.3720

[536] R. Xie, W. Ye, J. Sun, and S. Zhang. Exploiting method names to improve code summa-3721

rization: A deliberation multi-task learning approach. In 2021 2021 IEEE/ACM 29th Interna-3722

tional Conference on Program Comprehension (ICPC) (ICPC), pages 138--148, may 2021. doi:3723

10.1109/ICPC52881.2021.00022.3724

[537] Yingfei Xiong, Bo Wang, Guirong Fu, and Linfei Zang. Learning to synthesize. In Proceedings3725

of the 4th International Workshop on Genetic Improvement Workshop, GI '18, page 37–44, 2018.3726

ISBN 9781450357531. doi: 10.1145/3194810.3194816.3727

[538] Sihan Xu, Aishwarya Sivaraman, Siau-Cheng Khoo, and Jing Xu. Gems: An extract method3728

refactoring recommender. In 2017 IEEE 28th International Symposium on Software Reliability3729

Engineering (ISSRE), pages 24--34, 2017. doi: 10.1109/ISSRE.2017.35.3730

[539] Sihan Xu, Sen Zhang, Weijing Wang, Xinya Cao, Chenkai Guo, and Jing Xu. Method name sug-3731

gestion with hierarchical attention networks. In Proceedings of the 2019 ACM SIGPLAN Work-3732

shop on Partial Evaluation and Program Manipulation, PEPM 2019, page 10–21, 2019. ISBN3733

9781450362269. doi: 10.1145/3294032.3294079.3734

[540] Eran Yahav. From programs to interpretable deep models and back. In Hana Chockler and3735

Georg Weissenbacher, editors, Computer Aided Verification, pages 27--37, 2018. ISBN 978-3-3736

319-96145-3.3737

[541] Hangfeng Yang, Shudong Li, Xiaobo Wu, Hui Lu, and Weihong Han. A novel solutions for3738

malicious code detection and family clustering based on machine learning. IEEE Access, 7:3739

148853--148860, 2019. doi: 10.1109/ACCESS.2019.2946482.3740

[542] Jiachen Yang, K. Hotta, Yoshiki Higo, H. Igaki, and S. Kusumoto. Classification model for code3741

clones based on machine learning. Empirical Software Engineering, 20:1095--1125, 2014.3742

[543] Mutian Yang, JingzhengWu, Shouling Ji, Tianyue Luo, and YanjunWu. Pre-patch: Find hidden3743

threats in open software based onmachine learningmethod. In Alvin Yang, Siva Kantamneni,3744

Ying Li, Awel Dico, XiangangChen, Rajesh Subramanyan, and Liang-Jie Zhang, editors, Services3745

-- SERVICES 2018, pages 48--65, 2018. ISBN 978-3-319-94472-2.3746

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 95 of 98

[544] Yanming Yang, Xin Xia, David Lo, and John Grundy. A survey on deep learning for software3747

engineering. ACM Comput. Surv., 54(10s), sep 2022. ISSN 0360-0300. doi: 10.1145/3505243.3748

URL https://doi.org/10.1145/3505243.3749

[545] Yixiao Yang, Xiang Chen, and Jiaguang Sun. Improve languagemodeling for code completion3750

through learning general token repetition of source code with optimized memory. Interna-3751

tional Journal of Software Engineering and Knowledge Engineering, 29(11n12):1801--1818, 2019.3752

doi: 10.1142/S0218194019400229.3753

[546] Z. Yang, J. Keung, X. Yu, X. Gu, Z. Wei, X. Ma, and M. Zhang. A multi-modal transformer-based3754

code summarization approach for smart contracts. In 2021 2021 IEEE/ACM 29th International3755

Conference on Program Comprehension (ICPC) (ICPC), pages 1--12, may 2021. doi: 10.1109/3756

ICPC52881.2021.00010.3757

[547] Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan Sun. Staqc: A systematically mined3758

question-code dataset from stack overflow. In Proceedings of the 2018 World Wide Web3759

Conference, WWW '18, page 1693–1703, Republic and Canton of Geneva, CHE, 2018. Inter-3760

national World Wide Web Conferences Steering Committee. ISBN 9781450356398. doi:3761

10.1145/3178876.3186081. URL https://doi.org/10.1145/3178876.3186081.3762

[548] Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan Sun. Coacor: Code annotation for code3763

retrieval with reinforcement learning. In The World Wide Web Conference, WWW '19, page3764

2203–2214, 2019. ISBN 9781450366748. doi: 10.1145/3308558.3313632.3765

[549] Wei Ye, Rui Xie, Jinglei Zhang, Tianxiang Hu, Xiaoyin Wang, and Shikun Zhang. Leveraging3766

code generation to improve code retrieval and summarization via dual learning. In Proceed-3767

ings of The Web Conference 2020, WWW '20, page 2309–2319, 2020. ISBN 9781450370233.3768

doi: 10.1145/3366423.3380295.3769

[550] Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-Wei Chang, and Jina Suh. The value3770

of semantic parse labeling for knowledge base question answering. In Proceedings of the3771

54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),3772

pages 201--206, Berlin, Germany, August 2016. Association for Computational Linguistics.3773

doi: 10.18653/v1/P16-2033.3774

[551] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code3775

generation. In Proceedings of the 55th Annual Meeting of the Association for Computational3776

Linguistics (Volume 1: Long Papers), pages 440--450, July 2017. doi: 10.18653/v1/P17-1041.3777

[552] Pengcheng Yin and GrahamNeubig. Tranx: A transition-based neural abstract syntax parser3778

for semantic parsing and code generation. arXiv preprint arXiv:1810.02720, 2018.3779

[553] Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learning3780

to mine aligned code and natural language pairs from Stack Overflow. In Proceedings of3781

the 15th International Conference on Mining Software Repositories, MSR '18, pages 476--486,3782

New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450357166. doi:3783

10.1145/3196398.3196408.3784

[554] Chubato Wondaferaw Yohannese and Tianrui Li. A combined-learning based framework for3785

improved software fault prediction. International Journal of Computational Intelligence Systems,3786

10(1):647, 2017.3787

[555] Veneta Yosifova, Antoniya Tasheva, and Roumen Trifonov. Predicting vulnerability type in3788

common vulnerabilities and exposures (cve) database with machine learning classifiers. In3789

2021 12th National Conference with International Participation (ELECTRONICA), pages 1--6, 2021.3790

doi: 10.1109/ELECTRONICA52725.2021.9513723.3791

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 96 of 98

https://doi.org/10.1145/3505243
https://doi.org/10.1145/3178876.3186081

[556] Awad A. Younis and Yashwant K. Malaiya. Using software structure to predict vulnerability3792

exploitation potential. In 2014 IEEE Eighth International Conference on Software Security and3793

Reliability-Companion, pages 13--18, 2014. doi: 10.1109/SERE-C.2014.17.3794

[557] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene3795

Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale3796

human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL3797

task. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Process-3798

ing, pages 3911--3921, Brussels, Belgium, October-November 2018. Association for Compu-3799

tational Linguistics. doi: 10.18653/v1/D18-1425. URL https://aclanthology.org/D18-1425.3800

[558] R. Yue, Z. Gao, N. Meng, Y. Xiong, X. Wang, and J. D. Morgenthaler. Automatic clone rec-3801

ommendation for refactoring based on the present and the past. In 2018 IEEE Interna-3802

tional Conference on Software Maintenance and Evolution (ICSME), pages 115--126, 2018. doi:3803

10.1109/ICSME.2018.00021.3804

[559] Marco Zanoni, Francesca Arcelli Fontana, and Fabio Stella. On applying machine learning3805

techniques for design pattern detection. Journal of Systems and Software, 103:102--117, 2015.3806

[560] Chunyan Zhang, Junchao Wang, Qinglei Zhou, Ting Xu, Ke Tang, Hairen Gui, and Fudong Liu.3807

A survey of automatic source code summarization. Symmetry, 14(3):471, 2022.3808

[561] Du Zhang and Jeffrey J. P. Tsai. Machine learning and software engineering. Software Quality3809

Journal, 11(2):87–119, June 2003. ISSN 0963-9314. doi: 10.1023/A:1023760326768.3810

[562] Fanlong Zhang and Siau-cheng Khoo. An empirical study on clone consistency prediction3811

based on machine learning. Information and Software Technology, 136:106573, 2021.3812

[563] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu. A novel neural source code repre-3813

sentation based on abstract syntax tree. In 2019 IEEE/ACM 41st International Conference on3814

Software Engineering (ICSE), pages 783--794, 2019. doi: 10.1109/ICSE.2019.00086.3815

[564] J. M. Zhang, M. Harman, L. Ma, and Y. Liu. Machine learning testing: Survey, landscapes and3816

horizons. IEEE Transactions on Software Engineering, pages 1--1, 2020. doi: 10.1109/TSE.2019.3817

2962027.3818

[565] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. Retrieval-based neural3819

source code summarization. In Proceedings of the ACM/IEEE 42nd International Conference on3820

Software Engineering, ICSE '20, page 1385–1397, 2020. ISBN 9781450371216. doi: 10.1145/3821

3377811.3380383.3822

[566] Jie M. Zhang and Mark Harman. "ignorance and prejudice" in software fairness. In 20213823

IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pages 1436--1447, 2021.3824

doi: 10.1109/ICSE43902.2021.00129.3825

[567] Jinglei Zhang, Rui Xie, Wei Ye, Yuhan Zhang, and Shikun Zhang. Exploiting code knowledge3826

graph for bug localization via bi-directional attention. In Proceedings of the 28th International3827

Conference on Program Comprehension, ICPC '20, pages 219–--229. Association for Computing3828

Machinery, 2020. ISBN 9781450379588. doi: 10.1145/3387904.3389281.3829

[568] Q. Zhang and B. Wu. Software defect prediction via transformer. In 2020 IEEE 4th Information3830

Technology, Networking, Electronic and Automation Control Conference (ITNEC), volume 1, pages3831

874--879, 2020. doi: 10.1109/ITNEC48623.2020.9084745.3832

[569] Yang Zhang and Chunhao Dong. Mars: Detecting brain class/method code smell based on3833

metric--attentionmechanismand residual network. Journal of Software: Evolution and Process,3834

page e2403, 2021.3835

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 97 of 98

https://aclanthology.org/D18-1425

[570] Yu Zhang and Binglong Li. Malicious code detection based on code semantic features. IEEE3836

Access, 8:176728--176737, 2020. doi: 10.1109/ACCESS.2020.3026052.3837

[571] Gang Zhao and JeffHuang. Deepsim: Deep learning code functional similarity. In Proceedings3838

of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Sympo-3839

sium on the Foundations of Software Engineering, ESEC/FSE 2018, page 141–151, 2018. ISBN3840

9781450355735. doi: 10.1145/3236024.3236068.3841

[572] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,3842

Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,3843

Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong3844

Wen. A survey of large language models, 2023.3845

[573] Wei Zheng, Jialiang Gao, Xiaoxue Wu, Fengyu Liu, Yuxing Xun, Guoliang Liu, and Xiang Chen.3846

The impact factors on the performance of machine learning-based vulnerability detection: A3847

comparative study. Journal of Systems and Software, 168:110659, 2020. ISSN 0164-1212. doi:3848

https://doi.org/10.1016/j.jss.2020.110659.3849

[574] Wenhao Zheng, Hongyu Zhou, Ming Li, and Jianxin Wu. Codeattention: translating source3850

code to comments by exploiting the code constructs. Frontiers of Computer Science, 13(3):3851

565--578, 2019.3852

[575] Chaoliang Zhong, Ming Yang, and Jun Sun. Javascript code suggestion based on deep learn-3853

ing. In Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence,3854

ICIAI 2019, page 145–149, 2019. ISBN 9781450361286. doi: 10.1145/3319921.3319922.3855

[576] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries3856

from natural language using reinforcement learning, 2017. URL https://arxiv.org/abs/1709.3857

00103.3858

[577] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and evolution.3859

In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP '12, page 95–109, 2012.3860

ISBN 9780769546810. doi: 10.1109/SP.2012.16.3861

[578] Yu Zhou, Xin Yan, Wenhua Yang, Taolue Chen, and Zhiqiu Huang. Augmenting java method3862

comments generationwith context information based on neural networks. Journal of Systems3863

and Software, 156:328--340, 2019. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2019.07.3864

087. URL https://www.sciencedirect.com/science/article/pii/S0164121219301529.3865

[579] Yu Zhou, Xin Yan, Wenhua Yang, Taolue Chen, and Zhiqiu Huang. Augmenting java method3866

comments generationwith context information based on neural networks. Journal of Systems3867

and Software, 156:328--340, 2019.3868

[580] Yu Zhou, Juanjuan Shen, Xiaoqing Zhang, Wenhua Yang, Tingting Han, and Taolue Chen. Au-3869

tomatic source code summarization with graph attention networks. Journal of Systems and3870

Software, 188:111257, 2022.3871

[581] Ziyi Zhou, Huiqun Yu, and Guisheng Fan. Adversarial training and ensemble learning for au-3872

tomatic code summarization. Neural Computing and Applications, 33(19):12571--12589, 2021.3873

[582] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong, and Lu Zhang.3874

A syntax-guided edit decoder for neural program repair. In Proceedings of the 29th ACM Joint3875

Meeting on European Software Engineering Conference and Symposium on the Foundations of3876

Software Engineering, pages 341--353, 2021.3877

[583] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting defects for eclipse.3878

In Third International Workshop on Predictor Models in Software Engineering (PROMISE'07: ICSE3879

Workshops 2007), pages 9--9, 2007. doi: 10.1109/PROMISE.2007.10.3880

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 98 of 98

https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://www.sciencedirect.com/science/article/pii/S0164121219301529

	Introduction
	Methodology
	Research objectives
	Literature search protocol
	Literature search—Phase 1
	Literature search—Phase 2
	Literature search—Phase 3
	Literature search—Phase 4

	Assigning articles to software engineering task categories

	Literature Survey Results
	Code representation
	Testing
	Test data and test cases generation

	Program synthesis
	Program repair
	Code generation
	Program translation

	Quality assessment
	Code smell detection
	Code clone detection
	Defect prediction
	Quality assessment/prediction

	Code completion
	Program Comprehension
	Code summarization
	Program classification
	Change analysis
	Entity identification/recommendation

	Code review
	Code search
	Refactoring
	Vulnerability analysis
	Summary

	Datasets and Tools
	Challenges and Perceived Deficiencies
	Threats to validity
	Conclusions

