Multi-faceted Code Smell Detection
at Scale using DesigniteJava 2.0

Tushar Sharma
tushar@dal.ca
Dalhousie University, Canada

ABSTRACT

Code smell detection tools not only help practitioners and re-
searchers detect maintainability issues but also enable repository
mining and empirical research involving code smells. However,
current tools for detecting code smells exhibit notable shortcom-
ings, such as limited coverage for a diverse kind of smells at vary-
ing granularities, lack of maintenance, and inadequate support for
large-scale mining studies. To address the limitations, the first major
version of DESIGNITEJAVA supported code smells detection at archi-
tecture, design, and implementation smells along with commonly
used code quality metrics. This paper presents DESIGNITEJAVA 2.0
that adds testability and test smell detection support. Also, the tool
offers new analysis modes, including an optimized multi-commit
analysis mode, to support large-scale multi-commit analysis. We
show that the optimized multi-commit mode reduces analysis time
by up to 46% without compromising the analysis efficacy. The tool
is available online. Replication package including all the validation
data and scripts can be found online [27]. Demonstration video can
be found on YouTube.

CCS CONCEPTS

« Software and its engineering — Maintaining software; Soft-
ware maintenance tools.

KEYWORDS

Code smell detection tool, repository mining.

ACM Reference Format:

Tushar Sharma. 2023. Multi-faceted Code Smell Detection at Scale using
DesigniteJava 2.0. In Proceedings of 21st International Conference on Mining
Software Repositories (MSR 2024). ACM, New York, NY, USA, 5 pages. https:
//doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

Code smells indicate the presence of quality issues, typically affect-
ing maintainability negatively [8, 32]. High smell density in a soft-
ware reduces the code quality and hampers the system’s evolution.
Given the importance and proliferation of code smells, researchers
in the field have explored various aspects of the metaphor, including
their causes, impacts, and detection methods [32].

Code smell detection tools are the heart of the majority of ex-
ploratory and empirical studies involving code smells. Researchers,
as well as industrial vendors, have developed a variety of code
smell detection tools [31, 32]. These tools can be divided into five
categories [32]—metric-based [15, 38], rule/Heuristic-based [17, 30],

MSR 2024, April 2024, Lisbon, Portugal
2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/XXXXXXX.XXXXXXX

history-based [9, 21], and optimization-based [20, 25] smell detec-
tion methods. Despite these efforts, the smell detection tools exhibit
considerable deficiencies. First, existing code smells detection tools
support detecting a limited number of smells [22, 24]. Specifically,
a handful of tools (specifically, 13%—six out of 45) investigated
in a study [32] detect ten or more smells. Lack of support for a
wide range of code smells poses a challenge to empirical studies
on smells; identifying a very small subset of smells and using the
data to correlate other software engineering aspects (such as the
number of bugs) makes such studies incomplete or even incorrect.
Second, Code smells may arise at different granularities (e.g., ar-
chitecture, design, and implementation) and different artifacts (e.g.,
production, infrastructure, and test code). Though there have been
some attempts to detect, for example, architecture smells [7] and
test smells [23], a comprehensive tool supporting smell detection
at different granularities and artifacts is missing. Next, the majority
of research prototypes are either not available online or not main-
tained. For example, out of six tools that support the detection of
ten or more smells, only two (JSNose [6] and JSpIRIT [37]) are avail-
able online at the time of writing this text. Furthermore, both the
available tools are not updated in years; JSNose and JSpIRIT were
last updated ten and five years ago, respectively. Finally, for any
large-scale mining study, researchers need to analyze many reposi-
tories, often all the commits. However, the available tools typically
do not provide native support for carrying out such large-scale
mining analysis.

To address the gap, we first introduced DESIGNITEJAvVA [26, 30].
The tool supported the detection of seven architecture smells [31],
20 design smells, and 10 implementation smells [29] along with
various code quality metrics. In the last seven years, we maintained
the tool, fixed bugs, and added new features. We use the tool in our
research [28, 31], but also made the tool available free and accessible
for academic use. The community has used the tool extensively for
their code smells-related research [5, 19, 36]. Our free academic
license has been used by at least 175 universities! worldwide for
education and research at the time of writing this text.

This paper presents DESIGNITEJAVA 2.0—an improved code smells
detection tool that supports testability and test smells, in addition
to previously supported code smells. Furthermore, the new version
introduces not only native support to analyze all or a customized
set of commits of a repository but also implements an optimization
to improve the analysis time of large repositories. These significant
improvements may further facilitate repository mining studies and
empirical studies involving code smells in the field.

Lhttps://www.designite-tools.com/acad-lic-request/

https://www.designite-tools.com/static/download/DJE/DesigniteJava.jar
https://youtu.be/3hVrSYJskEU
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://www.designite-tools.com/acad-lic-request/

MSR 2024, April 2024, Lisbon, Portugal

2 DESIGNITEJAVA 2.0

In this section, we elaborate on the tool’s architecture and the
newly added support for testability and test smells. Additionally,
we elaborate on the optimized support to analyze multiple commits
for a repository.

2.1 Tool architecture

Figure 1 shows the architecture of the tool. DESIGNITEJAVA utilizes
Eclipse Java Development Toolkit (JDT) to parse the source code,
prepare AsTs, and resolve symbols. The source model is the middle
layer. The model invokes jpT and maintains a source code model
from the information extracted from an AsT with the help of jpT.
The top layer of the tool contains the business logic i.e., the smell
detection and code quality metrics computation logic. The layer
accesses the source model, identifies smells and computes metrics,
and outputs the generated information in either csv or xmL files. The
new version of the tool adds support to detect testability and test
smells. To enable the support, we extend the existing smell detection
module. We also modify the source model layer to extract additional
information required for our purpose. Furthermore, the tool adds
two more analyze modes—multi-commit analysis and optimized
multi-commit analysis, in addition to analysis modes supported in
the previous version (analysis and analysis in CI modes). These
modes are specified by using command line arguments as shown
in Figure 2.

I Argument processing I

| Optimized multi-commit analysis |

Testand
testability smell
detection

Architecture, design, and
implementation smell
detection

ER

Source code

Source code metrics = ' __?
Ul &$°33

Source code model Detected smells

Eclipse Java Development
Toolkit (JOT)

Figure 1: Architecture of DesigniteJava tool; the colored boxes
represents new components for DesigniteJava2.0

2.2 Testability smells detection

Testability is defined as the degree to which the development of
test cases can be facilitated by the software design choices [3, 4].
Testability smells are the programming practices that reduce the
testability of a software system. The new version of DESIGNITEJAVA
supports four testability smells that we summarize below.
Hard-wired dependency: This smell occurs when a concrete class
is instantiated and used in a class resulting in a hard-wired de-
pendency [4, 11]. A hard-wired dependency creates tight-coupling
between concrete classes and reduces the ease of writing tests for
the class [4]. To detect the smell, we first detect all the objects cre-
ated using the new operator in a class. Then, if the functionality of
the newly created object is used (i.e., at least one method is called)
in the same class, we detect this smell.

Global state: Global variables are, in general, widely discour-
aged [16]. This smell arises when a global variable or a Singleton

Tushar Sharma

(X X M install — -bash — 79x44

TS-Discovery:install Tushar$ java -jar Designitelava.jar -h
usage: java -jar DesigniteJava.jar
Help Command line options help
java -jar Designitelava.jar
License key
Version of this tool

Continuous integration mode

Hostname (such as github.com)

Designite key

Personal Access Token

Repository with owner in
wner>/[sub-project(s)]/<repository> format

jar
alyze all commits in the specified
branch(es)
Disable telemetry service
Start analysis from the specified commit
Input source folder path
Path to the output folder
Analyze only the specified subproject
End analysis up to the specified commit
ar D eJava.jar
,--AllCommitsOptimized <arg> Analyze all commits in the specified
branch(es) optimally
Disable telemetry service

-ac,--AllCommits <arg>

ableTelemetry
omCommit <arg>

DisableTelemetry
-FromCommit <arg> Start analysis from the specified
commit
Input source folder path
Path to the output folder
> Analyze only the specified subproject
,--TempLoc: > Temporary folder path
~ToCommit > End analysis up to the specified
commit

teJava.jar

Classpath folders

Disable telemetry service

Output file format

Input source folder path

Path to the output folder

ery:install Tushar$

Figure 2: Command line options for DesigniteJava2.0

object is used [11, 33]. Global variables introduce unpredictability
and hence make tests difficult to write by developers. If a class or a
field in a class is declared with public static modifiers, we detect
this smell.

Excessive dependency: This smell occurs when the class under test
has excessive outgoing dependencies. Dependencies make testing
harder; a large number of dependencies makes it difficult to write
tests for the class under test in isolation [33, 40]. We compute
fan-out (i.e., total number of outgoing dependencies) of a class.
If the fan-out of the class is more than a pre-defined threshold
(customizable, by default set to 7), we detect the smell.

Law of Demeter violation: This smell arises when the class under
test violates the law of Demeter i.e., the class is interacting with
objects that are neither class members nor method parameters [34].
Violations of the law of Demeter create additional dependencies
that a test has to take care of. We detect all the method invocation
chains of the form aField.get-Object().aMethod(). We detect
this smell when method calls are made on objects that are not
directly associated with the current class.

2.3 Test smells detection

The tool uses the test smells definition and their detection strategies
from existing studies [23, 39]. Below, we present a summary of
supported test smells and the detection strategies.

Assertion roulette: We detect this smell when a test method con-
tains more than one assertion statement without giving an expla-
nation as a parameter in the assertion method.

Conditional test logic: We detect this smell when there is an asser-
tion statement within a control statement block (e.g., if condition).
Constructor initialization: We detect this smell when a construc-
tor of a test class initializes at least one instance variable.

Eager test: We detect this smell when a test method calls multiple
production methods.

Empty test: We detect this smell when a test method does not
contain any executable statement within its body.

Designite 2.0

Exception handling: We detect this smell when a test method
asserts within a catch block or throws an exception, instead of
using Assert.Throws().

Ignored test: We detect this smell when a test method is ignored
using the Ignore annotation.

Unknown test: We detect this smell when a test method does not
contain any assert call or expected exception.

2.3.1 Validation for testability and test smells. We curated a ground
truth of smells in a Java project to manually validate the tool, as
explained below.

Subject system selection: We used the REPOREAPERs dataset [18]
to select a subject system. We selected Java repositories of moderate
size (between 10K and 15K), with unit-test as well as documentation
ratio > 0.0, and with at least two developers. We applied the criteria
and sorted the list by the number of stars. We obtained j256/ormlite-
Jjdbe, paul-hammant/paranamer, and forcedotcom/wsc as the top
three projects satisfying our criteria. The majority of the source
code belonging to j256/ormlite-jdbc and paul-hammant/paranamer
was in test cases. Hence, we selected j256/ormlite-jdbc, as our subject
system for test smells validation. However, such repositories were
unsuitable for validating testability smells since we detect testability
smells in non-test code. Hence, we selected forcedotcom/wsc, a
project that offers a high-performance web service stack for clients,
as our subject system for the manual validation of testability smells.
Validation protocol: Two evaluators manually examined the source
code of the selected subject systems and documented the testability
and test smells that they found. Both evaluators hold a PhD in
computer science and have over five years of software develop-
ment experience. Before the evaluation, they were introduced to
testability and test smells. They were allowed to use IDE features
(such as “find”, “find usage” (of a variable) and “find definition” (of
a class) and external tools to collect code quality metrics to help
them narrow their search space. Both evaluators carried out their
analyses independently. It took approximately three full workdays
to complete the manual analysis. After completing their manual
analysis, they matched their findings to spot any differences. We
used Cohen’s Kappa [2] to measure the inter-rater agreement be-
tween the evaluators. The obtained result, 89% and 93% respectively,
for testability and test smells shows a strong agreement between
the evaluators. The evaluators discussed the rest of their findings
and resolved the conflicts.

Validation results: We used our tool on the subject systems and
identified testability and test smells. We manually matched the
ground truth prepared by the evaluators and tool’s results. We
classified each smell instance as true positive (TP), false positive
(rp), and false negative (FN). We computed precision and recall
metrics using the collected data.

Table 1 presents the results of the manual evaluation for testa-
bility smells. The tool identified 161 instances of testability smells
out of 172 manually verified smell instances. The tool produced
two false positive instances and eleven false negative instances.
The false positive instances were detected mainly because the tool
identified the hard-wired dependency even when an object was in-
stantiated in a method call statement. Similarly, the tool reported
false negatives due to an improper resolution of enumeration types;
we traced back the inconsistent behavior to the jpT parser library.

MSR 2024, April 2024, Lisbon, Portugal

Table 1: Results of manual validation for testability smells;
MVI stands for Manually Verified Instances

Testability Smells ‘ MVI TP FP FN
Hard-wired dependencies 64 63 2 1
Global state 22 22 0 0
Excessive dependencies 20 19 0 1
Law of Demeter violation 66 57 0 9
Total | 172 161 2 11

Table 2: Results of manual validation for test smells; MVI
stands for Manually Verified Instances

Testability Smells ‘ MVI TP FP FN
Assertion roulette 214 212 0 2
Conditional test logic 11 11 0 0
Constructor initialization 0 0 0 0
Eager test 13 13 0 0
Empty test 0 0 0
Exception handling 3 2 0 1
Ignored tests 2 2 0 0
Unknown test 58 58 0 0
Total | 301 298 0 3

The precision and recall of the tool for testability smells based on
the analysis is 161/(161 + 2) = 0.99 and 161/(161 + 11) = 0.94,
respectively. Similarly, Table 2 shows the results of the manual
evaluation carried out for test smells. Out of 301 test smells in 428
test methods, the tool correctly detected 298 smells. The cause of
three instances of false negatives is traced back to the inconsistent
behavior of the parser library. The precision and recall of the tool
for test smells based on the analysis are 298/(298 + 0) = 1.0 and
298/(298 + 3) = 0.99, respectively.

c/ z
[,
Loy

’EJ R

Figure 3: Dependency graph showing changed file (marked
with red) and selected file for reanalysis (files marked with
red and orange colors)

2.4 Optimized support for mining repositories

Often software engineering researchers need to analyze all com-
mits of a repository, for example, to analyze code quality trends.

https://github.com/j256/ormlite-jdbc
https://github.com/forcedotcom/wsc

MSR 2024, April 2024, Lisbon, Portugal

Researchers write programs to check out all commits individually
for a repository and analyze the code using tools such as DEsIG-
NITEJAVA. To reduce the effort, the new version of DESIGNITEJAVA
introduces a new analysis mode referred to as multi-commit analy-
sis to analyze multiple commits in a branch by specifying option
-ac. For example, the command java -jar DesigniteJava.jar
-i ./myProject -o ./myProject/analysis -ac "main" will an-
alyze all the commits in the main branch of myProject repository.
Furthermore, we may specify a range of commits to analyze us-
ing -fr (from-commit) and -to (to-commit) options. Details about
various command options for the tool can also be found online?.
However, each commit typically only changes for a small fraction
of files. Despite that DESIGNITEJAVA, using the option described
above i.e, -ac, and other similar tools, analyze each commit from
scratch. Hence, the tools incur significantly more computing re-
sources as well as time by not utilizing the significant similarity
in the source code from commit to commit. The new version of
the tool introduces another analysis mode viz. optimized multi-
commit analysis to overcome this limitation by utilizing the source
code information from the previous commit. This mode can be in-
voked using the option -aco. The optimized mode differs from the
multi-commit analysis mode in one significant way—the optimized
version reuses abstract syntax tree as well as source code model
and computed metrics information from the previous commit. The
tool uses git utility methods to determine the changed and deleted
files in a commit. The tool finds the associated source code entities
for this modified file set and marks them for updation. Each class
depends on other classes; the dependencies among classes must be
taken into account for accurate analysis. The new version of the
tool determines an impact set for each modified class; this impact
set includes the direct dependencies, incoming and outgoing, for
the class. Figure 3 presents an example. The figure shows a depen-
dency graph among the classes of a project. If class P is modified,
then classes B, Y, Q, Rare considered as the impact set. The tool
discards the source code information inherited from the previous
commit related to the modified classes and their associated impact
set and rebuilds the source code model for them. In this way, the
tool attempts to optimize the code analysis without compromising
the accuracy of the tool.
Evaluation: We evaluate the accuracy of the new optimized anal-
ysis mode by comparing the produced output with and without
optimization. We use a script that we developed (available in the
replication package) to compare the outcome of both the analysis
modes. We also measure analysis time in both cases. For this evalu-
ation, we search Java repositories within the Apache organization
with minimum 10, 000 commits, minimum 100 issues, minimum
200 contributors, and a minimum 10, 000 stars. The criteria gave
us three open-source repositories—Druid?, Pulsar®, and Sharding-
Sphere®. We analyze first 1,000 commits in both the modes. Table 3
presents the evaluation results. Comparing the results for both the
modes for the selected repositories show identical results. However,
we observe that the optimized multi-commit analysis mode
achieves the same results by consuming up to 46% less time

https://www.designite- tools.com/docs/index.html
Shttps://github.com/apache/druid
“https://github.com/apache/pulsar
Shttps://github.com/apache/shardingsphere

Tushar Sharma

than the multi-commit analysis mode. With this optimization
the tool saves significant research time and computing resources.

Table 3: Analysis time (in seconds) for the selected commits
using ac (multi-commit) mode compared to aco (optimized
multi-commit) mode

Repository Analysis Analysis Efficiency
time (ac time (aco gain

mode) mode)
Druid 14,722 7,922 46.2%
Pulsar 52,789 28,124 46.7%
ShardingSphere 10,580 6,300 40.5%

3 RELATED WORK

Software engineering research contains a large body of work re-
lated to code smell detection. Smell detection approaches can be
divided into five categories [32]. Metric-based smell detection meth-
ods [15, 38] compute a set of source code metrics and detect smells
by applying appropriate thresholds [15]. Rule/Heuristic-based smell
detection methods [17, 35] define rules/heuristics to detect code
smells. History-based smell detection approaches observe the evo-
lutionary properties in source code [9, 21] to infer smells in the
code. Optimization-based smell detection approaches [20, 25] use
optimization algorithms typically on code quality metrics to detect
smells in a given source code. In recent times, machine-learning (mMr)
techniques have been applied extensively to detect code smells. The
ML-based smell detection methods, typically identify a set of features
(such as code quality metrics) and use them to train a model. Early
approaches used traditional ML, such as Bayesian and support vector
machine, and a fixed set of code quality metrics as features to clas-
sify smelly code snippets from benign ones [1, 12, 14]. Several stud-
ies use deep learning techniques to identify code smells [10, 13, 28].

There have been a few tools to detect test smells. JNose [39] de-
tects 21 test smells and analyzes the quality evolution of a software
project. Similarly, TsDetect [23] supports detecting 19 test smells.
However, first, existing test smell detection tools are not integrated
with traditional code smells increasing the number of tools required
for code quality analysis for a software development team. Also,
the existing tools are not suitable for large-scale empirical analy-
sis. For example, analyzing code using TsDetect involves a manual
step requiring mapping test files and corresponding production
files. The proposed tool addresses both limitations and provides a
comprehensive code smell detection tool for Java.

4 CONCLUSIONS

DESIGNITEJAVA has served the software engineering community
for the last seven years. The tool supports the detection of a large
number of architecture smells, design smells, and implementation
smells, along with various code quality metrics. We presented a
new, improved version of the tool that adds support for testability
and test smells detection. Another significant addition to the tool is
supporting optimized multi-commit analysis of a repository. These
significant improvements will provide additional automated tool
support to software developers and further facilitate repository
mining and empirical studies related to code smells.

https://www.designite-tools.com/docs/index.html
https://github.com/apache/druid
https://github.com/apache/pulsar
https://github.com/apache/shardingsphere

Designite 2.0

REFERENCES

(1]

A

=
2

(1]

[12

[13

[14]

(15

[16]

[17]

[18

=
o

[20]

Francesca Arcelli Fontana, Mika V. Mantyla, Marco Zanoni, and Alessandro
Marino. 2016. Comparing and experimenting machine learning techniques for
code smell detection. Empirical Software Engineering 21, 3 (01 Jun 2016), 1143—
1191. https://doi.org/10.1007/s10664-015-9378-4

Kenneth J. Berry and Jr. Paul W. Mielke. 1988. A Generalization of Cohen’s Kappa
Agreement Measure to Interval Measurement and Multiple Raters. Educational
and Psychological Measurement 48, 4 (1988), 921-933. https://doi.org/10.1177/
0013164488484007

Robert V. Binder. 1994. Design for Testability in Object-Oriented Systems. Com-
mun. ACM 37, 9 (sep 1994), 87-101. https://doi.org/10.1145/182987.184077
Vishal Chowdhary. 2009. Practicing Testability in the Real World. In Intl.
Conference on Software Testing Verification and Validation. 260-268. https:
//doi.org/10.1109/ICST.2009.53

André Eposhi, Willian Oizumi, Alessandro Garcia, Leonardo Sousa, Roberto
Oliveira, and Anderson Oliveira. 2019. Removal of Design Problems through
Refactorings: Are We Looking at the Right Symptoms?. In 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). 148-153. https:
//doi.org/10.1109/ICPC.2019.00032

Amin Milani Fard and Ali Mesbah. 2013. JSNOSE: Detecting javascript code
smells. In IEEE 13th International Working Conference on Source Code Analysis
and Manipulation. IEEE, 116-125.

Francesca Arcelli Fontana, Ilaria Pigazzini, Riccardo Roveda, Damian Tamburri,
Marco Zanoni, and Elisabetta Di Nitto. 2017. Arcan: A Tool for Architectural
Smells Detection. In 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW). IEEE, 282-285.

Martin Fowler. 1999. Refactoring: Improving the Design of Existing Programs (1
ed.).

Shizhe Fu and Beijun Shen. 2015. Code Bad Smell Detection through Evolutionary
Data Mining. In International Symposium on Empirical Software Engineering and
Measurement. IEEE, 41-49.

Mouna Hadj-Kacem and Nadia Bouassida. 2018. A Hybrid Approach To Detect
Code Smells using Deep Learning.. In ENASE. 137-146.

Misko Hevery. 2008. Writing Testable Code. https://testing.googleblog.com/
2008/08/by-miko-hevery-so-you-decided-to.html.

Foutse Khombh, Stéphane Vaucher, Yann-Gaél Guéhéneuc, and Houari Sahraoui.
2009. A Bayesian Approach for the Detection of Code and Design Smells. In QSIC
’09: Proceedings of the 2009 Ninth International Conference on Quality Software.
305-314.

Hui Liu, Jiahao Jin, Zhifeng Xu, Yifan Bu, Yanzhen Zou, and Lu Zhang. 2019. Deep
learning based code smell detection. IEEE Transactions on Software Engineering
(2019).

Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata Sabané, Yann-Gaél
Guéhéneuc, Giuliano Antoniol, and Esma Aimeur. 2012. Support vector machines
for anti-pattern detection. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. 278-281.

R Marinescu. 2005. Measurement and quality in object-oriented design. In 21st
IEEE International Conference on Software Maintenance (ICSM’05). IEEE, 701-704.
LF Marshall and Jim Webber. 2000. Gotos considered harmful and other pro-
grammers’ taboos. Department of Computing Science Technical Report Series
(2000).

Naouel Moha, Yann-Gaél Guéhéneuc, Laurence Duchien, and Anne-Francoise Le
Meur. 2010. DECOR: A Method for the Specification and Detection of Code and
Design Smells. IEEE Trans. Software Eng. 36, 1 (2010), 20-36. https://doi.org/10.
1109/TSE.2009.50

Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for engineered software projects. Empirical Software Engineering
22, 6 (Dec. 2017), 3219-3253. https://doi.org/10.1007/s10664-017-9512-6
Willian Oizumi, Leonardo Sousa, Anderson Oliveira, Luiz Carvalho, Alessandro
Garcia, Thelma Colanzi, and Roberto Oliveira. 2019. On the density and diversity
of degradation symptoms in refactored classes: A multi-case study. In IEEE 30th
International Symposium on Software Reliability Engineering. 346-357.

Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, and Katsuro Inoue. 2015.
Web Service Antipatterns Detection Using Genetic Programming. In GECCO ’15:
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computa-
tion. ACM, 1351-1358.

MSR 2024, April 2024, Lisbon, Portugal

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Denys
Poshyvanyk, and Andrea De Lucia. 2015. Mining version histories for detecting
code smells. IEEE Transactions on Software Engineering 41, 5 (2015), 462—489.
Fabio Palomba, Andrea De Lucia, Gabriele Bavota, and Rocco Oliveto. 2014. Anti-
Pattern Detection. In Anti-pattern detection: Methods, challenges, and open issues.
Elsevier, 201-238.

Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. 2020. TsDetect: An Open Source Test
Smells Detection Tool. In Proceedings of the 28th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
S(g‘tware Engineering (Virtual Event, USA) (ESEC/FSE 2020). 1650-1654. https:
//doi.org/10.1145/3368089.3417921

Ghulam Rasool and Zeeshan Arshad. 2015. A review of code smell mining
techniques. Journal of Software: Evolution and Process 27, 11 (Nov. 2015), 867—
895.

Dilan Sahin, Marouane Kessentini, Slim Bechikh, and Kalyanmoy Deb. 2014. Code-
Smell Detection as a Bilevel Problem. ACM Transactions on Software Engineering
and Methodology (TOSEM) 24, 1 (Oct. 2014), 6-44.

Tushar Sharma. 2018. DesigniteJava. https://doi.org/10.5281/zenodo.2566861
Tushar Sharma. 2023. DesigniteJava 2.0. https://doi.org/10.5281/zenodo.10300873
Tushar Sharma, Vasiliki Efstathiou, Panos Louridas, and Diomidis Spinellis. 2021.
Code smell detection by deep direct-learning and transfer-learning. Journal of
Systems and Software 176 (2021), 110936. https://doi.org/10.1016/].jss.2021.110936
T. Sharma, M. Fragkoulis, and D. Spinellis. 2017. House of Cards: Code Smells
in Open-Source C# Repositories. In 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). 424-429. https:
//doi.org/10.1109/ESEM.2017.57

Tushar Sharma, Pratibha Mishra, and Rohit Tiwari. 2016. Designite — A Software
Design Quality Assessment Tool. In Proceedings of the First International Workshop
on Bringing Architecture Design Thinking into Developers’ Daily Activities (BRIDGE
’16). ACM. https://doi.org/10.1145/2896935.2896938

Tushar Sharma, Paramvir Singh, and Diomidis Spinellis. 2020. An empirical in-
vestigation on the relationship between design and architecture smells. Empirical
Software Engineering 25, 5 (2020), 4020-4068.

Tushar Sharma and Diomidis Spinellis. 2018. A survey on software smells. Journal
of Systems and Software 138 (2018), 158 — 173. https://doi.org/10.1016/j.jss.2017.
12.034

Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. 2014. Refac-
toring for Software Design Smells: Managing Technical Debt (1 ed.). Morgan
Kaufmann.

David Thomas and Andrew Hunt. 2019. The Pragmatic Programmer: your journey
to mastery.

Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2011. Identification of Extract
Method Refactoring Opportunities for the Decomposition of Methods. Journal
of Systems & Software 84, 10 (Oct. 2011), 1757-1782. https://doi.org/10.1016/j.jss.
2011.05.016

Anderson Uchéa, Caio Barbosa, Willian Oizumi, Publio Blenilio, Rafael Lima,
Alessandro Garcia, and Carla Bezerra. 2020. How Does Modern Code Review
Impact Software Design Degradation? An In-depth Empirical Study. In IEEE
International Conference on Software Maintenance and Evolution. 511-522. https:
//doi.org/10.1109/ICSME46990.2020.00055

Santiago Vidal, Hernan Vazquez,] Andrés Diaz-Pace, Claudia Marcos, Alessandro
Garcia, and Willian Oizumi. 2016. JSpIRIT: A flexible tool for the analysis of code
smells. In Proceedings - International Conference of the Chilean Computer Science
Society, SCCC. IEEE, 1-6.

Santiago A Vidal, Claudia Marcos, and] Andrés Diaz-Pace. 2014. An approach
to prioritize code smells for refactoring. Automated Software Engineering 23, 3
(2014), 501-532

Téassio Virginio, Luana Martins, Larissa Rocha, Railana Santana, Adriana Cruz,
Heitor Costa, and Ivan Machado. 2020. JNose: Java Test Smell Detector. In
Proceedings of the 34th Brazilian Symposium on Software Engineering (Natal,
Brazil). 564-569. https://doi.org/10.1145/3422392.3422499

YuMing Zhou, Hareton Leung, QinBao Song, JianJun Zhao, HongMin Lu, Lin
Chen, and BaoWen Xu. 2012. An in-depth investigation into the relationships
between structural metrics and unit testability in object-oriented systems. Science
china information sciences 55, 12 (2012), 2800-2815.

https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1177/0013164488484007
https://doi.org/10.1177/0013164488484007
https://doi.org/10.1145/182987.184077
https://doi.org/10.1109/ICST.2009.53
https://doi.org/10.1109/ICST.2009.53
https://doi.org/10.1109/ICPC.2019.00032
https://doi.org/10.1109/ICPC.2019.00032
https://testing.googleblog.com/2008/08/by-miko-hevery-so-you-decided-to.html
https://testing.googleblog.com/2008/08/by-miko-hevery-so-you-decided-to.html
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/3368089.3417921
https://doi.org/10.1145/3368089.3417921
https://doi.org/10.5281/zenodo.2566861
https://doi.org/10.5281/zenodo.10300873
https://doi.org/10.1016/j.jss.2021.110936
https://doi.org/10.1109/ESEM.2017.57
https://doi.org/10.1109/ESEM.2017.57
https://doi.org/10.1145/2896935.2896938
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1016/j.jss.2011.05.016
https://doi.org/10.1016/j.jss.2011.05.016
https://doi.org/10.1109/ICSME46990.2020.00055
https://doi.org/10.1109/ICSME46990.2020.00055
https://doi.org/10.1145/3422392.3422499

	Abstract
	1 Introduction
	2 DesigniteJava 2.0
	2.1 Tool architecture
	2.2 Testability smells detection
	2.3 Test smells detection
	2.4 Optimized support for mining repositories

	3 Related work
	4 Conclusions
	References

