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Abstract9

The advancements in machine learning techniques have encouraged researchers to apply these10

techniques to a myriad of software engineering tasks that use source code analysis, such as11

testing and vulnerability detection. Such a large number of studies hinders the community from12

understanding the current research landscape. This paper aims to summarize the current13

knowledge in applied machine learning for source code analysis. We review studies belonging to14

twelve categories of software engineering tasks and corresponding machine learning techniques,15

tools, and datasets that have been applied to solve them. To do so, we conducted an extensive16

literature search and identified 494 studies. We summarize our observations and findings with17

the help of the identified studies. Our findings suggest that the use of machine learning18

techniques for source code analysis tasks is consistently increasing. We synthesize commonly19

used steps and the overall workflow for each task and summarize machine learning techniques20

employed. We identify a comprehensive list of available datasets and tools useable in this21

context. Finally, the paper discusses perceived challenges in this area, including the availability of22

standard datasets, reproducibility and replicability, and hardware resources.23

24

Keywords: Machine learning for software engineering, source code analysis, deep learning, datasets,25

tools.26

1. Introduction27

In the last two decades, we have witnessed significant advancements in Machine Learning (ml),28

including Deep Learning (dl) techniques, specifically in the domain of image [237, 476], text [255, 4],29

and speech [418, 166, 165] processing. These advancements, coupled with a large amount of30

open-source code and associated artifacts, as well as the availability of accelerated hardware, have31

encouraged researchers and practitioners to use ml techniques to address software engineering32

problems [513, 561, 27, 248, 34].33

The software engineering community has employed ml and dl techniques for a variety of appli-34

cations such as software testing [275, 361, 564], source code representation [27, 191], source code35

quality analysis [34, 45], program synthesis [248, 540], code completion [288], refactoring [40],36

code summarization [295, 252, 24], and vulnerability analysis [440, 429, 501] that involve source37

code analysis. As the field of Machine Learning for Software Engineering (ml4se) is expanding, the38

number of available resources, methods, and techniques as well as tools and datasets, is also in-39

creasing. This poses a challenge, to both researchers and practitioners, to fully comprehend the40

landscape of the available resources and infer the potential directions that the field is taking. In41
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this context, literature surveys play an important role in understanding existing research, finding42

gaps in research or practice, and exploring opportunities to improve the state of the art. By sys-43

tematically examining existing literature, surveys may uncover hidden patterns, recurring themes,44

and promising research directions. Surveys also identify untapped opportunities and formulation45

of new hypotheses. A survey also serves as an educational tool, offering comprehensive coverage46

of the field to a newcomer.47

In fact, there have beennumerous recent attempts to summarize the application-specific knowl-48

edge in the form of surveys. For example, Allamanis et al. [27] present key methods to model49

source code using ml techniques. Shen and Chen [440] provide a summary of research methods50

associatedwith software vulnerability detection, software program repair, and software defect pre-51

diction. Durelli et al. [132] collect 48 primary studies focusing on software testing using machine52

learning. Alsolai and Roper [34] present a systematic review of 56 studies related to maintain-53

ability prediction using ml techniques. Recent surveys [487, 13, 45] summarize application of ml54

techniques on software code smells and technical debt identification. Similarly, literature reviews55

on program synthesis [248] and code summarization [348] have been attempted. We compare56

in Table 1 the aspects investigated in our survey with respect to existing surveys that review ml57

techniques for topics such as testing, vulnerabilities, and program comprehension with our sur-58

vey. Existing studies, in general, kept their focus on only one category; due to that readers could59

not grasp existing literature belonging to various software engineering categories in a consistent60

form. In addition, existing surveys do not always provide datasets and tools in the field. Our survey,61

covers a wide range of software engineering activities; it summarizes a significantly large number62

of studies; it systematically examines available tools and datasets for ml that would support re-63

searchers in their studies in this field; it identifies perceived challenges in the field to encourage64

the community to explore ways to overcome them.65

In this paper, we focus on the usage of ml, including dl, techniques for source code analysis.66

Source code analysis involves tasks that take the source code as input, process it, and/or produce67

source code as output. Source code representation, code quality analysis, testing, code summa-68

rization, and program synthesis are applications that involve source code analysis. To the best of69

our knowledge, the software engineering literature lacks a survey covering a wide range of source70

code analysis applications using machine learning; this work is an attempt to fill this research gap.71

In this survey, we aim to give a comprehensive, yet concise, overview of current knowledge on72

appliedmachine learning for source code analysis. We also aim to collate and consolidate available73

resources (in the form of datasets and tools) that researchers have used in previous studies on74

this topic. Additionally, we aim to identify and present challenges in this domain. We believe that75

our efforts to consolidate and summarize the techniques, resources, and challenges will help the76

community to not only understand the state-of-the-art better, but also to focus their efforts on77

tackling the identified challenges.78

This survey makes the following contributions to the field:79

• It presents a summary of the applied machine learning studies attempted in the source code80

analysis domain.81

• It consolidates resources (such as datasets and tools) relevant for future studies in this do-82

main.83

• It provides a consolidated summary of the open challenges that require the attention of the84

researchers.85

The rest of the paper is organized as follows. We present the followed methodology, including86

the literature search protocol and research questions, in Section 2. Section 2.3, Section 3, Section 4,87

and Section 5 provide the detailed results of our findings. We present threats to validity in Section 6,88

and conclude the paper in Section 7.89
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Table 1. Comparison Among Surveys. The “Category” column refers to the software engineering task the survey

covers. The “Scope” column indicates the focus of the study; TML refers to traditional machine learning and DL

refers to deep learning techniques. The “Data&Tools” column indicates if a survey reviews available datasets

and tools for ml-based applications, the “Challenges” column shows whether the study identifies challenges in

the field studied, the “Type” column refers to the type of literature survey, and the “#Studies” column refers to

the number of studies included in a given survey. We use “–” to indicate that a field is not applicable to a certain

study and NA for the number of studies column, where the study does not explicitly mention selection criteria

and the number of selected studies.

Category Article Scope Data Chall- Type #Studies

& Tools enges

Program

Comprehension

Nazar et al. [348] TML Tools No Lit. survey 59

Zhang et al. [560] DL Data No Lit. survey NA

Song et al. [458] TML & DL No Yes Lit. survey NA

Testing

Omri and Sinz [361] DL No No Lit. survey NA

Durelli et al. [132] TML & DL No Yes Mapping study 48

Hall and Bowes [181] TML Yes Yes Meta-analysis 21

Zhang et al. [564] TML & DL No Yes Lit. survey 46

Pandey et al. [368] TML No Yes Lit. survey 154

Singh et al. [452] TML No No Lit. survey 13

Vulnerability

analysis

Li et al. [271] DL Yes Yes Meta-analysis –

Shen and Chen [440] DL No Yes Meta-analysis –

Ucci et al. [501] TML No Yes Lit. survey 64

Jie et al. [215] TML No No Lit. survey 19

Hanif et al. [187] TML & DL No Yes Lit. survey 90

Quality
assessment

Alsolai and Roper [34] TML No No Lit. survey 56

Tsintzira et al. [487] TML Yes Yes Lit. survey 90

Azeem et al. [45] TML Yes No Lit. survey 15

Caram et al. [77] TML No No Mapping study 25

Lewowski and Madeyski [259] TML Yes No Lit. survey 45

Prog. synthesis
Goues et al. [162] TML & DL No Yes Lit. survey NA

Le et al. [248] DL Yes Yes Lit. survey NA

Prog. synthesis

& code
representation Allamanis et al. [27] TML & DL Yes Yes Lit. survey 39+48

Software engg.

tasks Yang et al. [544] DL Data Yes Lit. survey 250

Source-code
analysis Our study TML & DL Yes Yes Lit. survey 494
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2. Methodology90

First, we present the objectives of this study and the research questions derived from such ob-91

jectives. Second, we describe the search protocol we followed to identify relevant studies. The92

protocol identifies detailed steps to collect the initial set of articles as well as the inclusion and93

exclusion criteria to obtain a filtered set of studies.94

2.1 Research objectives95

This study aims to achieve the following research objectives (ROs).96

RO1. Identifying specific software engineering tasks involving source code that have been attempted97

using machine learning.98

Our objective is to explore the extent to which machine learning has been applied to analyze99

and process source code for SE tasks.We aim to summarize how ml can help engineers tackle100

specific SE tasks.101

RO2. Summarizing the machine learning techniques used for these tasks.102

This objective explores the ml techniques commonly applied to source code for performing103

the software engineering tasks identified above. We attempt to synthesize amapping of tasks104

(along with related sub-tasks) and corresponding ml techniques.105

RO3. Providing a list of available datasets and tools.106

With this goal, we aim to provide a consolidated summary of publicly available datasets and107

tools along with their purpose.108

RO4. Identifying the challenges and perceived deficiencies in ml-enabled source code analysis and ma-109

nipulation for software engineering.110

With this objective, we aim to identify challenges, and opportunities arising when applying111

ml techniques to source code for SE tasks, as well as to understand the extent to which they112

have been addressed in the articles surveyed.113

2.2 Literature search protocol114

We identified 494 relevant studies through a four step literature search. Figure 1 summarizes the115

search process. We elaborate on each of these phases in the rest of this section.116

Figure 1. Overview of the search process
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2.2.1 Literature search—Phase 1117

We split the phase 1 literature search into two rounds. In the first round, we carried out an ex-118

tensive initial search on six well-known digital libraries—Google Scholar, SpringerLink, ACM Digital119

Library, ScienceDirect, IEEE Xplore, and Web of Science during Feb-Mar 2021. We formulated a120

set of search terms based on common tasks and software engineering activities related to source121

code analysis. Specifically, we used the following terms for the search: machine learning code, ma-122

chine learning code representation, machine learning testing,machine learning code synthesis,machine123

learning smell identification,machine learning security source code analysis,machine learning software124

quality assessment,machine learning code summarization,machine learning program repair,machine125

learning code completion, and machine learning refactoring. We searched minimum seven pages of126

search results for each search term manually; beyond seven pages, we continued the search un-127

less we get two continuous search pages without any new and relevant articles. We adopted this128

mechanism to avoid missing any relevant articles in the context of our study.129

In the second round of phase 1, we identified a set of frequently occurring keywords in the arti-130

cles obtained from the first round for each category individually. To do that, we manually scanned131

the keywords mentioned in the articles belonging to each category, and noted the keywords that132

appeared at least three times. If the selected keywords are too generic, we first check whether133

adding machine learning would improve the search results. For example, machine learning and134

program generation occurred multiple times in the program synthesis category; we combined both135

of these terms to make one search string i.e., program generation using machine learning. In other136

cases, we tried to reduce the scope of the search term by adding qualifying terms. Consider feature137

learning as an example: it is so generic that would result in many unrelated results. We reduced138

the search scope by adding source code in the search i.e., searching using feature learning in source139

code. We carried out this additional round of literature search to augment our initial search terms140

and reduce the risk of missing relevant articles. The full list of search terms used in the second141

round of phase 1 can be found in our replication package [438]. Next, we defined inclusion and142

exclusion criteria to filter out irrelevant studies.143

Table 2. Search terms and corresponding relevant studies found in the second round of phase 1.

Category Search terms #Studies

Vulnerability

analysis

feature learning in source code 9

vulnerability prediction in source code using machine learning 70

deep learning-based vulnerability detection 8

malicious code detection with machine learning 45

Testing

word embedding in software testing 2

automated Software Testing with machine learning 12

optimal machine learning based random test generation 1

Refactoring

source code refactoring prediction with machine learning 39

automatic clone recommendation with machine learning 14

machine learning based refactoring detection tools 16

search-based refactoring with machine learning 6

Quality
assessment

web service anti-pattern detection with machine learning 25

code smell prediction models 34

machine learning-based approach for code smells detection 17

software design flaw prediction 37

linguistic smell detection with machine learning 2

software defect prediction with machine learning 66

machine learning based software fault prediction 35

Program

synthesis

automated program repair methods with machine learning 45

144
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program generation with machine learning 2

object-oriented program repair with machine learning 15

predicting patch correctness with machine learning 3

multihunk program repair with machine learning 9

Program

comprehension

autogenerated code with machine learning 6

commits analysis with machine learning 34

supplementary bug fixes with machine learning 9

Code
summarization

automatic source code summarization with machine learning 43

automatic commit message generation with machine learning 19

comments generation with machine learning 11

Code review
security flaws detection in source code with machine learning 20

intelligent source code security review with machine learning 2

Code
representation

design pattern detection with machine learning 10

human-machine-comprehensible software representation 1

feature learning in source code 6

Code
completion

missing software architectural tactics prediction with machine

learning

1

software system quality analysis with machine learning 6

package-level tactic recommendation generation in source code 3

identifier prediction in source code 13

token prediction in source code 29

145

Inclusion criteria:146

• Studies and surveys that discuss the application of machine learning (including dl) to source147

code to perform a software engineering task.148

• Resources revealing the deficiencies or challenges in the current set of methods, tools, and149

practices.150

Exclusion criteria:151

• Studies focusing on techniques other than ml applied on source code to address software152

engineering tasks e.g., code smell detection using metrics.153

• Articles that are not peer-reviewed (such as articles available only on arXiv.org).154

• Articles constituting a keynote, extended abstract, editorial, tutorial, poster, or panel discus-155

sion (due to insufficient details and limited length).156

• Studies whose full text is not available, or is written in any other language than English.157

We considered whether to include studies that do not directly analyze source code. Often,158

source code is analyzed to extract features, and machine learning techniques are applied to the159

extracted features. Furthermore, researchers in the field either create their own dataset (in that160

case, analyze/process source code) or use existing datasets. Removing studies that use a dataset161

will make this survey incomplete; hence, we decided to include such studies.162

During the search, we documented studies that satisfy our search protocol in a spreadsheet163

including the required meta-data (such as title, bibtex record, and link of the source). The spread-164

sheet with all the articles from each phase can be found in our online replication package [438].165

Each selected article went through amanual inspection of title, keywords, and abstract. The inspec-166

tion applied the inclusion and exclusion criteria leading to inclusion or exclusion of the articles. In167

the end, we obtained 1, 576 articles after completing Phase 1 of the search process.168

2.2.2 Literature search—Phase 2169

We first identified a set of categories and sub-categories for common software engineering tasks.170

These tasks are commonly referred in recent publications [147, 27, 440, 45]. These categories171
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and sub-categories of common software engineering tasks can be found in Figure 3. Then, we172

manually assigned a category and sub-category, if applicable, to each selected article based on the173

(sub-)category to which an article contributes the most. The assignment was carried out by one of174

the authors and verified by two other authors. We computed Cohen's Kappa [329] to measure the175

initial disagreement; we found a strong agreement among the authors with 𝜅 = 0.87. In case of176

disagreement, each author specified a key goal, operation, or experiment in the article, indicating177

the rationale of the category assignment for the article. This exercise resolved the majority of the178

disagreements. In the rest of the cases, we discussed the rationale identified by individual authors179

and voted to decide a category or sub-category to which the article contributes the most. In this180

phase, we also discarded duplicates or irrelevant studies not meeting our inclusion criteria after181

reading their title and abstract. After this phase, we were left with 1, 098 studies.182

2.2.3 Literature search—Phase 3183

In the last decade, the use of ML has increased significantly. The research landscape involving184

source code and ml, which includes methods, applications, and required resources, has changed185

significantly in the last decade. To keep the survey focused on recent methods and applications,186

we focused on studies published after 2011. Also, we discarded papers that had not received187

enough attention from the community by filtering out all those having a `citation count < (2021 –188

publication year)'. We chose 2021 as the base year to not penalize studies that came out recently;189

hence, the studies that are published in 2021 do not need to have any citation to be included in this190

search. We obtain the citation count from digital libraries manually during Mar-May 2022. After191

applying this filter, we obtained 977 studies.192

2.2.4 Literature search—Phase 4193

In this phase, we discarded those studies that do not satisfy our inclusion criteria (such as when194

the article is too short or do not apply any ml technique to source code for SE tasks) after reading195

the whole article. The remaining 494 articles are the selected studies that we examine in detail.196

For each study, we extracted the core idea and contribution, the ml techniques, datasets and tools197

used aswell as challenges and findings unveiled. Next, we present our observations corresponding198

to each research goal we pose.199

2.3 Assigning articles to software engineering task categories200

Towards achieving RO1, we tagged each selected article with one of the task categories based on201

the primary focus of the study. The categories represent common software engineering tasks202

that involve source code analysis. These categories are code completion, code representation, code203

review, code search, dataset mining, program comprehension, program synthesis, quality assessment,204

refactoring, testing, and vulnerability analysis. If a given article does not fall in any of these categories205

but is still relevant to our discussion as it offers overarching discussion on the topic; we put the206

study in the general category. Figure 2 presents a category-wise distribution of studies per year.207

It is evident that the topic is engaging the research community more and more and we observe,208

in general, a healthy upward trend. Interestingly, the number of studies in the scope dropped209

significantly in the year 2021.210

Some of the categories are quite generic and hence further categorization is possible based on211

specific tasks. For each category, we identified sub-categories by grouping related studies together212

and assigning an intuitive name representing the set of the studies. For example, the testing cate-213

gory is further divided into defect prediction, and test data/case generation. We attempted to assign214

a sub-category to each study; if none of the sub-categories was appropriate for a study, we did not215

assign any sub-category to the study. One author of this paper assigned a sub-category to each216

study based on the topic to which that study contributed the most. The initial assignment was217

verified by two other authors of this paper, where disagreements were discussed and resolved to218

reach a consensus. Figure 3 presents the distribution of studies per year w.r.t. each category and219
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Figure 2. Category-wise distribution of studies

Figure 3. Category- and sub-categories-wise distribution of studies

corresponding sub-categories.220

To quantify the growth of each category, we compute the average increase in the number of221

articles from the last year for each category between the years 2012 and 2022. We observed that222

the program synthesis and vulnerability analysis categories grew most with approximately 44% and223

50% average growth each year, respectively.224
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Support Vector Regression TML-SUP-MOD-SVR 0 0 0 0 0 0 0 1 0 1 0 2

Support Vector Machine TML-SUP-MOD-SVM 0 0 0 0 0 8 2 41 4 3 31 89

Polynomial Regression TML-SUP-MOD-POLY 0 0 0 0 0 0 0 1 0 0 0 1

Logistic Regression TML-SUP-MOD-LOG 0 1 0 0 1 2 2 22 4 1 8 41

Locally Deep Support Vector Machines TML-SUP-MOD-LDSVM 0 0 0 0 0 0 0 0 0 0 1 1

Linear Regression TML-SUP-MOD-LR 0 0 0 0 0 2 0 10 1 1 7 21

Linear Discriminant Analysis TML-SUP-MOD-LDA 1 1 0 0 0 0 0 0 0 0 2 4

Least Median Square Regression TML-SUP-MOD-LMSR 0 0 0 0 0 0 0 1 0 0 0 1

LASSO TML-SUP-MOD-LSS 0 0 0 0 0 0 0 0 0 0 1 1

Boosted Decision Trees TML-SUP-TR-BDT 0 0 0 0 0 0 0 0 0 0 1 1

Classification And Regression Tree TML-SUP-TR-CART 0 0 0 0 0 0 1 1 0 0 0 2

Co-forest Random Forest TML-SUP-TR-CRF 0 0 0 0 0 0 0 1 0 0 1 2

Decision Forest TML-SUP-TR-DF 0 0 0 0 0 0 0 0 0 0 1 1

Decision Jungle TML-SUP-TR-DJ 0 0 0 0 0 0 0 0 0 0 1 1

Decision Stump TML-SUP-TR-DS 0 0 0 0 0 0 0 0 0 0 2 2

Decision Tree TML-SUP-TR-DT 0 1 1 0 0 8 3 52 2 1 19 87

Extra Trees TML-SUP-TR-ET 0 0 0 0 0 0 0 3 0 0 0 3

Gradient Boosted Trees TML-SUP-TR-GBT 0 0 0 0 0 0 1 1 0 0 0 2

Gradient Boosted Decision Tree TML-SUP-TR-GBDT 0 0 0 0 0 0 0 0 0 0 2 2

ID3 TML-SUP-TR-ID3 0 0 0 0 0 0 0 0 0 0 1 1

Random Tree TML-SUP-TR-RT 0 0 0 0 0 0 0 2 0 0 2 4

Random Forest TML-SUP-TR-RF 1 1 1 0 0 12 3 45 3 1 21 88

COBWEB TML-SUP-IN-CWEB 0 0 0 0 0 0 0 1 0 0 0 1

KStar TML-SUP-IN-KS 0 0 0 0 0 0 0 5 0 0 0 5

K-Nearest Neighbours TML-SUP-IN-KNN 0 0 0 0 0 3 0 13 0 1 9 26

Bayes Net TML-SUP-PRO-BN 0 1 1 0 0 1 0 8 1 0 6 18

Bayes Point Machine TML-SUP-PRO-BPM 0 0 0 0 0 0 0 0 0 0 1 1

Bernoulli Naives Bayes TML-SUP-PRO-BNB 0 0 0 0 0 0 0 3 0 0 2 5

Gaussian Naive Bayes TML-SUP-PRO-GNB 0 0 0 0 0 0 0 5 0 0 1 6

Graph random-walk with absorbing states TML-SUP-PRO-GRASSHOPER 0 0 0 0 0 1 0 0 0 0 0 1

Transfer Naive Bayes TML-SUP-PRO-TNB 0 0 0 0 0 0 0 1 0 0 0 1

Naive Bayes TML-SUP-PRO-NB 0 0 0 0 0 7 1 40 2 2 16 68

Multinomial Naive Bayes TML-SUP-PRO-MNB 0 0 0 0 0 0 0 3 1 0 1 5

Decision Table TML-SUP-RUL-DTB 0 0 0 0 0 0 0 1 0 0 0 1

Ripper TML-SUP-RUL-Ripper 0 0 0 0 0 1 0 10 0 0 4 15

Learn-to-Rank Diverse Rank TML-SUP-LR-DR 0 0 0 0 0 1 0 0 0 0 0 1

Hierarchical Clustering TML-UNSUP-CLS-HC 0 0 0 0 0 0 1 0 0 0 0 1

KMeans TML-UNSUP-CLS-KM 0 0 0 0 0 0 0 1 0 0 1 2

Fuzzy Logic TML-UNSUP-OTH-FL 0 0 0 0 0 0 0 1 0 0 0 1

Maximal Marginal Relevance TML-UNSUP-OTH-MMR 0 0 0 0 0 1 0 0 0 0 0 1

Latent Dirichlet Allocation TML-UNSUP-OTH-LDAA 0 0 0 1 0 9 0 3 1 0 0 14

Gene Expression Programming TML-EVO-GEP 0 0 0 0 0 0 0 2 0 0 0 2

Genetic Programming TML-EVO-GP 0 0 0 0 0 0 0 3 0 0 0 3

AdaBoost TML-GEN-AB 0 0 0 0 0 0 0 13 2 2 4 21

Binary Relevance TML-GEN-BR 0 0 0 0 0 0 0 1 0 0 0 1

Classifier Chain TML-GEN-CC 0 0 0 0 0 0 0 1 0 0 0 1

Cost-Sensitive Classifer TML-GEN-CSC 0 0 0 0 0 0 0 2 0 0 0 2

Ensemble Learning TML-GEN-EL 0 0 0 0 0 1 0 3 0 0 0 4

Ensemble Learning Machine TML-GEN-ELM 0 0 0 0 0 0 0 1 0 0 0 1

Gradient Boosting TML-GEN-GB 0 0 0 0 0 2 1 8 0 0 3 14

Gradient Boosting Machine TML-GEN-GBM 0 0 0 0 0 1 0 1 0 0 1 3

Statiscal Machine Translation TML-GEN-SMT 0 0 0 0 0 0 1 0 0 0 0 1

Neural Machine Translation TML-GEN-NMT 1 1 0 0 0 0 5 1 0 0 0 8

Multiple Kernel Ensemble Learning TML-GEN-MKEL 0 0 0 0 0 0 0 1 0 0 0 1

Neural Machine Model TML-GEN-NLM 0 0 0 0 0 1 0 0 0 0 0 1

Majority Voting Ensemble TML-GEN-MVE 0 0 0 0 0 0 0 1 0 0 0 1

Bagging TML-GEN-B 0 0 0 0 0 0 0 11 0 0 1 12

LogitBoost TML-GEN-LB 0 0 0 0 0 0 0 4 1 0 1 6

Kernel Based Learning TML-GEN-KBL 0 0 0 0 0 0 0 1 0 0 0 1
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Model-based

Tree-based

Instance-based

Probabilistic-based

Rule-based

Clustering

Other

Evolutionary

Meta-algorithms / 

General Approaches

Table 3. Usage of ML techniques in the selected studies (Part-1)
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Bidirectional GRU DL-RNN-Bi-GRU 1 0 0 0 0 0 0 0 0 0 1 2

Bidirectional RNN DL-RNN-Bi-RNN 0 0 0 0 0 1 0 0 0 0 0 1

Bidirectional LSTM DL-RNN-Bi-LSTM 0 0 0 0 0 5 2 2 0 0 3 12

Gated Recurrent Unit DL-RNN-GRU 1 1 0 0 0 9 0 1 0 0 3 15

Hierarchical Attention Network DL-RNN-HAN 1 0 0 0 0 1 0 0 0 0 0 2

Recurrent Neural Network DL-RNN-RNN 3 3 0 1 0 9 5 0 0 0 2 23

Pointer Network DL-RNN-PN 0 1 0 0 0 0 0 0 0 0 0 1

Modular Tree Structured RNN DL-RNN-MTN 1 1 0 0 0 0 0 0 0 0 0 2

Long Short Term Memory DL-RNN-LSTM 3 4 0 1 0 21 10 6 1 1 5 52

Gated Graph Neural Network DL-GRA-GGNN 0 0 0 1 0 0 2 0 0 0 0 3

Graph Convolutional Networks DL-GRA-GCN 0 0 0 0 0 0 0 0 0 0 1 1

Graph Interval Neural Network DL-GRA-GINN 1 0 0 0 0 0 0 0 0 0 0 1

Graph Neural Network DL-GRA-GNN 2 0 0 0 0 3 0 1 0 0 0 6

Convolutional Neural Network DL-CNN-CNN 3 0 0 1 0 4 2 8 0 0 5 23

Faster R-CNN DL-CNN-FR-CNN 0 0 0 0 0 0 0 0 0 1 0 1

Text-CNN DL-CNN-TCNN 0 0 0 0 0 0 0 0 0 0 1 1

Artificial Neural Network DL-ANN 0 1 0 0 0 2 1 21 3 1 3 32

Autoencoder DL-AE 1 0 0 0 0 0 0 2 0 0 1 4

Deep Neural Network DL-DNN 2 0 0 1 0 6 2 5 1 0 4 21

Regression Neural Network DL-RGNN 0 0 0 0 0 0 0 1 0 0 0 1

Multi Level Perceptron DL-MLP 0 0 0 0 0 2 3 14 1 1 5 26

Bidirectional Encoder Representation from Transformers DL-XR-BERT 0 0 0 0 0 1 1 0 0 0 0 2

CodeBERT DL-XR-CodeBERT 1 0 0 0 0 0 1 0 0 0 0 2

Generative Pretraining Transformer for Code DL-XR-GPT-C 0 0 0 0 0 0 1 0 0 0 0 1

Transformer DL-XR-TF 2 1 2 0 0 4 3 1 0 0 0 13

Bilateral Neural Network DL-OTH-BiNN 0 0 0 0 0 0 0 1 0 0 0 1

Cascade Correlation Network DL-OTH-CCN 0 0 0 0 0 0 0 1 0 0 0 1

Code2Vec DL-OTH-Code2Vec 5 0 0 0 0 1 0 0 0 0 0 6

Deep Belief Network DL-OTH-DBN 0 0 0 0 0 0 0 2 0 0 2 4

Doc2Vec DL-OTH-Doc2Vec 0 0 0 0 0 0 0 0 0 0 2 2

Encoder-Decoder DL-OTH-EN-DE 3 1 0 0 0 17 10 0 0 0 0 31

FastText DL-OTH-FT 0 0 0 0 0 0 0 0 0 0 1 1

Functional Link ANN DL-OTH-FLANN 0 0 0 0 0 0 0 1 0 0 0 1

Guassian Encoder-Decoder DL-OTH-GED 0 0 0 0 0 0 1 0 0 0 0 1

Global Vectors for Word Representation DL-OTH-Glove 1 0 0 0 0 0 0 0 0 0 0 1

Word2Vec DL-OTH-Word2Vec 0 0 0 0 0 0 0 1 0 0 0 1

Sequence-to-Sequence DL-OTH-Seq2Seq 1 0 0 0 0 2 2 0 0 1 0 6

Reverse NN DL-OTH-ReNN 0 0 0 0 0 0 0 1 0 0 0 1

Residual Neural Network DL-OTH-ResNet 0 0 0 0 0 0 1 1 0 0 0 2

Radial Basis Function Network DL-OTH-RBFN 0 0 0 0 0 0 0 1 0 0 0 1

Probabilistic Neural Network DL-OTH-PNN 0 0 0 0 0 0 0 1 1 0 0 2

Node2Vec DL-OTH-Node2Vec 0 0 0 0 0 0 0 1 0 0 0 1

Neural Network for Discrete Goal DL-OTH-NND 0 0 0 0 0 0 0 2 0 0 0 2

Double Deep Q-Networks RL-DDQN 0 0 0 0 0 0 0 0 0 1 0 1

Reinforcement Learning RL-RL 0 0 0 0 0 3 0 0 0 0 0 3

Hybrid Adaptive neuro fuzzy inference system OTH-HYB-ANFIS 0 0 0 0 0 0 0 1 0 0 0 1

Expectation Minimization OTH-OPT-EM 0 0 0 0 0 0 0 1 0 0 0 1

Gradient Descent OTH-OPT-GD 0 0 0 0 0 0 1 0 0 0 0 1

Stochastic Gradient Descent OTH-OPT-SGD 0 0 0 0 0 0 0 2 0 0 0 2

Sequential Minimal Optimization OTH-OPT-SMO 0 0 0 0 0 0 0 5 0 0 1 6

Particle Swarm Optimization OTH-OPT-PSO 0 0 0 0 0 0 0 1 0 0 0 1

Reinforcement 

Learning
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Table 4. Usage of ML techniques in the selected studies (Part-2)

3. Literature Survey Results225

We document our observations per category and subcategory by providing a summary of the ex-226

isting efforts to achieve RO2 of the study. Table 3 and Table 4 show the frequency of the various227

ml techniques per software engineering task category used in the selected studies. The tables also228

classify the ml techniques into a hierarchical classification based on the characteristics of the ml229

techniques. Specifically, the first level of classification divides ml techniques into traditional ma-230

chine learning (tml), deep learning (dl), reinforcement learning (rl), and others (oth) that include231

hybrid and optimization techniques. Furthermore, we identify sub-categories and ml techniques232

corresponding to each category. To generate these tables, we identified ml techniques used in233
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each study while summarizing the study. Given that a study may use multiple ml techniques, we234

developed a script to split the techniques and create a csv file containing one ml technique and235

the corresponding paper category. We then compute a number of times for each ml technique236

for each software engineering task category to generate the tables. In these tables we refer to ml237

techniques with their commonly used acronym along with their category and sub-category. It is ev-238

ident from these tables that svm, rf, and dt are the most frequently used traditional ml techniques,239

whereas, the rnn family (including lstm and gru) is the most commonly used dl technique.240

Evolution ofML techniques use over time: In addition, we segregate the identified ml techniques241

by their category (i.e., tml, dl, rl, and oth) and year of publication. Figure 4 presents the summary242

of the analysis. We observe that majorly traditional ml and dl approaches are used in this field.243

We also observe that the use of dl approaches for source code analysis has significantly increased244

from 2016.245

Figure 4. Usage of ML techniques by categories per year

Venueandarticle categories: We identified andmanually curated the software engineering venue246

for each study discussed in our literature review. Figure 5 shows the venues for the considered247

categories. We show the most prominent venues per category. Each label includes a number248

indicating the number of articles published at the same venue in that category.249

We observe that icse is the top venue, appearing in three categories. ieee Access is the top jour-250

nal for the considered categories. Machine learning conferences such as iclr also appear as the251

top venues for the program synthesis category. The category program comprehension exhibits the252

highest concentration of articles to a relatively small list of top venues where approximately 50%253

of articles come from the top venues (with at least four studies). On the other hand, researchers254

publish articles related to testing, code completion, and vulnerability analysis in a rather diverse set255

of venues.256

Target programming languages: We identified the target programming language of each study257

to observe the focus of researchers in the field by category. Figure 6 presents the result of the258

analysis. We observe that for most of the categories, Java dominates the field. For quality assess-259

ment category, studies also analyzed source code written in C/C++, apart from Java. Researchers260

analyzed Python programs also, apart from Java, for studies belonging to program comprehension261

and program synthesis. This analysis, on the one hand, shows that Java, C/C++, and Python are the262

most analyzed programming languages in this field; on the other hand, it points out the lack of263

studies targeting other prominent programming languages per category.264

Popular models: As part of collecting metadata and summarizing studies, we identified the pro-265

posed model, if any, for each selected study. We considered novel proposed models only and not266

the name of the approach or method in this analysis. We also obtained the number of citations267

for the study. In Table 5, we present the most popular model, in no particular order, by using the268

number of citations as the metric to decide the popularity. We collected the number of citations269

at the end of August 2023 and included all the models with corresponding citations over 100.270

In the rest of this section, we delve into each category and sub-category at a time, break down271

the entire workflow of a code analysis task into fine-grained steps, and summarize the method272

and ml techniques used. It is worth emphasizing that we structure the discussion around the cru-273
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Figure 5. Top venues for each considered category

cial steps for each category (e.g., model generation, data sampling, feature extraction, and model274

training).275

3.1 Code representation276

Raw source code cannot be fed directly to a dl model. Code representation is the fundamental277

activity to make source code compatible with dl models by preparing a numerical representation278

of the code to further solve a specific software engineering task. Code representation is the process279

of transforming the textual program source code into a numerical representation i.e., vectors that280

a dl model can accept and process [227]. Studies in this category emphasize that source code is281

a richer construct and hence should not be treated simply as a collection of tokens or text [350,282

27]; the proposed techniques extensively utilize the syntax, structure, and semantics (such as type283

information from an ast). The activity transforms source code into a numerical representation284

making it easier to further use the code by ml models to solve specific tasks such as code pattern285

identification [342, 480], method name prediction [32], and comment classification [514].286

In the training phase, a large number of repositories are processed to train a model which is287

then used in the inference phase. Source code is pre-processed to extract a source code model288

(such as an ast or a sequence of tokens) which is fed into a feature extractor responsible to mine289

the necessary features (for instance, ast paths and tree-based embeddings). Then, an ml model is290
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Figure 6. Target programming languages for each considered category

trained using the extracted features. Themodel produces a numerical (i.e., a vector) representation291

that can be used further for specific software engineering applications such as defect prediction,292

vulnerability detection, and code smells detection.293

Dataset preparation: Code representation efforts start with preparing a source code model. The294

majority of the studies use the ast representation [350, 30, 563, 25, 91, 31, 32, 540, 67, 525, 84,295

377, 376]. Some studies [439, 22, 44, 83, 574, 219, 352, 343, 134] parsed the source code as tokens296

and prepared a sequence of tokens in this step. Hoang et al. [194] generated tokens represent-297

ing only the code changes. Furthermore, Sui et al. [465] compiled a program into llvm-ir. An298

inter-procedural value-flow graph (ivfg) used was built on top of the intermediate representation.299

Thaller et al. [480] used abstract semantic graphs as their codemodel. Nie et al. [353] used dataset300

offered by Jiang et al. [209] that offers a large number code snippets and comment pairs. Finally,301

Brauckmann et al. [66] and Tufano et al. [490] generated multiple source code models (ast, cfg,302

and byte code).303

Feature extraction: Relevant features need to be extracted from the prepared source codemodel304

for further processing. The first category of studies, based on applied feature extraction mecha-305

nism, uses token-based features. Nguyen et al. [350] prepared vectors of syntactic context (re-306

ferred to as syntaxeme), type context (sememes), and lexical tokens. Shedko et al. [439] generated a307

stream of tokens corresponding to function calls and control flow expressions. Karampatsis et al.308

[221] split tokens as subwords to enable subwords prediction. Path-based abstractions is the basis309

of the second category where the studies extract a path typically from an ast. Alon et al. [30] used310

paths between ast nodes. Kovalenko et al. [235] extracted path context representing two tokens311
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Table 5. Popular models proposed in the selected studies.

Model #Citations Model #Citations

Transfer Naive Bayes [307] 513 Code Generation Model [551] 651

Path-based code representa-

tion [30]

230 Multi-headed pointer net-

work [507]

128

Inst2Vec [57] 234 Code-NN [204] 681

DeepCoder [47] 612 ASTNN [563] 498

Code2Seq [31] 643 Code2Vec [32] 1,093

TBCNN [342] 695 Program as graph model [67] 159

SLAMC [352] 130 Coding criterion [377] 128

TransCoder [408] 115 TreeGen [468] 124

Codex [93] 897 AlphaCode [270] 317

in code and a structural connection along with paths between ast nodes. Alon et al. [31] encoded312

each ast path with its values as a vector and used the average of all of the k paths as the decoder's313

initial state where the value of k depends on the number of leaf nodes in the ast. The decoder314

then generated an output sequence while attending over the k encoded paths. Peng et al. [377]315

proposed ``coding criterion'' to capture similarity among symbols based on their usage using ast316

structural information. Peng et al. [376] used open-source parser Tree-Sitter to obtain ast for each317

method. They split code tokens into sub-tokens respective to naming conventions and generate318

path using ast nodes. The authors sets 32 as themaximumpath length. Finally, Alon et al. [32] also319

used path-based features along with distributed representation of context where each of the path320

and leaf-values of a path-context ismapped to its corresponding real-valued vector representation.321

Another set of studies belong to the category that used graph-based features. Chen et al. [91]322

created ast node identified by an api name and attached each node to the corresponding ast node323

belonging to the identifier. Thaller et al. [480] proposed feature maps; feature maps are human-324

interpretation, stacked, named subtrees extracted from abstract semantic graph. Brauckmann325

et al. [66] created a dataflow-enriched ast graph, where nodes are labeled as declarations, state-326

ments, and types as found in the Clang1 ast. Cvitkovic et al. [115] augmented ast with semantic327

information by adding a graph-structured vocabulary cache. Finally, Zhang et al. [563] extracted328

small statement trees along with multi-way statement trees to capture the statement-level lexi-329

cal and syntactical information. The final category of studies used dl [194, 490] to learn features330

automatically.331

ML model training: The majority of the studies rely on the rnn-based dl model. Among them,332

some of the studies [514, 191, 525, 66, 31] employed lstm-based models; while others [563, 194,333

221, 540, 67] used gru-based models. Among the other kinds of ml models, studies employed gnn-334

based [115, 528], dnn [350], conditional random fields [30], svm [274, 394], cnn-based models [91,335

342, 480], and transformer-based models [376]. Some of the studies rely on the combination of336

different dl models. For example, Tufano et al. [490] employed rnn-based model for learning337

embedding in the first stage which is given to an autoencoder-based model to encode arbitrarily338

long streams of embeddings.339

A typical output of a code representation technique is the vector representation of the source340

code. The exact form of the output vector may differ based on the adopted mechanism. Often,341

the code vectors are application specific depending upon the nature of features extracted and342

training mechanism. For example, Code2Vec produces code vectors trained for method name343

prediction; however, the same mechanism can be used for other applications after tuning and344

selecting appropriate features. Kang et al. [220] carried out an empirical study to observe whether345

1https://clang.llvm.org/

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 14 of 98

https://clang.llvm.org/


the embeddings generated by Code2Vec can be used in other contexts. Similarly, Pour et al. [385]346

used Code2Vec, Code2Seq, and CodeBERT to explore the robustness of code embedding models347

by retraining the models using the generated adversarial examples.348

The semantics of the produced embeddings depend significantly on the selected features. Stud-349

ies in this domain identify this aspect and hence swiftly focused to extract features that capture350

the relevant semantics; for example, path-based features encode the order among the tokens.351

The chosen ml model plays another important role to generate effective embeddings. Given the352

success of rnn with text processing tasks, due to its capability to identify sequence and pattern,353

rnn-based models dominate this category.354

3.2 Testing355

In this section, we point out the state-of-the-art regardingml techniques applied to software testing.356

Testing is the process of identifying functional or non-functional bugs to improve the accuracy and357

reliability of a software. In this section, we offer a discussion on test cases generation by employing358

ml techniques.359

3.2.1 Test data and test cases generation360

A usual approach to have a ml model for generating test oracles involves capturing data from an361

application under test, pre-processing the captured data, extracting relevant features, using an ml362

algorithm, and evaluating the model.363

Dataset preparation: Researchers developed a number of ways for capturing data from appli-364

cations under test and pre-process them before feeding them to an ml model. Braga et al. [65]365

recorded traces for applications to capture usage data. They sanitized any irrelevant information366

collected from the programs recording components. AppFlow [197] captures human-event se-367

quences from a smart-phone screen in order to identify tests. Similarly, Nguyen et al. [351] sug-368

gested Shinobi, a framework that uses a fast r-cnn model to identify input data fields from mul-369

tiple web-sites. Utting et al. [505] captured user and system execution traces to help generating370

missing api tests. To automatically identify metamorphic relations, Nair et al. [345] suggested an371

approach that leveragesml techniques and testmutants. By using a variety of code transformation372

techniques, the authors' approach can generate a synthetic dataset for training models to predict373

metamorphic relations.374

Feature extraction: Some authors [65, 505] used execution traces as features. Kim et al. [230]375

suggested an approach that replaces sbst's meta-heuristic algorithms with deep reinforcement376

learning to generate test cases based on branch coverage information. [164] used code quality377

metrics such as coupling, dit, and nof to generate test data; they use the test data generated to378

predict the code coverage in a continuous integration pipeline.379

ML model training: Researchers used supervised and unsupervised ml algorithms to generate380

test data and cases. In some of the studies, the authors utilized more than one ml algorithm to381

achieve their goal. Specifically, several studies [65, 230, 505, 345] used traditional ml algorithms,382

such as Support Vector Machine, Naive Bayes, Decision Tree, Multilayer Perceptron, Random Forest,383

AdaBoost, Linear Regression. Nguyen et al. [351] used the dl algorithm Fast r-cnn. Similarly, [156]384

used lstm to automate generating the input grammar data for fuzzing.385

3.3 Program synthesis386

This section summarizes the ml techniques used by automated program synthesis tools and tech-387

niques in the examined software engineering literature. Apart from amajor sub-category program388

repair, we also discuss state-of-the-art corresponds to code generation and program translation sub-389

categories in this section.390
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3.3.1 Program repair391

AutomatedProgramRepair (apr) refers to techniques that attempt to automatically identify patches392

for a givenbug (i.e., programmingmistakes that can cause anunintended run-timebehavior), which393

can be applied to software with a little or without human intervention [162]. Program repair typ-394

ically consists of two phases. Initially, the repair tool uses fault localization to detect a bug in the395

software under examination, then, it generates patches using techniques such as search-based396

software engineering and logic rules that can possibly fix a given bug. To validate the generated397

patch, the (usually manual) evaluation of the semantic correctness2 of that patch follows.398

According to Goues et al. [162], the techniques for constructing repair patches can be divided399

into three categories (heuristic repair, constraint-based repair, and learning-aided repair) if we400

consider the following two criteria: what types of patches are constructed and how the search401

is conducted. Here, we are interested in learning-aided repair, which leverages the availability402

of previously generated patches and bug fixes to generate patches. In particular, learning-aided-403

based repair tools use ml to learn patterns for patch generation.404

Typically, at the pre-processing step, such methods take source code of the buggy revision as405

an input, and those revisions that fixes the buggy revision. The revision with the fixes includes a406

patch carried out manually that corrects the buggy revision and a test case that checks whether407

the bug has been fixed. Learning-aided-based repair ismainly based on the hypothesis that similar408

bugs will have similar fixes. Therefore, during the training phase, such techniques can use features409

such as similarity metrics to match bug patterns to similar fixes. Then, the generated patches rely410

on those learnt patterns. Next, we elaborate upon the individual steps involved in the process of411

program repair using ml techniques.412

Dataset preparation: The majority of the studies extract buggy project revisions and manual413

fixes from buggy software projects. Most studies leverage source-code naturalness. For instance,414

Tufano et al. [492] extracted millions of bug-fixing pairs from GitHub, Amorim et al. [39] lever-415

aged the naturalness obtained from a corpus of known fixes, and Chen et al. [97] used natural416

language structures from source code. Furthermore, many studies develop their own large-scale417

bug benchmarks. Ahmed et al. [10] leveraged 4,500 erroneous C programs, Gopinath et al. [161]418

used a suite of programs and datasets stemmed from real-world applications, Long and Rinard419

[297] used a set of successful manual patches from open-source software repositories, and Mash-420

hadi and Hemmati [326] used the ManySStuBs4J dataset containing natural language description421

and code snippets to automatically generate code fixes. Le et al. [249] created an oracle for predict-422

ing which bugs should be delegated to developers for fixing and which should be fixed by repair423

tools. Jiang et al. [211] used a dataset containing more than 4 million methods extracted. White424

et al. [533] used Spoon, an open-source library for analyzing and transforming Java source code,425

to build a model for each buggy program revision. Pinconschi et al. [382] constructed a dataset426

containing vulnerability-fix pairs by aggregating five existing dataset (Mozilla Foundation Security427

Advisories, SecretPatch, NVD, Secbench, and Big-Vul). The dataset i.e., PatchBundle is publicly avail-428

able on GitHub. Cambronero and Rinard [76] proposed a method to generate new supervised429

machine learning pipelines. To achieve the goal, the study trained using a collection of 500 super-430

vised learning programs and their associated target datasets from Kaggle. Liu et al. [287] prepared431

their dataset by selecting 636 closed bug reports from the Linux kernel and Mozilla databases.432

Svyatkovskiy et al. [475] constructed their experimental dataset from the 2700 top-starred Python433

source code repositories on GitHub. CODIT [82] collects a new dataset—Code-ChangeData, consist-434

ing of 32,473 patches from 48 open-source GitHub projects collected from Travis Torrent.435

Other studies use existing bug benchmarks, such asDefects4J [218] and IntroClass [250], which436

already include buggy revisions and human fixes, to evaluate their approaches. For instance, Saha437

et al. [416], Lou et al. [299], Zhu et al. [582], Renzullo et al. [406], Wang et al. [518], and Chen438

2The term semantic correctness is a criterion for evaluating whether a generated patch is similar to the human fix for a given

bug [291].
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et al. [101] leveraged Defects4J for the evaluations of their approaches. Additionally, Dantas et al.439

[118] used the IntroClass benchmark and Majd et al. [313] conducted experiments using 119,989440

C/C++ programs within Code4Bench. Wu et al. [534] used the DeepFix dataset that contains 46,500441

correct C programs and 6,975 programs with errors for their graph-based dl approach for syntax442

error correction.443

Some studies examine bugs in different programming languages. For instance, Svyatkovskiy444

et al. [474] used 1.2 billion lines of source code in Python, C#, JavaScript, and TypeScript program-445

ming languages. Also, Lutellier et al. [305] used six popular benchmarks of four programming446

languages (Java, C, Python, and JavaScript).447

There are also studies that mostly focus on syntax errors. In particular, Gupta et al. [178] used448

6,975 erroneous C programswith typographic errors, Santos et al. [421] used source code files with449

syntax errors, and Sakkas et al. [419] used a corpus of 4,500 ill-typed OCaml programs that lead to450

compile-time errors. Bhatia et al. [59] examined a corpus of syntactically correct submissions for451

a programming assignment. They used a dataset comprising of over 14,500 student submissions452

with syntax errors.453

Finally, there is a number of studies that use programming assignment from students. For454

instance, Bhatia et al. [59], Gupta et al. [178], and Sakkas et al. [419] used a corpus of 4,500 ill-455

typed OCaml student programs.456

Feature extraction: The majority of studies utilize similarity metrics to extract similar bug pat-457

terns and, respectively, correct bug fixes. These studies mostly employ word embeddings for code458

representation and abstraction. In particular, Amorim et al. [39], Svyatkovskiy et al. [474], Santos459

et al. [421], Jiang et al. [211], and Chen et al. [97], leveraged source-code naturalness and applied460

nlp-based metrics. Tian et al. [483] employed different representation learning approaches for461

code changes to derive embeddings for similarity computations. Similarly, White et al. [533] used462

Word2Vec to learn embeddings for each buggy program revision. Ahmed et al. [10] used similar463

metrics for fixing compile-time errors. Additionally, Saha et al. [416] leveraged a code similarity464

analysis, which compares both syntactic and semantic features, and the revision history of a soft-465

ware project under examination, from Defects4J, for fixing multi-hunk bugs, i.e., bugs that require466

applying a substantially similar patch to different locations. Furthermore, Wang et al. [518] investi-467

gated, using similarity metrics, how these machine-generated correct patches can be semantically468

equivalent to human patches, and how bug characteristics affect patch generation. Sakkas et al.469

[419] also applied similarity metrics. Svyatkovskiy et al. [475] extracted structured representation470

of code (for example, lexemes, asts, and dataflow) and learn directly a task over those representa-471

tions.472

There are several approaches that use logic-basedmetrics based on the relationships of the fea-473

tures used. Specifically, Van Thuy et al. [506] extracted twelve relations of statements and blocks474

for Bi-gram model using Big code to prune the search space, and make the patches generated by475

Prophet [297]more efficient and precise. Alrajeh et al. [33] identified counterexamples andwitness476

traces using model checking for logic-based learning to perform repair process automatically. Cai477

et al. [74] used publicly available examples of faulty models written in the B formal specification478

language, and proposed B-repair, an approach that supports automated repair of such a formal479

specification. Cambronero and Rinard [76] extracted dynamic program traces through identifica-480

tion of relevant apis of the target library; the extracted traces help the employed machine learning481

model to generate pipelines for new datasets.482

Many studies also extract and consider the context where the bugs are related to. For instance,483

Tufano et al. [492] extracted Bug-Fixing Pairs (bfps) from millions of bug fixes mined from GitHub484

(used as meaningful examples of such bug-fixes), where such a pair consists of a buggy code com-485

ponent and the corresponding fixed code. Then, they used those pairs as input to an Encoder-486

Decoder Natural Machine Translation (nmt) model. For the extraction of the pair, they used the487

GumTree Spoon ast Diff tool [140]. Additionally, Soto and Le Goues [459] constructed a corpus by488
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delimiting debugging regions in a provided dataset. Then, they recursively analyzed the differences489

between the Simplified Syntax Trees associated with EditEvent’s. Mesbah et al. [335] also gener-490

ated astdiffs from the textual code changes and transformed them into a domain-specific language491

called Delta that encodes the changes thatmust bemade tomake the code compile. Then, they fed492

the compiler diagnostic information (as source) and the Delta changes that resolved the diagnos-493

tic (as target) into a Neural Machine Translation network for training. Furthermore, Li et al. [267]494

used the prior bug fixes and the surrounding code contexts of the fixes for code transformation495

learning. Saha et al. [415] developed a ml model that relies on four features derived from a pro-496

gram's context, i.e., the source-code surrounding the potential repair location, and the bug report.497

Similarly, Mashhadi and Hemmati [326] used a combination of natural language text and corre-498

sponding code snippet to generated an aggregated sequence representation for the downstream499

task. Finally, Bader et al. [46] utilized a ranking technique that also considers the context of a code500

change, and selects the most appropriate fix for a given bug. Vasic et al. [507] used results from501

localization of variable-misuse bugs. Wu et al. [534] developed an approach, ggf, for syntax-error502

correction that treats the code as a mixture of the token sequences and graphs. LIN et al. [276]503

and Zhu et al. [582] utilized ast paths to generate code embeddings to predict the correctness of a504

patch. Chakraborty et al. [82] represent the patches in a parse tree form and extract the necessary505

information (e.g., grammar rules, tokens, and token-types) from them. They used GumTree,3 a506

tree-based code differencing tool, to identify the edited ast nodes. To collect the edit context, their507

proposal, CODIT, converts the asts to their parse tree representation and extracts corresponding508

grammar rules, tokens, and token types.509

ML model training: In the following, we present the main categories of ml techniques found in510

the examined papers.511

Neural Machine Translation: This category includes papers that apply neural machine translation512

(nmt) for enhancing automated program repair. Such approaches can, for instance, include tech-513

niques that use examples of bug fixing for one programming language to fix similar bugs for other514

programming language. Lutellier et al. [305] developed the repair tool called CoCoNuT that uses515

ensemble learning on the combination of cnns and a new context-aware nmt. Additionally, Tufano516

et al. [492] used nmt techniques (Encoder-Decoder model) for learning bug-fixing patches for real517

defects, and generated repair patches. Mesbah et al. [335] introduced DeepDelta, which used nmt518

for learning to repair compilation errors. Jiang et al. [211] proposed cure, a nmt-based approach519

to automatically fix bugs. Pinconschi et al. [382] used SequenceR, a sequence-to-sequence model,520

to patch security faults in C programs. Zhu et al. [582] proposed a tool Recoder, a syntax-guided521

edit decoder that takes encoded information and produces placeholders by selecting non-terminal522

nodes based on their probabilities. Chakraborty et al. [82] developed a technique called codit that523

automates code changes for bug fixing using tree-based neural machine translation. In particu-524

lar, they proposed a tree-based neural machine translation model, an extension of OpenNMT,4 to525

learn the probability distribution of changes in code.526

Natural Language Processing: In this category, we include papers that combine natural language527

processing (nlp) techniques, embeddings, similarity scores, and ml for automated program repair.528

Tian et al. [483] carried out an empirical study to investigate different representation learning ap-529

proaches for code changes to derive embeddings, which are amendable to similarity computations.530

This study uses bert transformer-based embeddings. Furthermore, Amorim et al. [39] applied, a531

word embeddingmodel (Word2Vec), to facilitate the evaluation of repair processes, by considering532

the naturalness obtained from known bug fixes. Van Thuy et al. [506] have also applied word repre-533

sentations, and extracted relations of statements and blocks for a Bi-grammodel using Big code, to534

improve the existing learning-aid-based repair tool Prophet [297]. Gupta et al. [178] used word em-535

beddings and reinforcement learning to fix erroneous C student programswith typographic errors.536

3https://github.com/GumTreeDiff/gumtree
4https://opennmt.net/
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Tian et al. [483] applied a ml predictor with bert transformer-based embeddings associated with lo-537

gistic regression to learn code representations in order to learn deep features that can encode the538

properties of patch correctness. Saha et al. [416] used similarity analysis for repairing bugs that539

may require applying a substantially similar patch at a number of locations. Additionally, Wang540

et al. [518] used also similarity metrics to compare the differences among machine-generated and541

human patches. Santos et al. [421] used n-grams and nns to detect and correct syntax errors.542

Logic-based rules: Alrajeh et al. [33] combined model checking and logic-based learning to sup-543

port automated program repair. Cai et al. [74] also combined model-checking and ml for program544

repair. Shim et al. [444] used inductive program synthesis (DeeperCoder), by creating a simple Do-545

main Specific Language (dsl), and ml to generate computer programs that satisfies user require-546

ments and specification. Sakkas et al. [419] combined type rules and ml (i.e.,multi-class classifica-547

tion, dnns, and mlp) for repairing compile errors.548

Probabilistic predictions: Here, we list papers that use probabilistic learning and ml approaches549

such as association rules, Decision Tree, and Support Vector Machine to predict bug locations and550

fixes for automated program repair. Long and Rinard [297] introduced a repair tool called Prophet,551

which uses a set of successful manual patches from open-source software repositories, to learn552

a probabilistic model of correct code, and generate patches. Soto and Le Goues [459] conducted553

a granular analysis using different statement kinds to identify those statements that are more554

likely to be modified than others during bug fixing. For this, they used simplified syntax trees and555

association rules. Gopinath et al. [161] presented a data-driven approach for fixing of bugs in556

database statements. For predicting the correct behavior for defect-inducing data, this study uses557

Support Vector Machine and Decision Tree. Saha et al. [415] developed the Elixir repair approach558

that uses Logistic Regression models and similarity-score metrics. Bader et al. [46] developed a559

repair approach called Getafix that uses hierarchical clustering to summarize fix patterns into a560

hierarchy ranging from general to specific patterns. Xiong et al. [537] introduced L2S that uses ml561

to estimate conditional probabilities for the candidates at each search step, and search algorithms562

to find the best possible solutions. Gopinath et al. [160] used Support Vector Machine and ID3 with563

path exploration to repair bugs in complex data structures. Le et al. [249] conducted an empirical564

study on the capabilities of program repair tools, and applied Random Forest to predict whether565

using genetic programming search in apr can lead to a repair within a desired time limit. Aleti and566

Martinez [16] used themost significant features as inputs to Random Forest, Support Vector Machine,567

Decision Tree, andmulti-layer perceptronmodels.568

Recurrent neural networks: dl approaches such as rnns (e.g., lstm and Transformer) have been used569

for synthesizing new code statements by learning patterns from a previous list of code statement,570

i.e., this techniques can be used to mainly predict the next statement. Such approaches often571

leverage word embeddings. Dantas et al. [118] combined Doc2Vec and lstm, to capture dependen-572

cies between source code statements, and improve the fault-localization step of program repair.573

Ahmed et al. [10] developed a repair approach (Tracer) for fixing compilation errors using rnns.574

Recently, Li et al. [267] introduced DLFix, which is a context-based code transformation learning575

for automated program repair. DLFix uses rnns and treats automated program repair as code576

transformation learning, by learning patterns from prior bug fixes and the surrounding code con-577

texts of those fixes. Svyatkovskiy et al. [474] presented IntelliCode that uses a Transformer model578

that predicts sequences of code tokens of arbitrary types, and generates entire lines of syntacti-579

cally correct code. Chen et al. [97] used the lstm for synthesizing if–then constructs. Similarly,580

Vasic et al. [507] applied the lstm in multi-headed pointer networks for jointly learning to localize581

and repair variable misuse bugs. Bhatia et al. [59] combined neural networks, and in particular582

rnns, with constraint-based reasoning to repair syntax errors in buggy programs. Chen et al. [101]583

applied lstm for sequence-to-sequence learning achieving end-to-end program repair through the584

SequenceR repair tool they developed. Majd et al. [313] developed SLDeep, statement-level soft-585

ware defect prediction, which uses lstm on static code features.586
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Apart from above-mentioned techniques, White et al. [533] developed DeepRepair, a recur-587

sive unsupervised deep learning-based approach, that automatically creates a representation of588

source code that accounts for the structure and semantics of lexical elements. The neural network589

language model is trained from the file-level corpus using embeddings.590

3.3.2 Code generation591

592

An automated code generation approach takes specification, typically in the form of natural lan-593

guage prompts, and generates executable code based on the specification [551, 395, 474]. We594

elaborate on the studies that involve generating source code using ml techniques.595

Dataset preparation: Yin and Neubig [552] proposed a transition-based neural semantic parser,596

namely tranx, which generates formal meaning representation from natural language text. They597

usedmultiple datasets for their study—dataset proposed by Dong and Lapata [128] containing 880598

geography-related questions, Django dataset [358], as well asWikiSQL dataset [576]. Similarly, Sun599

et al. [468] and Shin et al. [446] used the HearthStone dataset [283] for Python code generation;600

in addition, Shin et al. [446] used the Spider [557] dataset for training. Liang et al. [272] used the601

semantic parsing datasetWebQuestionsSP[550] consisting 3, 098 question-answer pairs for training602

and 1, 639 for testing. Bielik et al. [60] used the Linux Kernel dataset [222], and the Hutter Prize603

Wikipedia dataset.5 Devlin et al. [122] evaluated their architecture on 205 real-world Flash-Fill in-604

stances [170]. Xiong et al. [537] used training data stemming from two Defects4J projects and their605

related JDK packages. Wei et al. [530] conducted experiments on Java and Python projects collected606

from GitHub used by previous work (such as by Hu et al. [198], Hu et al. [199], Wan et al. [511]).607

Some studies curated datasets for their experiments. For example, Chen et al. [93] created608

HumanEval, a dataset containing 164 programming problems crafted manually for evaluation. Sim-609

ilarly, Li et al. [270] first used a curated set of public GitHub repositories implemented in several610

popular languages such as C++, C#, Java, Go, and Python for pre-training. They created a dataset,611

CodeContests, for fine-tuning. The dataset includes problems, solutions, and test cases scraped612

from the Codeforces platform. Furthermore, IntelliCode [474] is trained on 1.2 billion lines of613

source code written in the Python, C#, JavaScript and TypeScript programming languages. Alla-614

manis et al. [28] evaluated their models on a large dataset of 2.9 million lines of code. Cai et al. [75]615

used a training set that contains 200 traces for addition, 100 traces for bubble sort, 6 traces for topo-616

logical sort, and 4 traces for quicksort. Devlin et al. [121] used programming examples that involve617

induction, such as I/O examples. Shu and Zhang [449] used training data to generate programs at618

various levels of complexity according to 45 predefined tasks (e.g., Split, Join, Select). Murali et al.619

[344] used a corpus of about 150, 000 api-manipulating Android methods. Shin et al. [447] propose620

a new approach to generate desirable distribution for the target datasets for program induction621

and synthesis tasks.622

Feature extraction: Studies in this category extensively used ast during the feature extraction623

step. tranx [552] maps natural language text into an ast using a series of tree-construction ac-624

tions. Similarly, Sun et al. [468] parsed a program as an ast and decomposed the program into625

several context-free grammar rules. Also, the study by Yin and Neubig [551] transformed state-626

ments to asts. These asts are generated for all well-formed programs using parsers provided by627

the programming language under examination. Furthermore, Rabinovich et al. [395] developed a628

model that used a modular decoder, whose sub-models are composed using natively generated629

asts. Each sub-model is associated with a specific construct in the ast grammar, and, then, it is630

invoked when that construct is required in the output tree.631

Some studies in the category used examples of input and output to learn code generation.632

Euphony [257] learns good representation using easily obtainable solutions for given programs.633

DeepCoder [47] observes inputs and outputs, by leveraging information from interpreters. Then,634

5http://prize.hutter1.net/
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DeepCoder searches for a program that matches the input-output examples. Similarly, Chen et al.635

[99] developed a neural program synthesis from input-output examples. Shu and Zhang [449]636

extracted features from string transformations, i.e., input-output strings, and use the learned fea-637

tures to induce correct programs. Devlin et al. [122] used I/O programming examples and devel-638

oped a dsl for synthesizing related programs.639

Finally, the rest of the studies used tokens from source code as their features. For example,640

Chen et al. [97] and Li et al. [270] extracted tokens from source code. Allamanis et al. [28] extracted641

features that refer to program semantics such as variable names. Xiong et al. [537] extracted sev-642

eral features, including context, variable, expression, and position features, from the source code643

to train their ml models. Devlin et al. [121] focused on extracting features from programs that in-644

volve induction. Murali et al. [344] extracted low-level features (e.g., api calls). Liang et al. [272] also645

used tokens and graphs extracted from the data sets used. Shin et al. [446] considered idioms (new646

named operators) from programs in an extended grammar. Bielik et al. [60] leveraged language647

features, using datasets of ngrams in their experiments. Maddison andTarlow [310] considered fea-648

tures of variables and structural language features. Cummins et al. [113] used language features649

to synthesize human-like written programs. Shin et al. [447] used different features related to I/O650

operations e.g., program size, control-flow ratio, and so on. Chen et al. [98] extracted features from651

programming-language arguments. Wei et al. [530] leveraged the power of code summarization652

and code generation. The input of code summarization is the output of code generation; the ap-653

proach applies the relations between these tasks and proposes a dual training framework to train654

these tasks simultaneously using probability and attention weights along with dual constraints.655

ML model training: A majority of the studies in this category relies on the rnn-based ecoder-656

decoder architecture. tranx [552] implemented a transition system that generates an ast from657

a sequence of tree-constructing actions. The system is based on a lstm-based encoder-decoder658

model where the encoder encodes the input tokens into its corresponding vector representation659

and the decoder generates the probabilities of tree-constructing actions. Also, Yin and Neubig660

[551] proposed adata-driven syntax-basedneural networkmodel for generation of code in general-661

purpose programming languages such as Python. Cai et al. [75] implemented recursion in the Neu-662

ral Programmer-Interpreter framework that uses an lstm controller on four tasks: grade-school663

addition, bubble sort, topological sort, and quicksort. Bielik et al. [60] designed a language TChar664

for character-level languagemodeling, and program synthesis using lstm. Cummins et al. [113] ap-665

plied lstm to synthesize compilable, executable benchmarks. Chen et al. [98] used reinforcement666

learning to predict arguments (e.g., CALL, REDUCE). Devlin et al. [122] presented a novel variant of667

the attentional rnn architecture, which allows for encoding of a variable size set of input-output668

examples. Wei et al. [530] used Seq2Seq, Bi-lstm, lstm-based models to exploit the code summa-669

rization and code generation for automatic software development. Furthermore, Rabinovich et al.670

[395] introduced Abstract Syntax Networks (ASNs), an extension of the standard encoder-decoder671

framework.672

Some of the studies employed transformer-based models. Sun et al. [468] proposed TreeGen673

for code generation. They implemented an ast readerer to combine the grammar rules with ast674

and mitigated the long-dependency problem with the help of the attention mechanism used in675

Transformers. Similarly, Li et al. [270] implemented a transformer architecture for AlphaCode. Chen676

et al. [93] proposed Codex that is a gpt model fine-tuned on publicly available code from GitHub677

containing up to 12B parameters on code. IntelliCode by Svyatkovskiy et al. [474] is a multilingual678

code completion tool that predicts sequences of code tokens of arbitrary types. IntelliCode is also679

able to generate entire lines of syntactically correct code. It uses a generative transformer model.680

Euphony [257] targets a standard formulation, syntax-guided synthesis, by extending the gram-681

mar of given programs. To do so, Euphony uses a probabilistic model dictating the likelihood of682

each program. DeepCoder [47] leverages gradient-based optimization and integrates neural net-683

work architectures with search-based techniques. Szydlo et al. [477] investigated the concept of684
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source code generation of machine learning models as well as the generation algorithms for com-685

monly usedmlmethods. Chen et al. [99] introduced a technique that is based on execution-guided686

synthesis and uses a synthesizer ensemble. This approach leverages semantic information to en-687

semble multiple neural program synthesizers. Chen et al. [97] used latent attention to compute688

token weights. They found that latent attention performs better in capturing the sentence struc-689

ture. Allamanis et al. [28] used dl models to learn semantics from programs. They used the code’s690

graph structure and learned program representations over the generated graphs. Xiong et al. [537]691

applied the gradient boosting tree algorithm to train theirmodels. Devlin et al. [121] used the trans-692

fer learning and k-shot learning approach for cross-task knowledge transfer to improve program693

induction in limited-data scenarios. Shu and Zhang [449] proposed NPBE (Neural Programming by694

Example) that teaches a dnn to compose a set of predefined atomic operations for stringmanipula-695

tions. Murali et al. [344] trained a neural generator on program sketches to generate source code696

in a strongly typed, Java-like programming language. Liang et al. [272] introduced the Neural Sym-697

bolic Machine (NSM), based on a sequence-to-sequence neural network induction, and apply it to698

semantic parsing. Shin et al. [446] employed non-parametric Bayesian inference to mine the code699

idioms that frequently occur in a given corpus and trained a neural generative model to option-700

ally emit named idioms instead of the original code fragments. Maddison and Tarlow [310] used701

models that are based on probabilistic context free grammars (PCFGs) and a neuro-probabilistic702

language, which are extended to incorporate additional source code-specific structures.703

3.3.3 Program translation704

705

In this section, we list studies that use ml that can be used, for instance, for translating source code706

from one programming language to another by learning source-code patterns. Le et al. [248] pre-707

sented a survey on dl techniques including machine translation algorithms and applications. Oda708

et al. [357] used statistical machine translation (smt) and proposed a method to automatically gen-709

erate pseudo-code from source code for source-code comprehension. To evaluate their approach710

they conducted experiments, and generated English or Japanese pseudo-code from Python state-711

ments using smt. Then, they found that the generated pseudo-code is mostly accurate, and it can712

facilitate code understanding. Roziere et al. [408] applied unsupervised machine translation to713

create a transcompiler in a fully unsupervised way. TransCoder uses beam search decoding to714

generate multiple translations. Phan and Jannesari [380] proposed PrefixMap, a code suggestion715

tool for all types of code tokens in the Java programming language. Their approach uses statistical716

machine translation that outperforms nmt. They used three corpus for their experiments—a large-717

scale corpus of English-German translation in nlp [304], the Conala corpus [553], which contains718

Python software documentation as 116,000 English sentences, and the msr 2013 corpus [23].719

3.4 Quality assessment720

The quality assessment category has sub-categories code smell detection, clone detection, and quality721

assessment/prediction. In this section, we elaborate upon the state-of-the-art related to each of722

these categories within our scope.723

3.4.1 Code smell detection724

Code smells impair the code quality and make the software difficult to extend and maintain [435].725

Extensive literature is available on detecting smells automatically [435]; ml techniques have been726

used to classify smelly snippets from non-smelly code. First, source code is pre-processed to ex-727

tract individual samples (such as a class, file, or method). These samples are classified into positive728

and negative samples. Afterwards, relevant features are identified from the source code and those729

features are then fed into anmlmodel for training. The trainedmodel classifies a source code sam-730

ple into a smelly or non-smelly code.731
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Dataset preparation: The process of identifying code smells requires a dataset as a ground732

truth for training an ml model. Each sample of the training dataset must be tagged appropri-733

ately as smelly sample (along with target smell types) or non-smelly sample. Many authors built734

their datasets tagged manually with annotations. For example, Fakhoury et al. [139] developed735

a manually validated oracle containing 1, 700 instances of linguistic smells. Pecorelli et al. [375]736

created a dataset of 8.5 thousand samples of smells from 13 open-source projects. Some au-737

thors [11, 336, 110, 206, 180] employed existing datasets (Landfill and Qualitas) in their studies.738

Tummalapalli et al. [500, 497, 499] used 226 WSDL files from the tera-PROMISE dataset. Oliveira739

et al. [360] relied on historical data and mined smell instances from history where the smells were740

refactored.741

Some efforts such as one by Sharma et al. [437] used CodeSplit [434, 433] first to split source742

code files into individual classes and methods. Then, they used existing smell detection tools [436,743

432] to identify smells in the subject systems. They used the output of both of these tasks to744

identify and segregate positive and negative samples. Similarly, Kaur and Kaur [226] used smells745

identified by Dr Java, EMMA, and FindBugs as their gold-set. Alazba and Aljamaan [14] and Dewan-746

gan et al. [124] used the dataset manually labelled instances detected by four code smell detector747

tools (i.e., iPlasma, PMD, Fluid Tool, Anti-Pattern Scanner, and Marinescu's detection rule). The748

dataset labelled six code smells collected from 74 software systems. Zhang and Dong [569] pro-749

posed a large dataset BrainCode consisting 270, 000 samples from 20 real-world applications. The750

study used iPlasma to identify smells in the subject systems.751

Liu et al. [290] adopted an usual mechanism to identify their positive and negative samples.752

They assumed that popular well-known open-source projects are well-written and hence all of the753

classes/methods of these projects are by default considered free from smells. To obtain positive754

samples, they carried out reverse refactoring e.g.,moving a method from a class to another class to755

create an instance of feature envy smell.756

Feature extraction: The majority of the articles [52, 223, 240, 174, 8, 360, 390, 149, 42, 148, 481,757

111, 38, 114, 336, 290, 179, 495, 110, 500, 417, 497, 499, 226, 176, 124, 14, 206, 569, 173] in this cate-758

gory use object-orientedmetrics as features. Thesemetrics include class-levelmetrics (such as lines759

of code, lack of cohesion among methods, number of methods, fan-in and fan-out) and method-level760

metrics (such as parameter count, lines of code, cyclomatic complexity, and depth of nested conditional).761

We observed that some of the attempts use a relatively small number of metrics (Thongkum and762

Mekruksavanich [481] and Agnihotri and Chug [8] used 10 and 16 metrics, respectively). However,763

some of the authors chose to experiment with a large number of metrics. For example, Amorim764

et al. [38] employed 62, Mhawish and Gupta [336] utilized 82, and Arcelli Fontana and Zanoni [42]765

used 63 class-level metrics and 84 method-level metrics.766

Some efforts diverge from the mainstream usage of using metrics as features and used alter-767

native features. Lujan et al. [303] used warnings generated from existing static analysis tools as768

features. Similarly, Ochodek et al. [356] analyzed individual lines in source code to extract tex-769

tual properties such as regex and keywords to formulate a set of vocabulary based features (such770

as bag of words). Tummalapalli et al. [498] and Gupta et al. [175] used distributed word repre-771

sentation techniques such as Term frequency-inverse Document Frequency (TFIDF), Continuous772

Bag Of Words (CBW), Global Vectors for Word Representation (GloVe), and Skip Gram. Similarly,773

Hadj-Kacem and Bouassida [180] generated ast first and obtain the corresponding vector repre-774

sentation to train a model for smell detection. Furthermore, Sharma et al. [437] hypothesized that775

dl methods can infer the features by themselves and hence explicit feature extraction is not re-776

quired. They did not process the source code to extract features and feed the tokenized code to777

ml models.778

MLmodel training: The type of ml models usage can be divided into three categories.779

Traditional ml models: In the first category, we can put studies that use one or more traditional ml780
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models. These models include Decision Tree, Support Vector Machine, Random Forest, Naive Bayes,781

Logistic Regression, Linear Regression, Polynomial Regression, Bagging, andMultilayer Perceptron. The782

majority of studies [303, 240, 174, 8, 360, 390, 149, 148, 374, 481, 111, 127, 114, 495, 110, 498, 499,783

226, 124, 14, 175, 206, 180, 173] in this category compared the performance of various ml models.784

Some of the authors experimented with individual ml models; for example, Kaur et al. [223] and785

Amorim et al. [38] used Support Vector Machine and Decision Tree, respectively, for smell detection.786

Ensemble methods: The second category of studies employed ensemble methods to detect smells.787

Barbez et al. [52] and Tummalapalli et al. [496] experimented with ensemble techniques such as788

majority training ensemble and best training ensemble. Saidani et al. [417] used the Ensemble Classi-789

fier Chain (ECC) model that transforms multi-label problems into several single-label problems to790

find the optimal detection rules for each anti-pattern type.791

dl-based models: Studies that use dl form the third category. Sharma et al. [437] used cnn, rnn792

(lstm), and autoencoders-based dlmodels. Hadj-KacemandBouassida [179] employed autoencoder-793

based dl model to first reduce the dimensionality of data and Artificial Neural Network to classify794

the samples into smelly and non-smelly instances. Liu et al. [290] deployed four different dlmodels795

based on cnn and rnn. It is common to use other kinds of layers (such as embeddings, dense, and796

dropout) alongwith cnn and rnn. Gupta et al. [176] used eight dlmodels and Zhang andDong [569]797

proposed Metric–Attention-based Residual network (MARS) to detect brain class/method. MARS798

used metric–attention mechanism to calculate the weight of code metrics and detect code smells.799

Discussion: A typical ml model trained to classify samples into either smelly or non-smelly samples.800

The majority of the studies focused on a relatively small set of known code smells— god class [52,801

303, 223, 174, 8, 360, 149, 167, 42, 111, 78, 179], feature envy [52, 223, 8, 149, 42, 148, 111, 437, 179],802

long method [223, 174, 149, 167, 42, 148, 111, 45, 179], data class [223, 360, 149, 167, 42, 148], and803

complex class [303, 174, 360]. Results of these efforts vary significantly; F1 score of the ml models804

vary between 0.3 to 0.99. Among the investigated ml models, authors widely report that Decision805

Tree [45, 148, 13, 174] and Random Forest [45, 148, 240, 42, 336] perform the best. Other methods806

that have been reported better than other ml models in their respective studies are Support Vector807

Machine [496], Boosting [302], and autoencoders [437].808

Traditional ml techniques are the prominent choice in this category because these techniques809

works well with fixed size, fixed column meaning vectors. Code quality metrics capture the fea-810

tures relevant to the identification of smells, and they have fixed size, fixed column meaning vec-811

tors. However, such vectors do not capture subjectivity inherent in the context and hence some812

studies rely on alternative features such as embeddings generated by ast representations to feed813

dl models such as rnn.814

3.4.2 Code clone detection815

Code clone detection is the process of identifying duplicate code blocks in a given software system.816

Software engineering researchers have proposed not only methods to detect code clones auto-817

matically, but, also verify whether the reported clones from existing tools are false-positives or not818

using ml techniques. Studies in this category prepare a dataset containing source code samples819

classified as clones or non-clones. Then, they apply feature extraction techniques to identify rele-820

vant features that are fed into ml models for training and evaluation. The trained models identify821

clones among the sample pairs.822

Dataset preparation: Manual annotation is a common way to prepare a dataset for applying ml823

to identify code clones [340, 341, 532]. Mostaeen et al. [340] used a set of tools (NiCad, Deckard,824

iClones, CCFinderX and SourcererCC) to first identify a list of code clones; they then manually vali-825

dated each of the identified clone set. Yang et al. [542] used existing code clone detection tools to826

generate their training set. Some authors (such as Bandara and Wijayarathna [49] and Hammad827

et al. [183]) relied on existing code-clone datasets. Zhang and Khoo [562] used NiCad to detect all828

clone groups from each version of the software. The study mapped the clones from a consecu-829
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tive version and used the mapping to predict clone consistency at both the clone-creating and the830

clone-changing time. Bui et al. [72] deployed an interestingmechanism to prepare their code-clone831

dataset. They crawled through GitHub repositories to find different implementations of sorting al-832

gorithms; they collected 3,500 samples from this process.833

Feature extraction: Themajority of the studies relied on the textual properties of the source code834

as features. Bandara and Wijayarathna [49] identified features such as the number of characters835

and words, identifier count, identifier character count, and underscore count using the antlr tool.836

Some studies [340, 341, 339] utilized line similarity and token similarity. Yang et al. [542] and Ham-837

mad et al. [183] computed tf-idf along with other metrics such as position of clones in the file.838

Cesare et al. [79] extracted 30 package-level features including the number of files, hashes of the839

files, and common filenames as they detected code clones at the package level. Zhang and Khoo840

[562] obtained a set of code attributes (e.g., lines of code and the number of parameters), context841

attribute set (e.g.,method name similarity, and sum of parameter similarity). Similarly, Sheneamer842

and Kalita [441] obtained metrics such as the number of constructors, number of field access, and843

super-constructor invocation from the program ast. They also employed program dependence844

graph features such as decl_assign and control_decl. Along the similar lines, Zhao and Huang [571]845

used cfg and dfg (Data Flow Graph) for clone detection. Some of the studies [72, 532, 142] relied846

on dl methods to encode the required features automatically without specifying an explicit set of847

features.848

MLmodel training:849

Traditional ml models: Themajority of studies [341, 49, 339, 441, 562] experimented with a number850

of ml approaches. For example, Mostaeen et al. [341] used Bayes Network, Logistic Regression, and851

Decision Tree; Bandara and Wijayarathna [49] employed Naive Bayes, K Nearest Neighbors, AdaBoost.852

Similarly, Sheneamer and Kalita [441] compared the performance of Support Vector Machine, Linear853

Discriminant Analysis, Instance-Based Learner, Lazy K-means, Decision Tree, Naive Bayes, Multilayer854

Perceptron, and Logit Boost.855

dl-based models: dl models such as ann [340, 339], dnn [142, 571], and rnn with Reverse neural856

network [532] are also employed extensively. Bui et al. [71] and Bui et al. [72] combined neural857

networks for ml models' training. Specifically, Bui et al. [71] built a Bilateral neural network on858

top of two underlying sub-networks, each of which encodes syntax and semantics of code in one859

language. Bui et al. [72] constructed BiTBCNNs—a combination layer of sub-networks to encode860

similarities and differences among code structures in different languages. Hammad et al. [183]861

proposed a Clone-Advisor, a dnn model trained by fine-tuning GPT-2 over the BigCloneBench code862

clone dataset, for predicting code tokens and clone methods.863

3.4.3 Defect prediction864

To pinpoint bugs in software, researchers used various ml approaches. The first step of this pro-865

cess is to identify the positive and negative samples from a dataset where samples could be a type866

of source code entity such as classes, modules, files, and methods. Next, features are extracted867

from the source code and fed into an ml model for training. Finally, the trained model can clas-868

sify different code snippets as buggy or benign based on the encoded knowledge. To this end,869

we discuss the collected studies based on (1) data labeling, (2) features extract, and (3) ml model870

training.871

Dataset preparation: To train an ml model for predicting defects in source code a labeled dataset872

is required. For this purpose, researchers have used some well-known and publicly available873

datasets. For instance, a large number of studies [80, 157, 316, 454, 85, 58, 320, 453, 81, 517, 106,874

265, 125, 386, 307, 229, 90, 116, 520, 442, 129, 455, 568, 73, 126, 423, 521, 281, 404, 263, 224, 359,875

246, 457, 366, 318, 393, 323, 470, 137, 365, 554, 469, 120, 12, 15] used the promise dataset [424].876

Some studies used other datasets in addition to promise dataset. For example, Liang et al. [273]877
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used Apache projects and Qiao et al. [393] used mis dataset [306]. Xiao et al. [535] utilized a Contin-878

uous Integration (ci) dataset and Pradel and Sen [387] generated a synthetic dataset. Apart from879

using the existing datasets, some other studies prepared their own datasets by utilizing various880

GitHub projects [314, 190, 455, 7, 315, 372, 491] including Apache [266, 64, 117, 141, 364, 460, 317,881

105, 400], Eclipse [583, 117] and Mozilla [311, 233] projects, or industrial data[64].882

Feature extraction: The most common features to train a defect prediction model are the source883

code metrics introduced by Halstead [182], Chidamber and Kemerer [103], and McCabe [328].884

Most of the examined studies [80, 157, 316, 454, 85, 320, 517, 106, 314, 315, 307, 229, 73, 86, 233,885

427, 141, 224, 217, 359, 246, 41, 21, 457, 522, 318, 393, 323, 469, 554, 470, 120, 105, 137, 400, 12,886

364, 460, 388, 317, 15, 372, 488] used a large number of metrics such as Lines of Code, Number887

of Children, Coupling Between Objects, and Cyclomatic Complexity. Some authors [365, 456] com-888

bined detected code smells with code qualitymetrics. Furthermore, Felix and Lee [144] used defect889

metrics such as defect density and defect velocity along with traditional code smells.890

In addition to the above, some authors [81, 125, 58, 386] suggested the use of dimensional891

space reduction techniques—such as Principal Component Analysis (pca)—to limit the number of892

features. Pandey and Gupta [367] used Sequential Forward Search (sfs) to extract relevant source893

codemetrics. Dos Santos et al. [129] suggested a sampling-based approach to extract source code894

metrics to train defect predictionmodels. Kaur et al. [225] suggested an approach to fetch entropy895

of change metrics. Bowes et al. [64] introduced a novel set of metrics constructed in terms of896

mutants and the test cases that cover and detect them.897

Other authors [387, 568] used embeddings to trainmodels. Such studies, first generate asts[266,898

141, 263, 366, 273], a variation of asts such as simplified asts [281, 88], or ast-diff [521, 491] for899

a selected method or file could be considered. Then, embeddings are generated either using the900

token vector corresponding to each node in the generated tree or extracting a set of paths from an901

ast. Singh et al. [455] proposed a method named Transfer Learning Code Vectorizer that generates902

features from source code by using a pre-trained code representation dlmodel. Another approach903

for detecting defects is capturing the syntax and multiple levels of semantics in the source code904

as suggested by Dam et al. [116]. To do so, the authors trained a tree-base lstm model by using905

source code files as feature vectors. Subsequently, the trained model receives an ast as input and906

predicts if a file is clear from bugs or not.907

Wang et al. [520] employed the Deep Belief Network algorithm (dbn) to learn semantic features908

from token vectors, which are fetched from applications' asts. Shi et al. [442] used a dnn model909

to automate the features extraction from the source code. Xiao et al. [535] collected the testing910

history information of all previous ci cycles, within a ci environment, to train defect predict models.911

Likewise to the above study, Madhavan and Whitehead [311] and Aggarwal [7] used the changes912

among various versions of a software as features to train defect prediction models.913

In contrast to the above studies, Chen et al. [90] suggested the dtl-dp, a framework to predict914

defects without the need of features extraction tools. Specifically, dtl-dp visualizes the programs915

as images and extracts features out of themby using a self-attentionmechanism [508]. Afterwards,916

it utilizes transfer learning to reduce the sample distribution differences between the projects by917

feeding them to a model.918

ML model training: In the following, we present the main categories of ml techniques found in919

the examined papers.920

Traditional ml models: To train models, most of the studies [80, 157, 316, 454, 85, 58, 320, 453,921

81, 106, 125, 386, 314, 315, 184, 367, 129, 455, 229, 225, 73, 520, 393, 323, 469, 554, 470, 120,922

105, 400, 364, 460, 456, 388, 317, 15, 372, 224, 359, 246, 144, 318, 457, 21, 404] used traditional923

ml algorithms such as Decision Tree, Random Forest, Support Vector Machine, and AdaBoost. Sim-924

ilarly, Jing et al. [217], Wang et al. [522] used Cost Sensitive Discriminative Learning. In addition,925

other authors [265, 517, 307] proposed changes to traditional ml algorithms to train their mod-926
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els. Specifically, Wang and Yao [517] suggested a dynamic version of AdaBoost.NC that adjusts its927

parameters automatically during training. Similarly, Li et al. [265] proposed ACoForest, an active928

semi-supervised learning method to sample the most useful modules to train defect prediction929

models. Ma et al. [307] introduced Transfer Naive Bayes, an approach to facilitate transfer learning930

from cross-company data information and weighting training data.931

dl-basedmodels: In contrast to the above studies, researchers [90, 116, 387, 266, 427] used dlmod-932

els such as cnn and rnn-based models for defect prediction. Specifically, Chen et al. [90], Al Qasem933

et al. [12], Li et al. [263], Pan et al. [366] used cnn-based models to predict bugs. rnn-based meth-934

ods [116, 491, 88, 273, 141, 281] are also frequently used where variations of lstm are used to935

for defect prediction. Moreover, by using dl approaches, authors achieved improved accuracy for936

defect prediction and they pointed out bugs in real-world applications [387, 266].937

3.4.4 Quality assessment/prediction938

Studies in this category assess or predict issues related to various quality attributes such as relia-939

bility, maintainability, and run-time performance. The process starts with dataset pre-processing940

and labeling to obtain labeled data samples. Feature extraction techniques are applied on the pro-941

cessed samples. The extracted features are then fed into an ml model for training. The trained942

model assesses or predicts the quality issues in the analyzed source code.943

Dataset preparation: Heo et al. [193] generated data to train an ml model in pursuit to balance944

soundness and relevance in static analysis by selectively allowing unsoundness only when it is945

likely to reduce false alarms. Similarly, Alikhashashneh et al. [20] used the Understand tool to de-946

tect variousmetrics, and employed themon the Juliet test suite for C++. Reddivari and Raman [402]947

extracted a subset of data belonging to open source projects such as Ant, Tomcat, and Jedit to pre-948

dict reliability and maintainability using ml techniques. Malhotra1 and Chug [321] also prepared a949

custom dataset using two proprietary software systems as their subjects to predict maintainability950

of a class.951

Feature extraction: Heo et al. [193] extracted 37 low-level code features for loop (such as number952

of Null, array accesses, and number of exits) and library call constructs (such as parameter count953

and whether the call is within a loop). Some studies [20, 402, 321] used source code metrics as954

features.955

MLmodel training: Alikhashashneh et al. [20] employed Random Forest, Support Vector Machine, K956

Nearest Neighbors, and Decision Tree to classify static code analysis tool warnings as true positives,957

false positives, or false negatives. Reddivari and Raman [402] predicted reliability andmaintainabil-958

ity using the similar set of ml techniques. Anomaly-detection techniques such as One-class Support959

Vector Machine have been used by Heo et al. [193]. They applied their method on taint analysis and960

buffer overflow detection to improve the recall of static analysis. Whereas, some other studies [20]961

aimed to rank and classify static analysis warnings.962

3.5 Code completion963

Code auto-completion is a state-of-the-art integral feature of modern source-code editors and964

ides [69]. The latest generation of auto-completion methods uses nlp and advanced ml models,965

trained on publicly available software repositories, to suggest source-code completions, given the966

current context of the software-projects under examination.967

Dataset preparation: The majority of the studies mined a large number of repositories to con-968

struct their own datasets. Specifically, Gopalakrishnan et al. [158] examined 116,000 open-source969

systems to identify correlations between the latent topics in source code and the usage of ar-970

chitectural developer tactics (such as authentication and load-balancing). Han et al. [185], Han971

et al. [186] trained and tested their system by sampling 4,919 source code lines from open-source972

projects. Raychev et al. [401] used large codebases from GitHub to make predictions for JavaScript973
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and Python code completion. Svyatkovskiy et al. [473] used 2,700 Python open-source software974

GitHub repositories for the evaluation of their novel approach, Pythia.975

The rest of the approaches employed existing benchmarks and datasets. Rahman et al. [398]976

trained their proposedmodel using the data extracted fromAizuOnline Judge (aoj) system. Liu et al.977

[289], Liu et al. [288] performed experiments on three real-world datasets to evaluate the effective-978

ness of their model when compared with the state-of-the-art approaches. Li et al. [264] conducted979

experiments on two datasets to demonstrate the effectiveness of their approach consisting of an980

attention mechanism and a pointer mixture network on code completion tasks. Schuster et al.981

[426] used a public archive of GitHub from 2020 [1].982

Feature extraction: Studies in this category extract source code information in variety of forms.983

Gopalakrishnan et al. [158] extracted relationships between topical concepts in the source code984

and the use of specific architectural developer tactics in that code. Liu et al. [289], Liu et al. [288]985

introduced a self-attentional neural architecture for code completion with multi-task learning. To986

achieve this, they extracted the hierarchical source code structural information from the programs987

considered. Also, they captured the long-term dependency in the input programs, and derived988

knowledge sharing between related tasks. Li et al. [264] used locally repeated terms in program989

source code to predict out-of-vocabulary (OoV) words that restrict the code completion. Chen and990

Wan [92] proposed a tree-to-sequence (Tree2Seq) model that captures the structure information991

of source code to generate comments for source code. Raychev et al. [401] used asts and per-992

formed prediction of a program element on a dynamically computed context. Svyatkovskiy et al.993

[473] introduced a novel approach for code completion called Pythia, which exploits state-of-the-994

art large-scale dl models trained on code contexts extracted from asts.995

ML model training: The studies can be classified based on the used ml technique for code com-996

pletion.997

Recurrent Neural Networks: For code completion, researchers mainly try to predict the next token.998

Therefore, most approaches use rnns. In particular, Terada and Watanobe [479] used lstm for999

code completion to facilitate programming education. Rahman et al. [398] also used lstm. Wang1000

et al. [519] used an lstm-based neural network combined with several techniques such as Word1001

Embedding models and Multi-head Attention Mechanism to complete programming code. Zhong1002

et al. [575] applied several dl techniques, including lstm, Attention Mechanism (AM), and Sparse1003

Point Network (spn) for JavaScript code suggestions.1004

Apart from lstm, researchers have used rnn with different approaches to perform code sugges-1005

tions. Li et al. [264] applied neural language models, which involve attention mechanism for rnn,1006

by learning from large codebases to facilitate effective code completion for dynamically-typed pro-1007

gramming languages. Hussain et al. [202] presented CodeGRU that uses gru for capturing source1008

codes contextual, syntactical, and structural dependencies. Yang et al. [545] presented rep to im-1009

prove language modeling for code completion. Their approach uses learning of general token rep-1010

etition of source code with optimized memory, and it outperforms lstm. Schumacher et al. [425]1011

combined neural and classical ml including rnns, to improve code recommendations.1012

Probabilistic Models: Earlier approaches for code completion used statistical learning for recom-1013

mending code elements. In particular, Gopalakrishnan et al. [158] developed a recommender sys-1014

tem using prediction models including neural networks for latent topics. Han et al. [185], Han et al.1015

[186] applied Hidden Markov Models to improve the efficiency of code-writing by supporting code1016

completion of multiple keywords based on non-predefined abbreviated input. Proksch et al. [391]1017

used Bayesian Networks for intelligent code completion. Raychev et al. [401] utilized a probabilistic1018

model for code in any programming languagewithDecision Tree. Svyatkovskiy et al. [473] proposed1019

Pythia that employs a Markov Chain language model. Their approach can generate ranked lists of1020

methods and api recommendations, which can be used by developers while writing programs.1021

Other techniques: Recently, new approaches have been developed for code completion based on1022
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multi-task learning, code representations, and nmt. For instance, Liu et al. [289], Liu et al. [288] ap-1023

plied Multi-Task Learning (mtl) for suggesting code elements. Lee et al. [256] developed MergeLog-1024

ging, a dlbased merged network that uses code representations for automated logging decisions.1025

Chen and Wan [92] applied Tree2Seq model with nmt techniques for code comment generation.1026

3.6 Program Comprehension1027

Program comprehension techniques attempt to understand the theory of comprehension process1028

of developers as well as the tools, techniques, and processes that influence the comprehension1029

activity [463]. We summarized, in the rest of the section, program comprehension studies into1030

four sub-categories i.e., code summarization, program classification, change analysis, and entity1031

identification/recommendation.1032

3.6.1 Code summarization1033

Code summarization techniques attempt to provide a consolidated summary of the source code1034

entity (typically a method). A variety of attempts has been made in this direction. The majority of1035

the studies [94, 252, 285, 9, 443, 548, 198, 260, 516, 253, 549, 523, 565, 204, 268, 580, 188, 581]1036

produces a summary for a small block (such as a method). This category also includes studies that1037

summarize small code fragments [347], code folding within ides [510], commit message genera-1038

tion [212, 295, 214, 213, 96, 526], and title generation for online posts from code [151].1039

Dataset preparation: The majority of the studies [26, 94, 252, 285, 9, 198, 95, 260, 516, 511, 523,1040

96, 581] in this category prepares pairs of code snippets and their corresponding natural language1041

description. Specifically, Chen and Zhou [94] used more than 66 thousand pairs of C# code and1042

natural language description where source code is tokenized using amodified version of the antlr1043

parser. Ahmad et al. [9] conducted their experiments on a dataset containing Java and Python1044

snippets; sequences of both the code and summary tokens are represented by a sequence of1045

vectors. Hu et al. [198] and Li et al. [260] prepared a large dataset from 9,714 GitHub projects.1046

Similarly, Wang et al. [516] mined code snippets and corresponding javadoc comments for their1047

experiment. Chen et al. [95] created their dataset from 12 popular open-source Java libraries with1048

more than 10 thousand stars. They considered method bodies as their inputs and method names1049

along with method comments as prediction targets. Psarras et al. [392] prepared their dataset by1050

using Weka, SystemML, DL4J, Mahout, Neuroph, and Spark as their subject systems. The authors1051

retained names and types of methods, and local and class variables. Choi et al. [104] collected1052

and refined more than 114 thousand pairs of methods and corresponding code annotations from1053

100 open-source Java projects. Iyer et al. [204] mined StackOverflow and extracted title and code1054

snippet from posts that contain exactly one code snippet. Similarly, Gao et al. [151] used a dump1055

of StackOverflow dataset. They tokenized code snippets with respect to each programming lan-1056

guage for pre-processing. The common steps in preprocessing identifiers include making them1057

lower case, splitting the camel-cased and underline identifiers into sub-tokens, and normalizing1058

the code with special tokens such as "VAR" and "NUMBER". Nazar et al. [347] used human anno-1059

tators to summarize 127 code fragments retrieved from Eclipse and NetBeans official frequently1060

asked questions. Yang et al. [546] built a dataset with over 300K pairs of method and comment1061

to evaluate their approach. Chen et al. [96] used dataset provided by Hu et al. [198] and man-1062

ually categorized comments into six intention categories for 20,000 code-comment pairs. Wang1063

et al. [526] created a Python dataset that contains 128 thousand code-comment pairs. Zhou et al.1064

[579] crawled over 6700 Java projects from Github to extract their methods and the corresponding1065

Javadoc comments to create their dataset.1066

Jiang [213] used 18 popular Java projects from GitHub to prepare a dataset with approximately1067

50 thousand commits to generate commit messages automatically. Liu et al. [292] processed 561068

popular open-source projects and selected approximately 160K commits after filtering out the ir-1069

relevant commits. Liu et al. [296] used RepoRepears to identify Java repositories to process. They1070
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collected pull-request meta data by using GitHub APIs. After preprocessing the collected informa-1071

tion, they trained a model to generate pull request description automatically. Wang et al. [515]1072

prepared a dataset of 107K commits by mining 10K open-source repositories to generate context-1073

aware commit messages.1074

Apart fromsource code, someof the studies used additional information generated fromsource1075

code. For example, LeClair et al. [252] used ast alongwith code and their corresponding summaries1076

belonging to more than 2 million Java methods. Likewise, Shido et al. [443] and Zhang et al. [565]1077

also generated asts of the collected code samples. Liu et al. [285] utilized call dependencies along1078

with source code and corresponding comments from more than a thousand GitHub repositories.1079

LeClair et al. [253] employed ast along with adjacency matrix of ast edges.1080

Some of the studies used existing datasets such as StaQC [547] and the dataset created by Jiang1081

et al. [212]. Specifically, Liu et al. [295], Jiang and McMillan [214] utilized a dataset of commits1082

provided by Jiang et al. [212] that contains two million commits from one thousand popular Java1083

projects. Yao et al. [548] and Ye et al. [549] used StaQC dataset [547]; it contains more than 1191084

thousand pairs of question title and code snippet related to sql mined from StackOverflow. Xie1085

et al. [536] utilized two existing datasets—one each for Java [251] and Python [53]. Bansal et al. [51]1086

evaluated their code summarization technique using a Java dataset of 2.1M Javamethods from 28K1087

projects created by LeClair and McMillan [251]. Li et al. [268] also used the Java dataset of 2.1M1088

methods LeClair and McMillan [251] to predict the inconsistent names from the implementation1089

of the methods. Simiarly, Haque et al. [188], LeClair et al. [254], Haque et al. [189] relied on the1090

Java dataset by LeClair and McMillan [251] for summarizing methods. Zhou et al. [580] combined1091

multiple datasets for their experiment. The first dataset [198] contains over 87 thousand Java1092

methods. The other datasets contained 2.1M Java methods [251] and 500 thousand Java methods1093

respectively.1094

Efforts in the direction of automatic code folding also utilize techniques similar to code summa-1095

rization. Viuginov and Filchenkov [510] collected projects developed using IntelliJ platform. They1096

identified the foldable and FoldingDescription elements from workspace.xml belonging to 3351097

JavaScript and 304 Python repositories.1098

Feature extraction: Studies investigated different techniques for code and feature representa-1099

tions. In the simplest form, Jiang et al. [212] tokenized their code and text. Jiang and McMillan1100

[214] extracted commit messages starting from ``verb + object'' and computed TFIDF for each1101

word. Haque et al. [189] extracted top-40 most-common action words from the dataset of 2.1m1102

Java methods provided by LeClair and McMillan [251]. Psarras et al. [392] used comments as well1103

as source code elements such as method name, variables, and method definition to prepare bag-1104

of-words representation for each class. Liu et al. [285] represented the extracted call dependency1105

features as a sequence of tokens.1106

Some of the studies extracted explicit features from code or ast. For example, Viuginov and1107

Filchenkov [510] used 17 languages as independent and 8 languages as dependent features. These1108

features include ast features such as depth of code blocks' root node, number of ast nodes, and1109

number of lines in the block. Hu et al. [198] and Li et al. [260] transformed ast into Structure-Based1110

Traversal (sbt). Yang et al. [546] developed a dl approach, MMTrans, for code summarization that1111

learns the representation of source code from the two heterogeneous modalities of the ast, i.e.,1112

sbt sequences and graphs. Zhou et al. [580] extracted ast and prepared tokenized code sequences1113

and tokenized ast to feed to semantic and structural encoders respectively. Zhou et al. [581, 579]1114

tokenized source code and parse them into ast. Lin et al. [277] proposed block-wise ast splitting1115

method; they split the code of a method based on the blocks in the dominator tree of the Control1116

Flow Graph, and generated a split ast for each block. Liu et al. [292] worked with ast diff between1117

commits as input to generate a commit summary. Lu et al. [301] used Eclipse JDT to parse code1118

snippets at method-level into ast and extracted API sequences and corresponding comments to1119

generate comments for API-based snippets. Huang et al. [201] proposed a statement-based ast1120
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traversal algorithm to generate the code token sequence preserving the semantic, syntactic and1121

structural information in the code snippet.1122

Themost commonway of representing features in this category is to encode the features in the1123

form of embeddings or feature vectors. Specifically, LeClair et al. [252] used embeddings layer for1124

code, text, as well as for ast. Similarly, Choi et al. [104] transformed each of the tokenized source1125

code into a vector of fixed length through an embedding layer. Wang et al. [516] extracted the1126

functional keyword from the code and perform positional encoding. Yao et al. [548] used a code1127

retrieval pre-trained model with natural language query and code snippet and annotated each1128

code snippet with the help of a trained model. Ye et al. [549] utilized two separate embedding1129

layers to convert input sequences, belonging to both text and code, into high-dimensional vectors.1130

Furthermore, some authors encode source code models using various techniques. For instance,1131

Chen et al. [95] represented every input code snippet as a series of ast paths where each path is1132

seen as a sequence of embedding vectors associated with all the path nodes. LeClair et al. [253]1133

used a single embedding layer for both the source code and ast node inputs to exploit a large over-1134

lap in vocabulary. Wang et al. [523] prepared a large-scale corpus of training data where each code1135

sample is represented by three sequences—code (in text form), ast, and cfg. These sequences are1136

encoded into vector forms using work2vec. Studies also explored other mechanisms to encode1137

features. For example, Liu et al. [295] extracted commit diffs and represented them as bag of1138

words. The corresponding model ignores grammar and word order, but keeps term frequencies.1139

The vector obtained from the model is referred to as diff vector. Zhang et al. [565] parsed code1140

snippets into asts and calculated their similarity using asts. Allamanis et al. [26] and Ahmad et al.1141

[9] employed attention-based mechanism to encode tokens. Li et al. [268] used GloVe, a word em-1142

bedding technique, to obtain the vector representation of the context; the study included method1143

callers and callee as well as other methods in the enclosing class as the context for a method. Sim-1144

ilarly, Li et al. [262] calculated edit vectors based on the lexical and semantic differences between1145

input code and the similar code.1146

MLmodel training: The ml techniques used by the studies in this category can be divided into the1147

following four categories.1148

Encoder-decoder models: Themajority of the studies used attention-based Encoder-Decodermodels1149

to generate code summaries for code snippets. We further classify the studies in three categories1150

based on their ml implementation.1151

A large portion of the studies use sequence-to-sequence based approaches. For instance, Gao et al.1152

[151] proposed an end-to-end sequence-to-sequence system enhanced with an attention mecha-1153

nism to perform better content selection. A code snippet is transformed by a source-code encoder1154

into a vector representation; the decoder reads the code embeddings to generate the target ques-1155

tion titles. Jiang et al. [212] trained an ntm algorithm to ``translate'' from diffs to commitmessages.1156

Iyer et al. [204] used an attention-based neural network to model the conditional distribution of a1157

natural language summary. Their approach uses an lstm model guided by attention on the source1158

code snippet to generate a summary of one word at a time. Choi et al. [104] transformed input1159

source code into a context vector by detecting local structural features with cnns. Also, attention1160

mechanism is used with encoder cnns to identify interesting locations within the source code. Sim-1161

ilarly, Jiang [213], Haque et al. [188], Liu et al. [296], Lu et al. [301], Takahashi et al. [478] employed1162

lstm-based Encoder-Decoder model to generate summaries. Their last module decoder generates1163

source code summary. Ahmad et al. [9] proposed to use Transformer to generate a natural lan-1164

guage summary given a piece of source code. For both encoder and decoder, the Transformer1165

consists of stacked multi-head attention and parameterized linear transformation layers. LeClair1166

et al. [252] used attention mechanism to not only attend words in the output summary to words1167

in the code word representation but also to attend the summary words to parts of the ast. The1168

concatenated context vector is used to predict the summary of one word at a time. Xie et al. [536]1169

designed a novel multi-task learning (mlt) approach for code summarization through mining the1170
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relationship between method-code summaries and method names. Li et al. [268] used rnn-based1171

encoder-decodermodel to generate a code representation of amethod and checkwhether the cur-1172

rent method name is inconsistent with the predicted name based on the semantic representation.1173

Haque et al. [189] compared five seq2seq-like approaches (attendgru, ast-attendgru, ast-attendgru-1174

fc, graph2seq, and code2seq) to explore the role of actionword identification in code summarization.1175

Wang et al. [515] proposed a new approach, named CoRec, to translate git diffs, using attentional1176

Encoder-Decoder model, that include both code changes and non-code changes into commit mes-1177

sages. Zhou et al. [578] presented ContextCC that uses a Seq2Seq Neural Network model with an1178

attention mechanism to generate comments for Java methods.1179

Other studies relied on tree-based approaches. For example, Yang et al. [546] developed amulti-1180

modal transformer-based code summarization approach for smart contracts. Bansal et al. [51]1181

introduced a project-level encoder dl model for code summarization. Chen et al. [95], Hu et al.1182

[198] employed lstm-based Encoder-Decoder model to generate summaries.1183

Rest of the studies employed retrieval-based techniques. Zhang et al. [565] proposed Rencos in1184

which they first trained an attentional Encoder-Decoder model to obtain an encoder for all code1185

samples and a decoder for generating natural language summaries. Second, the approach re-1186

trieves the most similar code snippets from the training set for each input code snippet. Rencos1187

uses the trained model to encode the input and retrieves two code snippets as context vectors. It1188

then decodes them simultaneously to adjust the conditional probability of the next word using the1189

similarity values from the retrieved two code snippets. Li et al. [262] implemented their retrieve-1190

and-edit approach by using lstm-based models.1191

Extended encoder-decoder models: Many studies extended the traditional Encoder-Decoder mech-1192

anism in a variety of ways. Among them, sequence-to-sequence based approaches include an ap-1193

proach proposed by Liu et al. [285]; they introduced CallNN that utilizes call dependency informa-1194

tion. They employed two encoders, one for the source code and another for the call dependency1195

sequence. The generated output from the two encoders are integrated and used in a decoder1196

for the target natural language summarization. Wang et al. [516] implemented a three step ap-1197

proach. In the first step, functional reinforcer extracts the most critical function-indicated tokens1198

from source code which are fed into the secondmodule code encoder along with source code. The1199

output of the code encoder is given to a decoder that generates the target sequence by sequen-1200

tially predicting the probability of words one by one. LeClair et al. [253] proposed to use gnn-based1201

encoder to encode ast of eachmethod and rnn-based encoder tomodel themethod as a sequence.1202

They used an attention mechanism to learn important tokens in the code and corresponding ast.1203

Finally, the decoder generates a sequence of tokens based on the encoder output. Zhou et al.1204

[580] used two encoders, semantic and structural, to generate summaries for Java methods. Their1205

method combined text features with structure information of code snippets to train encoders with1206

multiple graph attention layers.1207

Li et al. [260] presented a tree-based approachHybrid-DeepConmodel containing two encoders1208

for code and ast along with a decoder to generate sequences of natural language annotations.1209

Shido et al. [443] extended Tree-lstm and proposed Multi-way Tree-lstm as their encoder. The ra-1210

tional behind the extension is that the proposed approach not only can handle an arbitrary number1211

of ordered children, but also factor-in interactions among children. Zhou et al. [581] trained two1212

separate Encoder-Decoder models, one for source code sequence and another for ast via adversar-1213

ial training, where eachmodel is guided by a well-designed discriminator that learns to evaluate its1214

outputs. Lin et al. [277] used a transformer to generate high-quality code summaries. The learned1215

syntax encoding is combined with code encoding, and fed into the transformer.1216

Rest of the approaches adopted retrieval-based approaches. Ye et al. [549] employed dual learn-1217

ingmechanismby usingBi-lstm. In one direction, themodel is trained for code summarization task1218

that takes code sequence as input and summarized into a sequence of text. On the other hand,1219

the code generation task takes the text sequence and generate code sequence. They reused the1220
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outcome of both tasks to improve performance of the other task. Liu et al. [292] proposed a new1221

approach ATOM that uses the diff between commits as input. The approach used BiLSTMmodule1222

to generate a new message by using diff-diff to retrieve the most relevant commit message.1223

Reinforcement learning models: Some of the studies exploited reinforcement learning techniques1224

for code summary generation. In particular, Yao et al. [548] proposed code annotation for code1225

retrieval method that generates an natural language annotation for a code snippet so that the1226

generated annotation can be used for code retrieval. They used Advanced Actor-Critic model for1227

annotation mechanism and lstm based model for code retrieval. Wan et al. [511] and Wang et al.1228

[523] used deep reinforcement learning model for training using annotated code samples. The1229

trained model is an Actor network that generates comments for input code snippets. The Critic1230

module evaluates whether the generated word is a good fit or not. Wang et al. [526] used a hierar-1231

chical attention network for comment generation. The study incorporated multiple code features,1232

including type-augmented abstract syntax trees and program control flows, along with plain code1233

sequences. The extracted features are injected into an actor-critic network. Huang et al. [201] pro-1234

posed a composite learning model, which combines the actor-critic algorithm of reinforcement1235

learning with the encoder-decoder algorithm, to generate block comments.1236

Other techniques: Jiang and McMillan [214] used Naive Bayes to classify the diff files into the verb1237

groups. For automated code folding, Viuginov and Filchenkov [510] used Random Forest and Deci-1238

sion Tree to classify whether a code block needs to be folded. Similarly, Nazar et al. [347] used Sup-1239

port Vector Machine and Naive Bayes classifiers to generate summaries from the extracted features.1240

Chen et al. [96] compared six ml techniques to demonstrate that comment category prediction1241

can boost code summarization to reach better results. Etemadi and Monperrus [138] compared1242

NNGen, SimpleNNGen, and EXC-NNGen to explore the origin of nearest diffs selected by the neural1243

network.1244

3.6.2 Program classification1245

Studies targeting this category classify software artifacts based on programming language [504],1246

application domain [504], and type of commits (such as buggy and adaptive) [207, 334]. We sum-1247

marize these efforts below from dataset preparation, feature extraction, and ml model training1248

perspective.1249

Dataset preparation: Ma et al. [308] identified more than 91 thousand open-source repositories1250

from GitHub as subject systems. They created an oracle by manually classifying software artifacts1251

from 383 sample projects. Shimonaka et al. [445] conducted experiments on source code gener-1252

ated by four kinds of code generators to evaluate their technique that identify auto-generated code1253

automatically by using ml techniques. Ji et al. [207] and Meqdadi et al. [334] analyzed the GitHub1254

commit history. Ugurel et al. [504] relied on C and C++ projects from Ibiblio and the Sourceforge1255

archives. Levin and Yehudai [258] used eleven popular open-source projects and annotated 11511256

commits manually to train a model that can classify commits into maintenance activities. Similarly,1257

Mariano et al. [325] and Mariano et al. [324] classify commits by maintenance activities; they iden-1258

tify a large number of open-source GitHub repositories. Along the similar lines, Meng et al. [333]1259

classified commits messages into categories such as bug fix and feature addition and Li et al. [261]1260

predicted the impact of single commit on the program. They used popular a small set (specifically,1261

5 and 10 respectively) of Java projects as their dataset. Furthermore, Sabetta and Bezzi [411] pro-1262

posed an approach to classify security-related commits. To achieve the goal, they used 660 such1263

commits from 152 open-source Java projects that are used in SAP software. Gharbi et al. [154]1264

created a dataset containing 29K commits from 12 open source projects. Abdalkareem et al. [3]1265

built a dataset to improve the detection CI skip commits i.e., commits where `[ci skip]' or `[skip1266

ci]' is used to skip continuous integration pipeline to execute on the pushed commit. To build the1267

dataset, the authors used BigQuery GitHub dataset to identify repositories where at least 10% of1268

commits skipped the CI pipeline. Altarawy et al. [35] used three labeled data sets including one1269
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that was created with 103 applications implemented in 19 different languages to find similar appli-1270

cations.1271

Feature extraction: Features in this category of studies belong to either source code features cat-1272

egory or repository features. A subset of studies [445, 308, 504] relies on features extracted from1273

source code token including language specific keywords and other syntactic information. Other1274

studies [207, 334] collect repository metrics (such as number of changed statements, methods,1275

hunks, and files) to classify commits. Ben-Nun et al. [57] leveraged both the underlying data- and1276

control-flow of a program to learn code semantics performance prediction. Gharbi et al. [154]1277

used tf-idf to weight the tokens extracted from change messages. Ghadhab et al. [152] curated1278

a set of 768 BERT-generated features, a set of 70 code change-based features and a set of 201279

keyword-based features for training a model to classify commits. Similarly, Mariano et al. [325]1280

and Mariano et al. [324] extracted a 71 features majorly belonging to source code changes and1281

keyword occurrences categories. Meng et al. [333] and Li et al. [261] computed change metrics1282

(such as number lines added and removed) as well as natural language metrics extracted from1283

commit messages. Abdalkareem et al. [3] employed 23 commit-level repository metrics. Sabetta1284

and Bezzi [411] analyzed changes in source code associated with each commit and extracted the1285

terms that the developer used to name entities in the source code (e.g., names of classes). Simi-1286

larly, LASCAD Altarawy et al. [35] extracted terms from the source code and preprocessed terms1287

by removing English stop words and programming language keywords.1288

ML model training: A variety of ml approaches have been applied. Specifically, Ma et al. [308]1289

used Support Vector Machine, Decision Tree, and Bayes Network for artifact classification. Meqdadi1290

et al. [334] employed Naive Bayes, Ripper, as well as Decision Tree and Ugurel et al. [504] used Sup-1291

port Vector Machine to classify specific commits. Ben-Nun et al. [57] proposed an approach based1292

on an rnn architecture and fixed inst2vec embeddings for code analysis tasks. Levin and Yehudai1293

[258], Mariano et al. [325, 324] used Decision Tree and Random Forest for commits classification into1294

maintenance activities. Gharbi et al. [154] applied Logistic Regressionmodel to determine the com-1295

mit classes for each new commitmessage. Ghadhab et al. [152] trained a dnn classifier to fine-tune1296

the BERT model on the task of commit classification. Meng et al. [333] used a cnn-based model to1297

classify code commits. Sabetta and Bezzi [411] trained Random Forest, Naive Bayes, and Support1298

Vector Machine to identify security-relevant commits. Altarawy et al. [35] developed LASCAD us-1299

ing Latent Dirichlet Allocation and hierarchical clustering to establish similarities among software1300

projects.1301

3.6.3 Change analysis1302

Researchers have explored applications ofml techniques to identify or predict relevant code changes [484,1303

489]. We briefly describe the efforts in this domain w.r.t. three major steps—dataset preparation,1304

feature extraction, and ml model training.1305

Dataset preparation: Tollin et al. [484] performed their study on two industrial projects. Tufano1306

et al. [489] extracted 236K pairs of code snippets identified before and after the implementation1307

of the changes provided in the pull requests. Kumar et al. [241] used eBay web-services as their1308

subject systems. Uchôa et al. [503] used the data provided by the Code Review Open Platform1309

(CROP), an open-source dataset that links code review data to software changes, to predict impact-1310

ful changes in code review. Malhotra and Khanna [319] considered three open-source projects to1311

investigate the relationship between code quality metrics and change proneness.1312

Feature extraction: Tollin et al. [484] extracted features related to the code quality from the is-1313

sues of two industrial projects. Tufano et al. [489] used features from pull requests to investigate1314

the ability of a nmt modes. Abbas et al. [2] and Malhotra and Khanna [319] computed well-known1315

C&K metrics to investigate the relationship between change proneness and object-oriented met-1316

rics. Similarly, Kumar et al. [241] computed 21 code quality metrics to predict change-prone web-1317

Sharma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 34 of 98



services. Uchôa et al. [503] combinesmetrics fromdifferent sources—21 features related to source1318

code, modification history of the files, and the textual description of the change, 20 features that1319

characterize the developer’s experience, and 27 code smells detected by DesigniteJava[432].1320

ML model training: Tollin et al. [484] employed Decision Tree, Random Forest, and Naive Bayes1321

ml algorithms for their prediction task. Tufano et al. [489] used Encoder-Decoder architecture of a1322

typical nmt model to learn the changes introduced in pull requests. Malhotra and Khanna [319]1323

experimented with  �, Multilayer Perceptron, and Random Forest to observe relationship between1324

code metrics and change proneness. Abbas et al. [2] compared ten ml models including Random1325

Forest, Decision Tree, Multilayer Perceptron, and Bayes Network. Similarly, Kumar et al. [241] used1326

Support Vector Machine to the predict change proneness in web-services. Uchôa et al. [503] used six1327

ml models such as Support Vector Machine, Decision Tree, and Random Forest to investigate whether1328

predicted impactful changes are helpful for code reviewers.1329

3.6.4 Entity identification/recommendation1330

This category represents studies that recommend source code entities (such as method and class1331

names) [24, 322, 539, 210, 192] or identify entities such as design patterns [150] in code using1332

ml [502, 17, 559, 133, 87]. Specifically, Linstead et al. [284] proposed a method to identify func-1333

tional components in source code and to understand code evolution to analyze emergence of1334

functional topics with time. Huang et al. [200] found commenting position in code using ml tech-1335

niques. Uchiyama et al. [502] identified design patterns and Abuhamad et al. [5] recommended1336

code authorship. Similar approaches include recommendingmethod name [24, 210, 539], method1337

signature [322], class name [24], and type inference [192]. We summarize these efforts classified1338

in three steps of applying ml techniques below.1339

Dataset preparation: Themajority of the studies employed GitHub projects for their experiments.1340

Specifically, Linstead et al. [284] used two large, open source Java projects, Eclipse and ArgoUML in1341

their experiments to apply unsupervised statistical topicmodels. Similarly, Hellendoorn et al. [192]1342

downloaded 1,000 open-source TypeScript projects and extracted identifiers with corresponding1343

type information. Abuhamad et al. [5] evaluated their approach over the entire Google Code Jam1344

(gcj) dataset (from 2008 to 2016) and over real-world code samples (from 1987) extracted from1345

public repositories on GitHub. Allamanis et al. [24] mined 20 software projects from GitHub to1346

predictmethod and class names. Jiang et al. [210] used theCode2Seqdataset containing 3.8million1347

methods as their experimental data. Ali et al. [18] applied information retrieval techniques to1348

automatically create traceability links in three subject systems.1349

A subset of studies focused on identifying design patterns using ml techniques. Uchiyama et al.1350

[502] performed experimental evaluations with five programs to evaluate their approach on pre-1351

dicting design patterns. Alhusain et al. [17] applied a set of design patterns detection tools on1352

400 open source repositories; they selected all identified instances where at least two tools re-1353

port a design pattern instance. Zanoni et al. [559] manually identified 2,794 design patterns in-1354

stances from ten open-source repositories. Dwivedi et al. [133] analyzed JHotDraw and identified1355

59 instances of abstract factory and 160 instances of adapter pattern for their experiment. Simi-1356

larly, Gopalakrishnan et al. [159] applied their approach to discover latent topics in source code on1357

116, 000 open-source projects. They recommended architectural tactics based on the discovered1358

topics. Furthermore, Mahmoud and Bradshaw [312] chose ten open-source projects to validate1359

their topic modeling approach designed for source code.1360

Feature extraction: Several studies generated embeddings from their feature set. Specifically,1361

Huang et al. [200] used embeddings generated fromWord2vec capturing code semantics. Similarly,1362

Jiang et al. [210] employed Code2vec embeddings and Allamanis et al. [24] used embeddings that1363

contain semantic information about sub-tokens of a method name to identify similar embeddings1364

utilized in similar contexts. Zhang et al. [567] utilized knowledge graph embeddings to extract1365

interrelations of code for bug localization.1366
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Other studies used source code or code metadata as features. Abuhamad et al. [5] extracted1367

code authorship attributes from samples of code. Malik et al. [322] used function names, formal1368

parameters, and corresponding comments as features. Ali et al. [18] extracted source code en-1369

tity names, such as class, method, and variable names. Bavota et al. [56] retrieved 618 features1370

from six open-source Java systems to apply Latent Dirichlet Allocation-based feature location tech-1371

nique. Similarly, De Lucia et al. [119] extracted class name, signature of methods, and attribute1372

names from Java source code. They applied Latent Dirichlet Allocation to label source code arti-1373

facts. Gopalakrishnan et al. [159] processed tactics in the form of a set of textual descriptions and1374

produced a set of weighted indicator terms. Mahmoud and Bradshaw [312] extracted code term1375

co-occurrence, pair-wise term similarity, and clusters of terms features and applied their apporach1376

Semantic Topic Models (STM) on them.1377

In addition, Uchiyama et al. [502], Chaturvedi et al. [87], Dwivedi et al. [133], Alhusain et al. [17]1378

used several source-code metrics as features to detect design patterns in software programs.1379

MLmodel training: Themajority of studies in this category use rnn-based dlmodels. In particular,1380

Huang et al. [200] and Hellendoorn et al. [192] used bidirectional rnnmodels. Similarly, Abuhamad1381

et al. [5] and Malik et al. [322] also employed rnn models to identify code authorship and function1382

signatures respectively. Zhang et al. [567] created a bug-localization tool, KGBugLocator utilizing1383

knowledge graph embeddings and bi-directional attention models. Xu et al. [539] employed the1384

gru-based Encoder-Decoder model for method name prediction. Uchiyama et al. [502] used a hier-1385

archical neural network as their classifier. Allamanis et al. [24] utilized neural language models for1386

predicting method and class names.1387

Other studies used traditional ml techniques. Specifically, Chaturvedi et al. [87] compared four1388

ml techniques (Linear Regression, Polynomial Regression, support vector regression, and neural net-1389

work). Dwivedi et al. [133] used Decision Tree and Zanoni et al. [559] trained Naive Bayes, Decision1390

Tree, Random Forest, and Support Vector Machine to detect design patterns using ml. Ali et al. [18]1391

employed Latent Dirichlet Allocation to distinguish domain-level terms from implementation-level1392

terms. Gopalakrishnan et al. [159] discovered latent topics using Latent Dirichlet Allocation in the1393

large-scale corpus. The study used Decision Tree, Random Forest, and Linear Regression as classifiers1394

to compute the likelihood that a given source file is associated with a given tactic.1395

3.7 Code review1396

Code Review is the process of systematically check the code written by a developer performed by1397

one or more different developers. A very small set of studies explore the role of ml in the process1398

of code review that we present in this section.1399

Dataset preparation: Lal and Pahwa [245] labeled check-in code samples as clean and buggy. On1400

code samples, they carried out extensive pre-processing such as normalization and label encoding.1401

Aiming to automate code review process, Tufano et al. [493] trained two dl architectures one for1402

both contributor and for reviewer. They mined Gerrit and GitHub to prepare their dataset from1403

8, 904 projects. Furthermore, Thongtanunam et al. [482] proposed AutoTransform to better handle1404

new tokens using Byte-Pair Encoding (BPE) approach. They leveraged the dataset proposed by1405

Tufano et al. [493] consisting 630,858 changed methods to train a Transformer-based NMT model.1406

Feature extraction: Lal and Pahwa [245] used tf-idf to convert the code samples into vectors after1407

applying extensive pre-processing. Tufano et al. [493] used n-grams extracted from each commit1408

to train their classifiers.1409

ML model training: Lal and Pahwa [245] used a Naive Bayesmodel to classify samples into buggy1410

or clean. Tufano et al. [493] trained two dl architectures one for both contributor and for reviewer.1411

The authors use n-grams extracted from each commit and implement their classifiers using Deci-1412

sion Tree,Naive Bayes, and Random Forest. In their revisedwork [494], the authors used Text-To-Text1413

Transfer Transformer (T5) model and shown significant improvements in dl code review models.1414
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3.8 Code search1415

Code search is an activity of searching a code snippet based on individual's need typically in Q&A1416

sites such as StackOverflow [413, 450, 512]. The studies in this category define the following coarse-1417

grained steps. In the first step, the techniques prepare a training set by collecting source code and1418

often corresponding description or query. A feature extraction step then identifies and extracts1419

relevant features from the input code and text. Next, these features are fed into ml models for1420

training which is later used to execute test queries.1421

Dataset preparation: Shuai et al. [450] utilized commented code as input. Wan et al. [512] used1422

source code in the the form of tokens, ast, and cfg. Sachdev et al. [413] employed a simple tok-1423

enizer to extract all tokens from source code by removing non–alphanumeric tokens. Ling et al.1424

[282] mined software projects from GitHub for the training of their approach. Jiang et al. [208]1425

used existing McGill corpus and Android corpus.1426

Feature extraction: Code search studies typically use embeddings representing the input code.1427

Shuai et al. [450] performed embeddings on code, where source code elements (method name,1428

api sequence, and tokens) are processed separately. They generated embeddings for code com-1429

ments independently. Wan et al. [512] employed a multi-modal code representation, where they1430

learnt the representation of eachmodality via lstm, Tree-lstm and ggnn, respectively. Sachdev et al.1431

[413] identified words from source code and transformed the extracted tokens into a natural lan-1432

guage documents. Similarly, Ling et al. [282] used an unsupervised word embedding technique1433

to construct a matching matrix to represent lexical similarities in software projects and used an1434

rnn model to capture latent syntactic patterns for adaptive code search. Jiang et al. [208] used a1435

fragment parser to parse a tutorial fragment in four steps (API discovery, pronoun and variable1436

resolution, sentence identification, and sentence type identification).1437

ML model training: Shuai et al. [450] used a cnn-based ml model named carlcs-cnn. The cor-1438

responding model learns interdependent representations for embedded code and query by a1439

co-attention mechanism. Based on the embedded code and query, the co-attention mechanism1440

learns a correlation matrix and leverages row/column-wise max-pooling on the matrix. Wan et al.1441

[512] employed a multi-modal attention fusion. The model learns representations of different1442

modality and assigns weights using an attention layer. Next, the attention vectors are fused into1443

a single vector. Sachdev et al. [413] utilized word and documentation embeddings and performed1444

code search using the learned embeddings. Similarly, Ling et al. [282] used an autoencoder network1445

and a metric (believability) to measure the degree to which a sentence is approved or disapproved1446

within a discussion in a issue-tracking system. Jiang et al. [208] used Latent Dirichlet Allocation to1447

segregate all tutorial fragments into relevant clusters and identify relevant tutorial for an API.1448

Once an ml model is trained, code search can be initiated using a query and a code snippet.1449

Shuai et al. [450] used the given query and code sample to measure the semantic similarity using1450

cosine similarity. Wan et al. [512] ranked all the code snippets by their similarities with the input1451

query. Similarly, Sachdev et al. [413] were able to answer almost 43% of the collected StackOver-1452

flow questions directly from code.1453

3.9 Refactoring1454

Refactoring transformations are intended to improve code quality (specifically maintainability),1455

while preserving the program behavior (functional requirements) from users' perspective [471].1456

This section summarizes the studies that identify refactoring candidates or predict refactoring com-1457

mits by analyzing source code and by applying ml techniques on code. A process pipeline typically1458

adopted by the studies in this category can be viewed as a three step process. In the first step, the1459

source code of the projects is used to prepare a dataset for training. Then, individual samples (i.e.,1460

either a method, class, or a file) is processed to extract relevant features. The extracted features1461

are then fed to an ml model for training. Once trained, the model is used to predict whether an1462
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input sample is a candidate for refactoring or not.1463

Dataset preparation: The first set of studies created their own dataset for model training. For in-1464

stance, Rodriguez et al. [407] and Amal et al. [37] created datasets where each sample is reviewed1465

by a human to identify an applicable refactoring operation; the identified operation is carried out1466

by automated means. Kosker et al. [234] employed four versions of the same repository, com-1467

puted their complexity metrics, and classified their classes as refactored if their complexity metric1468

values are reduced from the previous version. Nyamawe et al. [354] analyzed 43 open-source1469

repositories with 13.5 thousand commits to prepare their dataset. Similarly, Aniche et al. [40] cre-1470

ated a dataset comprising over twomillion refactorings frommore than 11 thousand open-source1471

repositories. Sagar et al. [414] identified 5004 commits randomly selected from all the commits1472

obtained from 800 open-source repositories where RefactoringMiner [486] identified at least one1473

refactoring. Along the similar lines, Li et al. [268] used RefactoringMiner and RefDiff tools to iden-1474

tify refactoring operations in the selected commits. Xu et al. [538], Krasniqi and Cleland-Huang1475

[236] used manual analysis and tagging for identifying refactoring operations. Bavota et al. [55]1476

obtained 2, 329 classes from nine subject systems and applied topic modeling to identify latent top-1477

ics and move them to an appropriate package. Similarly, Bavota et al. [56] identified all classes1478

from six software systems and applied their proposed technique namely Methodbook to identify1479

move method refactoring candidates using relational topic models. Finally, Kurbatova et al. [244]1480

generated synthetic data by moving methods to other classes to prepare a dataset for feature1481

envy smell. The rest of the studies in this category [239, 242, 43], used the tera-promise dataset1482

containing various metrics for open-source projects where the classes that need refactoring are1483

tagged.1484

Feature extraction: A variety of features, belonging to product as well as process metrics, has1485

been employed by the studies in this category. Some of the studies rely on code quality met-1486

rics. Specifically, Kosker et al. [234] computed cyclomatic complexity along with 25 other code1487

quality metrics. Similarly, Kumar et al. [242] computed 25 different code quality metrics using the1488

SourceMeter tool; these metrics include cyclomatic complexity, class class and clone complexity,1489

loc, outgoing method invocations, and so on. Some of the studies [239, 43, 451, 524] calculated1490

a large number of metrics. Specifically, Kumar and Sureka [239] computed 102 metrics and then1491

applied pca to reduce the number of features to 31, while Aribandi et al. [43] used 125 metrics.1492

Sidhu et al. [451] used metrics capturing design characteristics of a model including inheritance,1493

coupling and modularity, and size. Wang and Godfrey [524] computed a wide range of metrics1494

related to clones such as number of clone fragements in a class, clone type (type1, type2, or type3),1495

and lines of code in the cloned method.1496

Some other studies did not limit themselves to only code quality metrics. Particularly, Yue1497

et al. [558] collected 34 features belonging to code, evolution history, diff between commits, and1498

co-change. Similarly, Aniche et al. [40] extracted code quality metrics, process metrics, and code1499

ownership metrics.1500

In addition, Nyamawe et al. [354], Nyamawe et al. [355] carried out standard nlp preprocessing1501

and generated tf-idf embeddings for each sample. Along the similar lines, Kurbatova et al. [244]1502

used code2vec to generate embeddings for each method. Sagar et al. [414] extracted keywords1503

from commit messages and used GloVe to obtain the corresponding embedding. Krasniqi and1504

Cleland-Huang [236] tagged each commit message with their parts-of-speech and prepared a lan-1505

guage model dependency tree to detect refactoring operations from commit messages. Bavota1506

et al. [55] and Bavota et al. [56] extracted identifiers, comments, and string literals from source1507

code. Bavota et al. [55] prepared structural coupling matrix and package decomposition matrix to1508

identifymove class candidates. Bavota et al. [56] applied relational topicmodels to derive semantic1509

relationships between methods and define a probability distribution of topics (topic distribution1510

model) among methods to refactor feature envy code smell.1511
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MLmodel training: Majority of the studies in this category utilized traditional ml techniques. Ro-1512

driguez et al. [407] proposed amethod to identifyweb-service groups for refactoring using K-means,1513

cobweb, and expectation maximization. Kosker et al. [234] trained a Naive Bayes-based classifier to1514

identify classes that need refactoring. Kumar and Sureka [239] used Least Square-Support Vector1515

Machine (ls-svm) along with smote as classifier. They found that ls-svm with Radial Basis Function1516

(rbf) kernel gives the best results. Nyamawe et al. [354] recommended refactorings based on the1517

history of requested features and applied refactorings. Their approach involves two classification1518

tasks; first, a binary classification that suggests whether refactoring is needed or not and second,1519

a multi-label classification that suggests the type of refactoring. The authors used Linear Regres-1520

sion,Multinomial Naive Bayes (mnb), Support Vector Machine, and Random Forest classifiers. Yue et al.1521

[558] presented crec—a learning-based approach that automatically extracts refactored and non-1522

refactored clones groups from software repositories, and trains an AdaBoostmodel to recommend1523

clones for refactoring. Kumar et al. [242] employed a set of ml models such as Linear Regression,1524

Naive Bayes, Bayes Network, Random Forest, AdaBoost, and Logit Boost to develop a recommenda-1525

tion system to suggest the need of refactoring for a method. Amal et al. [37] proposed the use of1526

ann to generate a sequence of refactoring. Aribandi et al. [43] predicted the classes that are likely1527

to be refactored in the future iterations. To achieve their aim, the authors used various variants1528

of ann, Support Vector Machine, as well as Best-in-training based Ensemble (bte) and Majority Voting1529

Ensemble (mve) as ensemble techniques. Kurbatova et al. [244] proposed an approach to recom-1530

mend move method refactoring based on a path-based presentation of code using Support Vector1531

Machine. Similarly, Aniche et al. [40] used Linear Regression, Naive Bayes, Support Vector Machine, De-1532

cision Tree, Random Forest, and Neural Network to predict applicable refactoring operations. Sidhu1533

et al. [451], Xu et al. [538], Wang and Godfrey [524] used dnn, gradient boosting, and Decision Tree1534

respectively to identify refactoring candidate. Sagar et al. [414], Nyamawe et al. [355] employed1535

various classifiers such as Support Vector Machine, Linear Regression, and Random Forest to predict1536

commits with refactoring operations.1537

Bavota et al. [55] and Bavota et al. [56] applied Latent Dirichlet Allocation to identify move class1538

and move method refactoring candidates respectively. They model the documents in a given cor-1539

pus as a probabilistic mixture of latent topics and model the links between document pairs as a1540

binary variable.1541

3.10 Vulnerability analysis1542

The studies in this domain analyze source code to identify potential security vulnerabilities. In this1543

section, we point out the state-of-the-art in software vulnerability detection using ml techniques.1544

First, the studies prepare a dataset or identify an existing dataset for ml training. Next, the studies1545

extract relevant features from the identified subject systems. Then, the features are fed into a ml1546

model for training. The trained model is then used to predict vulnerabilities in the source code.1547

Dataset preparation: Authors used existing labeled datasets as well as created their own datasets1548

to train ml models. Specifically, a set of studies [378, 337, 397, 412, 231, 61, 461, 280, 555, 467, 247,1549

370, 6, 556, 509, 228, 232, 570, 327, 130, 448, 131, 541, 54, 346, 527, 100, 269, 403, 48] used avail-1550

able labeled datasets for php, Java, C, C++, and Android applications to train vulnerability detection1551

models. In other cases, Russell et al. [409] extended an existing dataset with millions of C and C++1552

functions and then labeled it based on the output of three static analyzers (i.e., Clang, CppCheck,1553

and Flawfinder).1554

Many studies [309, 19, 112, 349, 135, 331, 146, 383, 238, 369, 36, 172, 107, 102, 338, 196, 422,1555

543, 573, 379, 430, 216, 280, 278] created their own datasets. Ma et al. [309], Ali Alatwi et al. [19], Cui1556

et al. [112], and Gupta et al. [172] created datasets to train vulnerability detectors for Android appli-1557

cations. In particular, Ma et al. [309] decompiled and generated cfgs of approximately 10 thousand,1558

both benign and vulnerable, Android applications from AndroZoo and Android Malware datasets;1559

Ali Alatwi et al. [19] collected 5,063 Android applications where 1,000 of them were marked as be-1560
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nign and the remaining as malware; Cui et al. [112] selected an open-source dataset comprised of1561

1,179 Android applications that have 4,416 different version (of the 1,179 applications) and labeled1562

the selected dataset by using the Androrisk tool; and Gupta et al. [172] used two Android applica-1563

tions (Android-universal-image-loader and JHotDraw) which they have manually labeled based on1564

the projects pmd reports (true if a vulnerability was reported in a pmd file and false otherwise). To1565

create datasets of php projects, Medeiros et al. [331] collected 35 open-source php projects and in-1566

tentionally injected 76 vulnerabilities in their dataset. Shar et al. [430] used phpminer to extract 151567

datasets that include sql injections, cross-site scripting, remote code execution, and file inclusion1568

vulnerabilities, and labeled only 20% of their dataset to point out the precision of their approach.1569

Ndichu et al. [349] collected 5,024 JavaScript code snippets from d3m, jsunpack, and 100 top web-1570

sites where the half of the code snippets were benign and the other half malicious. In other cases,1571

authors [543, 397, 379] collected large number of commit messages and mapped them to known1572

vulnerabilities by using Google's Play Store, National Vulnerability Database (nvd), Synx, Node Secu-1573

rity Project, and so on, while in limited cases authors [383] manually label their dataset. Hou et al.1574

[196], Moskovitch et al. [338] and Santos et al. [422] created their datasets by collecting web-page1575

samples from StopBadWare and VxHeavens. Lin et al. [280] constructed a dataset and manually1576

labeled 1,471 vulnerable functions and 1,320 vulnerable files from nine open-source applications,1577

named Asterisk, FFmpag, httpd, LibPNG, LibTIFF, OpenSSL, Pidgin, vlc Player, and Xen. Lin et al.1578

[278] have used more then 30,000 non-vulnerable functions and manually labeled 475 vulnerable1579

functions for their experiments.1580

Feature extraction: Authors used static source code metrics, cfgs, asts, source code tokens, and1581

word embeddings as features.1582

Source code metrics: A set of studies [331, 146, 36, 172, 107, 397, 112, 383, 403, 130, 232, 332, 6, 247,1583

467] used more than 20 static source code metrics (such as cyclomatic complexity,maximum depth1584

of class in inheritance tree, number of statements, and number of blank lines).1585

Data/control flow and ast: Ma et al. [307], Kim et al. [231], Bilgin et al. [61], Kronjee et al. [238],1586

Wang et al. [527], Du et al. [131], Medeiros et al. [332] used cfgs, asts, or data flow analysis as1587

features. More specifically, Ma et al. [309] extracted the api calls from the cfgs of their dataset and1588

collected information such as the usage of apis (which apis the application uses), the api frequencies1589

(how many times the application uses apis) and api sequence (the order the application uses apis).1590

Kim et al. [231] extracted asts and gfcs which they tokenized and fed into ml models, while Bilgin1591

et al. [61] extracted asts and translated their representation of source code into a one-dimensional1592

numerical array to fed them to a model. Kronjee et al. [238] used data-flow analysis to extract1593

features, while Spreitzenbarth et al. [461] used static, dynamic analysis, and information collected1594

from ltrace to collect features and train a linear vulnerability detection model. Lin et al. [278]1595

created asts and from there they extracted code semantics as features.1596

Repository and file metrics: Perl et al. [379] collected GitHub repository meta-data (i.e., programming1597

language, star count, fork count, and number of commits) in addition to source code metrics. Other1598

authors [378, 135] used file meta-data such as files' creation and modification time, machine type, file1599

size, and linker version.1600

Code and Text tokens: Chernis and Verma [102] used simple token features (character count, char-1601

acter diversity, entropy, maximum nesting depth, arrow count, ``if'' count, ``if'' complexity, ``while''1602

count, and ``for'' count) and complex features (character n-grams, word n-grams, and suffix trees).1603

Hou et al. [196] collected 10 features such as length of the document, average length of word, word1604

count, word count in a line, and number of NULL characters. The remaining studies [409, 369, 338,1605

422, 543, 412, 573, 430, 100, 346, 409, 327, 143, 570, 370, 48, 555, 280] tokenized parts of the source1606

code or text-based information with various techniques such as the most frequent occurrences of1607

operational codes, capture the meaning of critical tokens, or applied techniques to reduce the vo-1608

cabulary size in order to retrieve the most important tokens. In some other cases, authors [269]1609
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used statistical techniques to reduce the feature space to reduce the number of code tokens.1610

Other features: Ali Alatwi et al. [19], Ndichu et al. [349] andMilosevic et al. [337] extractedpermission-1611

related features. In other cases, authors [541] combined softwaremetrics andN-grams as features1612

to train models and others [448] created text-based images to extract features. Likewise, Sultana1613

[466] extracted traceable patterns such as CompoundBox, Immutable, Implementor, Overrider,1614

Sink, Stateless, FunctionObject, and LimitSel and used Understand tool to extract various software1615

metrics. Wei et al. [531] extracted system calls and function call-related information to use as1616

features, while Vishnu and Jevitha [509] extracted url-based features like number of chars, dupli-1617

cated characters, special characters, script tags, cookies, and re-directions. Padmanabhuni and1618

Tan [362] extracted buffer usage patterns and defensive mechanisms statements constructs by1619

analyzing files.1620

Model training: To train models, the selected studies used a variety of traditional ml and dl algo-1621

rithms.1622

Traditional ML techniques: One set of studies [19, 349, 378, 409, 369, 338, 379, 430, 555, 467, 362,1623

247, 6, 556, 466, 509, 531, 130, 143, 332, 131, 346, 527, 100, 403] used traditional ml algorithms1624

such as Naive Bayes, Decision Tree, Support Vector Machine, Linear Regression, Decision Tree, and Ran-1625

dom Forest to train their models. Specifically, Ali Alatwi et al. [19], Russell et al. [409], Perl et al. [379]1626

selected Support Vector Machine because it is not affected by over-fitting when having very high di-1627

mensional variable spaces. Along the similar lines, Ndichu et al. [349] used Support Vector Machine1628

to train their model with linear kernel. Pereira et al. [378] used Decision Tree, Linear Regression,1629

and Lasso to train their models, while [6] found that Random Forest is the best model for predicting1630

cross-project vulnerabilities. Compared to the above studies, Shar et al. [430] used both supervised1631

(i.e., Linear Regression and Random Forest) and semi-supervised (i.e., Co-trained Random Forest) al-1632

gorithms to train their models since most of that datasets were not labeled. Yosifova et al. [555]1633

used text-based features to train Naive Bayes, Support Vector Machine, and Random Forest models.1634

Du et al. [130] created the leopard framework that does not require prior knowledge about known1635

vulnerabilities and used Random Forest, Naive Bayes, Support Vector Machine, and Decision Tree to1636

point them out.1637

Other studies [331, 146, 383, 238, 36, 172, 107, 337, 102, 196, 422, 397, 112] used up to 321638

different ml algorithms to train models and compared their performance. Specifically, Medeiros1639

et al. [331] experimented with multiple variants of Decision Tree, Random Forest, Naive Bayes, K1640

Nearest Neighbors, Linear Regression, Multilayer Perceptron, and Support Vector Machinemodels and1641

identified Support Vector Machine as the best performing classifier for their experiment. Likewise,1642

Milosevic et al. [337] and Rahman et al. [397] employed multiple ml algorithms, respectively, and1643

found that Support Vector Machine offers the highest accuracy rate for training vulnerability detec-1644

tors. In contrast to the above studies, Ferenc et al. [146] showed that K Nearest Neighbors offers1645

the best performance for their dataset after experimenting with dnn, K Nearest Neighbors, Support1646

Vector Machine, Linear Regression, Decision Tree, Random Forest, and Naive Bayes. In order to find1647

out which is the best model for the swan tool, Piskachev et al. [383] evaluated the Support Vector1648

Machine, Naive Bayes, Bayes Network, Decision Tree, Stump, and Ripper. Their results pointed out the1649

Support Vector Machine as the best performing model to detect vulnerabilities. Similarly, Kronjee1650

et al. [238], Cui et al. [112], and Gupta et al. [172] compared different ml algorithms and found1651

Decision Tree and Random Forest as the best performing algorithms.1652

DL techniques: A large number of studies [543, 412, 231, 280, 48, 232, 327, 278, 448, 54] used dl1653

methods such as cnn, rnn, and ann to train models. In more details, Yang et al. [543] utilized the bp-1654

ann algorithm to train vulnerability detectors. For the project Achilles, Saccente et al. [412] used an1655

array of lstmmodels to train on data containing Java code snippets for a specific set of vulnerability1656

types. In another study, Kim et al. [231] suggested a dl framework that makes use of rnn models1657

to train vulnerability detectors. Specifically, the authors framework first feeds the code embed-1658
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dings into a bi-lstm model to capture the feature semantics, then an attention layer is used to get1659

the vector weights, and, finally, passed into a dense layer to output if a code is safe or vulnerable.1660

Compared to the studies that examined traditional ml or dl algorithms, Zheng et al. [573] exam-1661

ined both of them. They used Random Forest, K Nearest Neighbors, Support Vector Machine, Linear1662

Regression among the traditional ml algorithms along with bi-lstm, gru, and cnn. There results indi-1663

cate bi-lstm as the best performing model. Lin et al. [280] developed a benchmarking framework1664

that can use bi-lstm, lstm, bi-gru, gru, dnn and Text-cnn, but can be extended to use more deep1665

learning models. Kim et al. [232] generating graphical semantics that reflect on code semantic fea-1666

tures and use them for Graph Convolutional Network to automatically identify and learn semantic1667

and extract features for vulnerability detection, while Shiqi et al. [448] created textual images and1668

fed them to Deep Belief Networks to classify malware.1669

3.11 Summary1670

In this section, we briefly summarize the usage ofml in a software engineering task involving source1671

code analysis. Figure 7 presents an overview of the pipeline that is typically used in a software1672

engineering task that uses ml.1673
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Figure 7. Overview of the software engineering task implementation pipeline using ML

Dataset preparation: Preparing a dataset is the first major activity in the pipeline. The activity1674

starts with identifying the source of required data, typically source code repositories. The activ-1675

ity involves selecting and downloading the required repositories, collecting supplementary data1676

(such as GitHub issues), create individual samples sometimes by combining information, and an-1677

notate samples. Depending upon the specific software engineering task at hand, these steps are1678

customized and extended.1679

The outcome of this activity is a dataset. Depending upon the context, the dataset may contain1680

information such as annotated code samples, source code model (e.g., ast), and pairs of buggy1681

code and fixed code.1682

Feature extraction: Performance of a ml model depends significantly on the provided kind and1683

quality of features. Various techniques are applied on the prepared dataset to extract the required1684

features that help the ml model perform well for the given task. Features may take variety of form1685

and format; for source code analysis applications, typical features include source code metrics,1686

source code tokens, their properties, and representation, changes in the code (code diff ), vector1687

representation of code and text, dependency graph, and vector representation of ast, cfg, or ast1688

diff. Obviously, selection of the specific features depends on the downstream task.1689

ML model training: Selecting a ml model for a given task depends on many factors such as the1690

nature of the problem, the properties of training and input samples, and the expected output.1691
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Below, we provide an analysis of employed ml models based on these factors.1692

• One of the factors that influence the choice of ml models is the chosen features and their1693

properties. Studies in the quality assessment category majorly relied on token-based features1694

and code quality metrics. Such features allowed studies in this categories to use traditional1695

ml models. Some authors applied dl models such as dnn when higher-granularity constructs1696

such as cfg and dfg are used as features.1697

• Similarly, the majority of the studies in testing category relied on code quality metrics. There-1698

fore, they have fixed size, fixed meaning (for each column) vectors to feed to a ml model.1699

With such inputs, traditional ml approaches, such as Random Forest and Support Vector Ma-1700

chine, work well. Other studies used a variation of ast or ast of the changes to generate the1701

embeddings. dl models including dnn and rnn-based models are used to first train a model1702

for embeddings. A typical ml classifier use the embeddings to classify samples in buggy or1703

benign.1704

• Typical output of a code representation study is embeddings representing code in the vec-1705

tor form. The semantics of the produced embeddings significantly depend on the selected1706

features. Studies in this domain identify this aspect and, hence, they are swiftly focused to1707

extract features that capture the relevant semantics; for example, path-based features en-1708

code the order among the tokens. The chosen ml model plays another important role to1709

generate effective embeddings. Given the success of rnn with text processing tasks, due to1710

its capability to identify a sequence or pattern, rnn-based models dominate this category.1711

• Program repair is typically a sequence to sequence transformation i.e., a sequence of buggy1712

code is the input and a sequence of fixed code is the output. Given the nature of the problem,1713

it is not surprising to observe that the majority of the studies in this category used Encoder-1714

Decoder-based models. rnn are considered a popular choice to realize Encoder-Decoder1715

models due to its capability to remember long sequences.1716

4. Datasets and Tools1717

For RO3, this section provides a consolidated summary of available datasets and tools that are1718

used by the studies considered in the survey. We carefully examined each selected study and1719

noted the resources (i.e., datasets and tools). We define the following criteria to include a resource1720

in our catalog.1721

• The referenced resource must have been used by at least one primary study.1722

• The referenced resource must be publicly available at the time of writing this article (Dec1723

2022).1724

• The resource provides bare-minimum usage instructions to build and execute (wherever ap-1725

plicable) and to use the artifact.1726

• The resource is useful either by providing an implementation of a ml technique, helping the1727

user to generate information/data which is further used by a ml technique, or by providing a1728

processed dataset that can be directly employed in a ml study.1729

Table 6 lists all the tools that we found in this exploration. Each resource is listed with it's1730

category, name and link to access the resource, number of citations (as of Dec 2022), and the time1731

when it was first introduced along with the time when the resource was last updated. We collected1732

the metadata about the resources manually by searching the digital libraries, repositories, and1733

authors' websites. The cases where we could not find the required information, are marked as1734

``–''. We also provide a short description of the resource.1735

Table 6. A list of tools useful for applying machine learning to source code
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Category Name #Cita-

tion

Introd. Up-

dated

Description

Code
Representation

ncc [57] 234 Dec

2018

Aug

2021

Learns representations

of code semantics

Code2vec [32] 487 Jan

2019

Feb

2022

Generates distributed

representation of code

Code2seq [31] 536 May

2019

Jul 2022 Generates sequences

from structured repre-

sentation of code

Vector represen-

tation for coding

style [235]

3 Sep

2020

Jul 2022 Implements vector rep-

resentation of individual

coding style

CC2Vec [194] 69 Oct

2020

– Implements distributed

representation of code

changes

Autoen-

CODE [490]

75 – – Encodes source code

fragments into vector

representations

Graph-based

code model-

ing [28]

544 May

2018

May

2021

Generates code model-

ing with graphs

Vocabulary learn-

ing on code [115]

34 Jan

2019

– Generates an aug-

mented ast from Java

source code

User2code2vec [44] 29 Mar

2019

May

2019

Generates embeddings

for developers based on

distributed representa-

tion of code

Code Search

Deep Code

Search [168]

472 May

2018

May

2022

Searches code by using

code embeddings

FRAPT[208] 43 Jul 2017 – Searches relevant tuto-

rial fragments for APIs

Obfuscated-

code2vec [108]

23 Oct

2022

– Embeds Java Classes

with Code2vec

DeepTyper [192] 87 Oct

2018

Feb

2020

Annotates types for

JavaScript and Type-

Script

CallNN [285] 9 Oct

2019

– Implements a code sum-

marization approach by

using call dependencies

Neural-

CodeSum [9]

277 May

2020

Oct

2021

Implements a code sum-

marization method by

using transformers

Summariza-

tion_tf [443]

30 Jul 2019 – Summarizes code with

Extended Tree-lstm
CoaCor [548] 36 Jul 2019 May

2020

Explores the role of rich

annotation for code re-

trieval

1736
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DeepCom [260] 102 Nov

2020

May

2021

Generates code com-

ments

Rencos [565] 79 Oct

2020

– Generates code sum-

mary by using both

neural and retrieval-

based techniques

codes [371] 121 Jul 2012 Jul 2016 Extractsmethoddescrip-

tion from StackOverflow

discussions

cfs – – – Summarizes code frag-

ments using svm and nb

Program Com-

prehension

tassal – – – Summarizes code using

autofolding

Change-

Scribe [109]

180 Dec

2014

Dec

2015

Generates commit mes-

sages

CodeInsight [399] 59 Nov

2015

May

2019

Recommends insightful

comments for source

code

CodeNN [204] 681 Aug

2016

May

2017

Summarizes code using

neural attention model

Code2Que [151] 25 Jul 2020 Aug

2021

Suggests improvements

in question titles from

mined code in Stack-

Overflow

bi-tbcnn [72] 34 Mar

2019

May

2019

Implements a bi-tbcnn
model to classify algo-

rithms

DeepSim [571] 139 Oct

2018

– Implements a dl ap-

proach to measure code

functional similarity

FCDetector [142] 48 Jul 2020 – Proposes a fine-grained

granularity of source

code for functionality

identification

LASCAD [35] 12 Aug

2018

– Categorizes software

into relevant categories

FunCom[252] 46 May

2019

– Summarizes code

Quality

Assessment

SonarQube – – – Analyzes code quality

svf [464] 317 Mar

2016

Jul 2022 Enables inter-

procedural dependency

analysis for llvm-based
languages

Designite [436] 101 Mar

2016

Jul 2023 Detects code smells and

computes quality met-

rics in Java and C# code
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https://github.com/SEMERU-WM/ChangeScribe
https://github.com/masud-technope/CodeInsight-Replication-Package-SCAM2015
https://github.com/sriniiyer/codenn
https://github.com/beyondacm/Code2Que
https://github.com/bdqnghi/bi-tbcnn
https://github.com/parasol-aser/deepsim
https://github.com/shiyy123/FCDetector
https://github.com/doaa-altarawy/LASCAD
https://github.com/mcmillco/funcom
http://www.sonarqube.org/
https://github.com/SVF-tools/SVF
http://www.designite-tools.com


CloneCogni-

tion [339]

10 Nov

2018

May

2019

Proposes a ml frame-

work to validate code

clones

smad [52] 25 Mar

2020

Feb

2021

Implements smell detec-

tion (God class and Fea-

ture envy) using ml
Checkstyle – – – Checks for coding con-

vention in Java code

FindBugs – – – Implements a static anal-

ysis tool for Java

pmd – – – Finds common program-

ming flaws in Java and

six other languages

py-ccflex [356] 12 Mar

2017

Oct

2020

Mimics code metrics by

using ml
Deep learning

smells [437]

27 Jul 2021 Nov

2020

Implements dl (cnn, rnn,
and autoencoder-based

models) to identify four

smells

crec [558] 26 Nov

2018

– Recommends clones for

refactoring

ml for software

refactoring [40]

31 Sep

2020

– Recommends refactor-

ing by using ml
dtldp [90] 28 Aug

2019

– Implements a deep

transfer learning frame-

work

BugDetec-

tion [266]

66 Oct

2019

May

2021

Trains models for defect

prediction

DeepBugs [387] 210 Nov

2018

May

2021

Implements a frame-

work for learning name-

based bug detectors

Program

Synthesis

CoCoNuT [305] 97 Jul 2020 Sep

2021

Repairs Java programs

DeepFix [177] 498 Feb

2017

Dec

2017

Fixes common C errors

tranx [552] 187 Oct

2018

– Translates natural lan-

guage text to formal

meaning representa-

tions

TreeGen 83 Nov

2019

– Generates code

Testing

AppFlow [197] 47 Oct

2018

– Automates ui tests gen-

eration

DeepFuzz [293] 72 Jul 2019 Mar

2020

Grammar fuzzer that

generates C programs

Agilika [505] 7 Aug

2020

Mar

2022

Generates tests from ex-

ecution traces
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TestDescriber – – – Implements test case

summary generator and

evaluator

Randoop – – Jul 2022 Generates tests auto-

matic for Java code

Vulnerability

Analysis

wap [330] 9 Oct

2013

Nov

2015

Detects and corrects in-

put validation vulnerabil-

ities

swan[383] 8 Oct

2019

May

2022

Identifies vulnerabilities

vccfinder [379] 174 Oct

2015

May

2017

Finds potentially danger-

ous code in repositories

General

bert [123] 76,767 Oct

2018

Mar

2020

nlp pre-trained models

bc3 Annotation

Framework

– – – Annotates emails/con-

versations easily

JGibLDA – – – Implements Latent

Dirichlet Allocation

Stanford NLP

Parser

– – – A statistical NLP parser

srcML – – May

2022

Generates xml represen-
tation of sourcecode

CallGraph – Oct

2017

Oct

2018

Generates static and dy-

namic call graphs for

Java code

ML for program-

ming

– – – Offers various tools

such as JSNice, Nice2Pre-

dict, and debin

1739

The list of datasets found in our exploration is presented in Table 7. Similar to the Tools' table,1740

Table 7 lists each resource with its category, name and link to access the resource, number of1741

citations (as of July 2022), the time when it was first introduced along with the time when the1742

resource was last updated, and a short description of the resource.1743

Table 7. A list of datasets useful for applying machine learning to source code

Category Name #Cita-

tion

Introd. Up-

dated

Description

Code
Representation

Code2seq [32] 418 Jan

2019

Feb

2022

Sequences generated

from structured repre-

sentation of code

GHTorrent [163] 728 Oct

2013

Sep

2020

Meta-data from GitHub
repositories

Code
Completion

Neural Code Com-

pletion

148 Nov

2017

Sep

2019

Dataset and code for

code completion with

neural attention and

pointer networks
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https://www.ifi.uzh.ch/en/seal/people/panichella/tools/TestDescriber.html
https://github.com/randoop/randoop
http://awap.sourceforge.net/download.html
https://github.com/secure-software-engineering/swan
https://github.com/hperl/vccfinder
https://github.com/google-research/bert
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http://jgibblda.sourceforge.net/
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http://nlp.stanford.edu/software/lex-parser.shtml
http://www.srcml.org
https://github.com/gousiosg/java-callgraph
https://www.sri.inf.ethz.ch/research/plml
https://www.sri.inf.ethz.ch/research/plml
https://github.com/tech-srl/code2seq
https://ghtorrent.org/
https://github.com/jack57lee/neuralCodeCompletion
https://github.com/jack57lee/neuralCodeCompletion


Program

Synthesis

CoNaLa cor-

pus [553]

201 Dec

2018

Oct

2021

Python snippets and cor-

responding natural lan-

guage description

IntroClass [250] 299 Jul 2015 Feb

2016

Program repair dataset

of C programs

Code contest[270] 84 Dec

2022

– Code generation

dataset for AlphaCode

Program

Comprehension

Program com-

prehension

dataset [462]

61 May

2018

Aug

2021

Contains code for a pro-

gram comprehension

user survey

CommitGen [212] 116 – – Commit messages and

the diffs from 1,006 Java

projects

StaQC [547] 80 Nov

2019

Aug

2021

148K Python and 120K

sql question-code pairs

from StackOverflow

TL-CodeSum [199] 241 Feb

2019

Sep

2020

Dataset for code sum-

marization

DeepCom [198] – May

2018

– Dataset for code com-

pletion

Quality

Assessment

src-d datasets – – – Various labeled datasets

(commit messages, du-

plicates, DockerHub,

and Nuget)

Big-

CloneBench [472]

272 Dec

2014

Mar

2021

Known clones in the IJa-

Dataset source reposi-

tory

Multi-label

smells [169]

28 May

2020

– A dataset of 445 in-

stances of two code

smells and 82 metrics

Deep learning

smells [437]

27 Jul 2021 Nov

2020

A dataset of four smells

in tokenized form from

1,072 C# and 100 Java

repositories

ml for software

refactoring [40]

31 Nov

2019

– Dataset for applying ml
to recommend refactor-

ing

QScored [431] 11 Aug

2021

– Code smell and met-

rics dataset for more

than 86 thousand open-

source repositories

Landfill [363] 34 May

2015

– Code smell dataset with

public evaluation

KeepItSimple [139] 16 Jul 2018 – A dataset of linguistic

antipatterns of 1,753 in-

stances of source code

elements
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https://conala-corpus.github.io/
https://conala-corpus.github.io/
https://github.com/ProgramRepair/IntroClass
https://github.com/deepmind/code_contests
https://dijkstra.eecs.umich.edu/code-summary/
https://dijkstra.eecs.umich.edu/code-summary/
https://dijkstra.eecs.umich.edu/code-summary/
https://sjiang1.github.io/commitgen/
https://github.com/LittleYUYU/StackOverflow-Question-Code-Dataset
https://github.com/xing-hu/TL-CodeSum
https://github.com/xing-hu/DeepCom
https://github.com/src-d/datasets
https://github.com/clonebench/BigCloneBench
https://github.com/clonebench/BigCloneBench
https://github.com/thiru578/Multilabel-Dataset
https://github.com/thiru578/Multilabel-Dataset
https://github.com/tushartushar/DeepLearningSmells
https://github.com/tushartushar/DeepLearningSmells
https://zenodo.org/record/3547639
https://zenodo.org/record/3547639
https://zenodo.org/record/4468361
https://zenodo.org/record/6080422
https://github.com/Smfakhoury/SANER-2018-KeepItSimple-


Code smell

dataset [110]

8 Sept

2018

– A dataset of four code

smells

Defects4J [218] 858 Jul 2014 Jul 2022 Java reproducible bugs

promise [424] 434 – Jan

2021

Various datasets includ-

ing defect prediction

and cost estimation

BugDetection [266] 59 Oct

2019

May

2021

A bug prediction dataset

containing 4.973M

methods belonging to

92 different Java project

versions

DeepBugs [387] 155 Oct

2018

Apr

2021

A JavaScript code corpus

with 150K code snippets

dtldp [90] 28 Oct

2020

– Dataset for deep trans-

fer learning for defect

prediction

Testing
damt [345] 15 Aug

2019

Dec

2019

Metamorphic testing

dataset

Vulnerability

Analysis

wpscan – – – a php dataset for Word-

Press plugin vulnerabili-

ties

Genome [577] 2,898 Jul 2012 Dec

2015

1,200 malware samples

covering the majority of

existing malware fami-

lies

Juliet [63] 147 – – 81K synthetic C/C++

and Java programs with

known flaws

AndroZoo [29] – – – 15.7M apks from

Google's Play Store

trl [279] 108 Apr

2018

Jan

2019

Vulnerabilities in six C

programs

Draper vdisc [410] 479 Jul 2018 Nov

2018

1.27 million functions

mined from c and c++
applications

samate [62] – – – A set of known security

flaws from nist for c, c++,
and Java programs

jsVulner [146] 3 – – JavaScript Vulnerability

Analysis dataset

swan [383] 8 Jul 2019 Jul 2022 A Vulnerability Analysis

collection of 12 Java ap-

plications

Project-KB [384] 49 Aug

2019

– A Manually-Curated

dataset of fixes to

vulnerabilities of open-

source software
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https://dvscross.github.io/BadSmellsDetectionStudy/
https://dvscross.github.io/BadSmellsDetectionStudy/
https://github.com/rjust/defects4j
https://promise.site.uottawa.ca/SERepository/datasets-page.html
https://github.com/OOPSLA-2019-BugDetection/OOPSLA-2019-BugDetection
https://www.sri.inf.ethz.ch/js150
https://zenodo.org/record/3373409
https://github.com/aravi11/data-augmented-metamorphic-testing
https://wpscan.com/wordpresses
https://www.malgenomeproject.org/
https://www.nist.gov/publications/juliet-11-cc-and-java-test-suite
http://androzoo.uni.lu/lists
https://github.com/DanielLin1986/TransferRepresentationLearning
https://osf.io/d45bw/
samate.nist.gov/SRD/view.php
https://www.inf.u-szeged.hu/~ferenc/papers/JSVulnerability AnalysisDataSet/
https://github.com/secure-software-engineering/swan
https://github.com/SAP/project-kb/tree/master/MSR2019


General

GitHub Java Cor-

pus [22]

411 – – A large collection of Java

repositories

150k Python

dataset [401]

89 – – Contains parsed ast for

150K Python files

uci source code

dataset [298]

38 Apr

2010

Nov

2013

Various large scale

source code analysis

datasets

1747

5. Challenges and Perceived Deficiencies1748

The aim of this section is to focus on RO4 of the study by consolidating the perceived deficien-1749

cies, challenges, and opportunities in applying ml techniques to source code observed from the1750

selected studies. We document challenges or deficiencies mentioned in the considered studies1751

while studying and summarizing them. After the summarization phase was over, we consolidated1752

all the documented notes and prepared a summary that we present below.1753

• Standard datasets: ml is by nature data hungry; specifically, supervised learning methods1754

need a considerably large, cleaned, and annotated dataset. Though the size of available open1755

software engineering artifacts is increasing day by day, the lack of high-quality datasets (i.e.,1756

clean and reliably annotated) is one of the biggest challenges in the domain [153, 501, 157,1757

243, 132, 90, 52, 34, 487, 459, 483, 474, 160, 419, 290, 513, 440, 216]. Therefore, there is a1758

need for defining standardized datasets. Authors have cited low performance, poor gener-1759

alizability, and over-fitting due to poor dataset quality as the results of the lack of standard1760

validated high-quality datasets.1761

Mitigation: Although available datasets have increased, given a wide number of software engi-1762

neering tasks and variations in these tasks as well as the need of application-specific datasets,1763

the community still looks for application-specific, large, and high-quality datasets. To miti-1764

gate the issue, the community has focused on developing new datasets and making them1765

publicly available by organizing a dedicated track, for example, the msr data showcase track.1766

Dataset search engines such as the Google dataset search6, Zenodo7, and Kaggle datasets81767

could be used to search available datasets. Researchers may also propose generic datasets1768

that can serve multiple application domains or at least different variations of a software1769

engineering task. In addition, recent advancements in ml techniques such as active learn-1770

ing [389, 428, 405] may reduce the need of large datasets. Besides, the way the data is used1771

for model validation must be improved. For example, Jimenez et al. [216] showed that pre-1772

vious studies on vulnerability prediction trained predictive models by using perfect labelling1773

information (i.e., including future labels, as yet undiscovered vulnerabilities) and showed that1774

such an unrealistic labelling assumption can profoundly affect the scientific conclusions of a1775

study as the prediction performance worsen dramatically when one fully accounts for real-1776

istically available labelling. Such issues can be avoided by proposing standards for datasets1777

laying out the minimum expectations from any public dataset.1778

• Reproducibility and replicability: Reproducibility and replicability of any ml implementation1779

can be compromised by the factors discussed below.1780

– Insufficient information: Aspects such as the ml model, their hyper-parameters, data size1781

and ratio (of benign and faulty samples, for instance) are required to understand and1782

replicate the study. During our exploration, we found numerous studies that do not1783

present even the bare-minimum pieces of information to replicate and reproduce their1784

results. Likewise, Di Nucci et al. [127] carried out a detailed replication study and re-1785

6https://datasetsearch.research.google.com/
7https://zenodo.org/
8https://www.kaggle.com/datasets
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ported that the replicated results were lower by up to 90% compared to what was re-1786

ported in the original study.1787

– Handling of data imbalance: It is very common to have imbalanced datasets in software1788

engineering applications. Authors use techniques such as under-sampling and over-1789

sampling to overcome the challenge for training. However, test datasets must retain1790

the original sample ratio as found in the real world [127]; carrying out a performance1791

evaluation based on a balanced dataset is flawed. Obviously, the model will perform1792

significantly inferior when it is put at work in a real-world context. We noted many stud-1793

ies [8, 360, 169, 149, 148, 481, 114] that used balanced samples and often did not provide1794

the size and ratio of the training and testing dataset. Such improper handling of data1795

imbalance contributes to poor reproducibility.1796

Mitigation: The importance of reproducibility and replicability has been emphasized and un-1797

derstood by the software engineering community [286]. It has lead to a concrete artifact1798

evaluation mechanism adopted by leading software engineering conferences. For example,1799

fse artifact evaluation divides artifacts into five categories—functional, reusable, available, re-1800

sults reproduced, and results replicated.9 Such thorough evaluation encouraging software en-1801

gineering authors to produce high-quality documentation along with easily replicate experi-1802

ment results using their developed artifacts. In addition, efforts (such as model engineering1803

process [50]) are being made to support ml research reproducible and replicable. Finally,1804

identifying practices (such as assumptions related to hardware or dependencies) that may1805

hinder reproducibility improve reproducibility.1806

• Maturity in ml development: Development of ml systems are inherently different from tra-1807

ditional software development [513]. Phases of ml development are very exploratory in na-1808

ture and highly domain and problem dependent [513]. Identifying the most appropriate ml1809

model, their appropriate parameters, and configuration is largely driven by trial and error1810

manner [513, 45, 440]. Such an ad hoc and immature software development environment1811

poses a huge challenge to the community.1812

A related challenge is lack of tools and techniques for various phases and tasks involved in ml1813

software development. It includes effective tools for testing ml programs, ensuring that the1814

dataset are pre-processed adequately, debugging, and effective data management [513, 373,1815

155]. In addition, quality aspects such as explainability and trust-worthiness are new desired1816

quality aspects especially applicable for ml code where current practices and knowledge is1817

inadequate [155].1818

Mitigation: The ad-hoc trial and error ml development can be addressed by improved tools1819

and techniques. Even though the variety of ml development environments including man-1820

aged services such as aws Sagemaker and Google Notebooks attempt to make ml develop-1821

ment easier, they essentially do not offer much help in reducing the ad-hoc nature of the1822

development. A significant research push from the community would make ml development1823

relatively systematic and organized.1824

Recent advancements in the form of available tools not only help a developer to comprehend1825

the process but also let them effectively manage code, data, and experimental results. Exam-1826

ples of such tools and methods include darviz [420] for dl model visualization, MLFlow10 for1827

managing the ml lifecycle, and DeepFault [136] for identifying faults in dl programs. Such1828

efforts are expected to address the challenge.1829

Software Engineering for Machine Learning (SE4ML) brings another perspective to this issue1830

by bringing best practices from software engineering to ml development. Efforts in this di-1831

rection not only can make ml specific code maintainable and reliable but also can contribute1832

back to reproducibility and replicability.1833

9https://2021.esec-fse.org/track/fse-2021-artifacts
10https://mlflow.org/
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• Data privacy and bias: Data hungry ml models are considered as good as the data they are1834

consuming. Data collection and preparation without data diversity leads to bias and unfair-1835

ness. Although we are witnessing more efforts to understand these sensitive aspects [566,1836

70], the present set ofmethods and practices lack the support to deal with data privacy issues1837

at large as well as data diversity and fairness [70, 155].1838

Mitigation: Data standards and best practices focusing on data privacy could be considered1839

as an evaluation criterion to mitigate issues concerning data privacy and bias. In addition,1840

mitigation of the issue is also linked with appropriate data pre-processing. Adoption of effec-1841

tive anonymization techniques and data quality assurance practices will further help us deal1842

with the concern.1843

• Effective feature engineering: Features represent the problem-specific knowledge in pieces1844

extracted from the data; the effectiveness of anymlmodel depends on the features fed into it.1845

Many studies identified the importance of effective feature engineering and the challenges in1846

gathering the same [487, 440, 373, 513, 203]. Specifically, software engineering researchers1847

have notified that identifying and extracting relevant features beyond code quality metrics is1848

non-trivial. For example, Ivers et al. [203] discusses that identifying features that establishes a1849

relationship among different code elements is a significant challenge for ml implementations1850

applied on source code analysis. Sharma et al. [437] have shown in their study that smell1851

detection using ml techniques perform poorly especially for design smells where multiple1852

code elements and their properties has to be observed.1853

Mitigation: Recent advancements in the field of large languagemodels (LLMs) trained on huge1854

corpus of code and text have significantly eased the task for researchers. For example, tasks1855

such as generating code embeddings and fine-tuning are supported natively by the LLMs.1856

However, encoding code features specific to downstream tasks is required often andmaking1857

the task easier requires a significant push from the research community.1858

• Skill gap: Wan et al. [513] identified that ml software development requires an extended set1859

of skills beyond software development including ml techniques, statistics, and mathematics1860

apart from the application domain. Similarly, Hall and Bowes [181] also reports a serious lack1861

of ml expertise in academic software engineering efforts. Other authors [373] have empha-1862

sized the importance of domain knowledge to design effective ml models.1863

Mitigation: Raising awareness and training sessions customized for the audience is consid-1864

ered the mitigation strategy for skill gap. Software engineering conferences organize tutori-1865

als that typically helps new researchers in the field. Availability of various hands-on courses1866

and lecture series from known universities also help bringing the gap.1867

• Hardware resources: Given the need of large training datasets andmany hidden layers, often1868

ml training requires high-end processing units (such as gpus and memory) [513, 155]. A user-1869

survey study [513] highlights the need to special hardware forml training. Such requirements1870

poses a challenge to researchers constrained with limited hardware resources.1871

Mitigation: ml development is resource hungry. Certain dl models (such as models based1872

on rnn) consume excessive hardware resources. The need for a large-scale hardware infras-1873

tructure is increasing with the increase in size of the captured features and the training sam-1874

ples. To address the challenge, infrastructure at institution and country level are maintained1875

in some countries; however, a generic and widely-applicable solution is needed for more1876

globally-inclusive research. Additionally, efforts in the direction of proposed pretrained mod-1877

els, various data pruning techniques, and effective preprocessing techniques are expected to1878

reduce the need of large infrastructure requirements.1879

6. Threats to validity1880

The first internal threats to validity relates to the concern of covering all the relevant articles in the1881

selected domain. It is prohibitively time consuming to search each machine learning technique1882
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during the literature search. Tomitigate the concern, we defined our scope i.e., studies that use ml1883

techniques to solve a software engineering problem by analyzing source code. We also carefully1884

defined inclusion and exclusion criteria for selecting relevant studies. We carry out an extensive1885

manual search process on commonly used digital libraries with the help of a comprehensive set1886

of search terms. Furthermore, we identified a set of frequently occurring keywords in the articles1887

obtained initially for each category individually and carried out another round of literature search1888

with the help of newly identified keywords to enrich the search results.1889

Another threat to validity is the validity of data extraction and their interpretation applicable to1890

the generated summary andmetadata for each selected study. Wemitigated this threat by dividing1891

the task of summarization to all the authors and cross verifying the generated information. During1892

the manual summarization phase, metadata of each paper was reviewed by, at least, two authors.1893

External validity concerns the generalizability and reproducibility of the produced results and1894

observations. We provide a spreadsheet [438] containing all the metadata for all the articles se-1895

lected in each of the phases of article selection. In addition, inspired by previous surveys [27, 195],1896

we have developed a website11 as a living documentation and literature survey to facilitate easy navi-1897

gation, exploration, and extension. The website can be easily extended as the new studies emerge1898

in the domain; we have made the repository12 open-source to allow the community to extend the1899

living literature survey.1900

7. Conclusions1901

With the increasing presence of ml techniques in software engineering research, it has become1902

challenging to have a comprehensive overview of its advancements. This survey aims to provide1903

a detailed overview of the studies at the intersection of source code analysis and ml. We have se-1904

lected 494 studies spanning since 2011 covering 12 software engineering categories. We present a1905

comprehensive summary of the selected studies arranged in categories, subcategories, and their1906

corresponding involved steps. Also, the survey consolidates useful resources (datasets and tools)1907

that could ease the task for future studies. Finally, we present perceived challenges and opportuni-1908

ties in the field. The presented opportunities invite practitioners as well as researchers to propose1909

new methods, tools, and techniques to make the integration of ml techniques for software engi-1910

neering applications easy, flexible, and maintainable.1911

Looking ahead: In the recent past, we have witnessed game-changing advancements and all-1912

around adoption of Large language models (llms) [572]. llms such as GPTx [68, 396] and BERT1913

[123] learn generic language representation. They helpmlmodels performbetterwith limited train-1914

ing (i.e., fine-tuning) for a targeted downstream task. Universal contextual representation learned1915

from huge corpora (such as all available textbooks and publicly available articles on the internet)1916

makes them suitable for various natural language tasks.1917

Similarly, languagemodels for code, such as CodeBERT [145], CodeT5 [529], CodeGraphBERT [171],1918

and Llama 2 [485] are gaining popularity rapidly among software engineering researchers. Such1919

pre-trained models are trained with generic objectives with large corpora of code and natural lan-1920

guage. The models learn the syntax, semantics, and fundamental relationships among the con-1921

cepts and entities that make fine-tuning the model for a specific software engineering task easier1922

(in terms of training time). These models are not only extensively used in software engineering re-1923

search [300, 89, 294, 205, 381] already but also will be shaping the software engineering research1924

for the years to come.1925
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