
Calibrating Deep Learning-based Code Smell
Detection using Human Feedback

Himesh Nanadani, Mootez Saad, Tushar Sharma
Dalhousie University, Canada

{hnandani, mootez, tushar}@dal.ca

Abstract—Code smells are inherently subjective in nature.
Software developers may have different opinions and perspectives
on smelly code. While many attempts have been made to use
deep learning-based models for code smell detection, they fail to
consider each developer’s subjective perspective while detecting
smells. Ignoring this aspect defies the purpose of using deep
learning-based smell detection methods because the models are
not customized to the developer’s context. This paper proposes
a method that considers human feedback to account for such
subjectivity. Towards this, we created a plugin for IntelliJ IDEA
and developed a container-based web-server to offer services of
our baseline deep learning model. The setup allowed developers
to see code smells within the IDE and provide feedback. Using this
setup, we conducted a controlled experiment with 14 participants
divided into experimental and control groups. In the first round of
our experiment, we show code smells predicted using the baseline
deep learning model and collect feedback from the participants.
In the second round, we fine-tune the model based on the
experimental group’s feedback and reevaluate its performance
before and after adjustment. Our results show that using such
calibration improves the performance of the smell detection
model by 15.49% in F1 score on average across the participants
of the experimental group. Our work carries implications for
both researchers and practitioners. Practitioners can apply our
approach to enhance the quality of their code in day-to-day
development activities, aligning it with their own code smell
definitions. Furthermore, software engineering researchers can
leverage this study to adopt analogous approaches for addressing
similar issues, including code review.

Index Terms—Code smell detection, human feedback, deep
learning.

I. INTRODUCTION

Software development is a complex and error-prone process
that demands attention to detail and continuous improvements
for the production of high-quality code. As projects evolve,
accommodating changes becomes increasingly challenging
unless the development team puts extra efforts to maintain
their code quality [1]. Code smells [2], [3] provide valuable
insights into potential design flaws and maintainability prob-
lems. Detecting code smells early in the development process
enables developers to address them before they become more
onerous and expensive to rectify [4]

Traditional methods of code smell identification rely on
metrics and heuristics-based analysis of source code [3], [5].
Such approaches produce a significant number of false posi-
tives since they are based on fixed rules and do not consider
the context and subjectivity involved in smell detection [3].
Code smells can be subjective, with interpretations and percep-
tions varying among individual developers. This subjectivity

introduces complexities in accurately detecting and addressing
code smells. The research community has proposed many
machine learning (ML), including deep learning (DL) -based
approaches [6] [7] [8] to tackle the challenge posed by
smells’ subjectivity. However, applying a DL approach to
detect code smells based on the dataset created by multiple
participants misses subjectivity inherent in identifying smells
at the individual developer or a team-level [9]. Hence, a
generic DL-based approach to detect code smells will not be
as effective because different developers may not agree about
the presence of smells in the same code snippet. To overcome
this challenge, our research focuses on user-specific subjective
analysis, aiming to customize smell detection based on the
user’s perspective and context. By incorporating the user’s
preferences and understanding, we aim to develop a code smell
detection system that aligns with subjective needs and provides
more tailored results.

In this paper, we present a comprehensive framework that
addresses the issue of subjectivity in code smell detection and
enables personalized and accurate predictions. Our approach
combines deep learning techniques, user feedback, and a con-
tainerized deployment architecture for a locally-run web-server
to create a robust and adaptable system. We train a baseline DL
model using the DACOS dataset [10]. The dataset emphasizes
collecting annotations on potentially subjective code snippets
and hence helps the model learn the latent features necessary
to classify snippets into smelly or benign. We integrate our DL
model into a Docker container behind a web-server to offer
smell predictions and retrain the model easily as and when
required. Our initial model predicts code smells that we show
users in the IntelliJ IDEA environment with the help of our
plugin TagCoder. TagCoder shows the smells to the users and
collects their feedback. We train the deployed DL model using
the collected user feedback. The fine-tuning allows the model
to learn and adapt to individual user preferences and enhances
the accuracy of smell detection. Our experiments to evaluate
the proposed approach show that fine-tuning the DL model
using collected user feedback outperforms the base model
for all the participants. This performance improvement is
achieved for each participant while considering their feedback
and maintaining the customization of the model’s behavior
specifically trained for each participant.

We make the following contributions to the state of the art.
• We propose a robust framework that mitigates subjectivity

in code smell detection by incorporating user feedback



for our deep learning model. The proposed framework
provides a systematic approach to address the challenges
associated with subjective code smells, leading to more
accurate and personalized analysis.

• We implement a containerized solution integrating a light-
weight web-server for providing code smell inferences
from our trained DL model. The implementation enables
efficient deployment, ease of fine-tuning, and scalability.
We make the framework implementation open-source
allowing researchers to use and extend our framework.

• We implement a plugin TagCoder for IntelliJ IDEA.
The plugin provides an interactive user interface for
personalized code smell analysis and captures valuable
user feedback, leading to continuous model improvement.
TagCoder bridges the gap between developers and the
code smell detection system, empowering developers to
actively participate in the improvement of code quality
and maintainability. The plugin has been made publicly
available.

Replication package: Our framework, plugin, analysis
scripts, and data can be found online [11].

II. BACKGROUND AND RELATED WORK

Code smells can be classified based on granularity, scope,
and artifacts [3]. Traditionally, code smells are broadly di-
vided into three main categories based on the granularity and
scope—implementation [12], architecture [13] and design
[14] smells. Implementation smells usually impact a limited
scope such as a method. Complex method and Long method
are examples of implementation smells [12]. Design smells,
such as god class and multifaceted abstraction [14], affect
a broader scope, i.e., at a class-level. The scope of archi-
tectural smells span multiple components. Some examples
of architecture smells are feature concentration [15] and
scattered functionality [16]. In this study, we keep our focus
on implementation and design smells.

A. Traditional approaches for code smells detection

Metrics-based approaches involve quantifying specific code
characteristics or metrics and using predefined thresholds or
rules to identify potential code smells. These approaches
rely on analyzing code quality metrics such as cyclomatic
complexity, lack of cohesion in methods, and code duplication.
Tools such as PMD [17] and SonarQube [18] utilize metrics-
based approaches by examining code metrics and providing
suggestions for refactoring. In such methods, the source code
is processed to create a code model, metrics capturing code
characteristics are calculated, and then these metrics are com-
pared against predefined thresholds to detect code smells. For
example, the God class smell can be detected using metrics
such as Weighted Methods per Class (WMC), Access To
Foreign Data (ATFD), and Tight Class Cohesion (TCC) [19]
[20]. These metrics are compared against predefined thresholds
and combined using logical operators.

In addition to metrics-based approaches, another traditional
approach for code smell detection is rules-based detection.

Rules-based smell detection methods define specific rules or
heuristics to identify code smells. These methods take the
source code model as input and, in some cases, additional
software metrics. Code smells are detected when the defined
rules or heuristics are satisfied. By applying these rules,
potential issues can be identified and flagged as code smells.
For instance, the cyclic hierarchy smell can be detected by im-
plementing a rule that examines whether a class is referencing
its subclasses [14]. When this condition is met, it indicates
the presence of a cyclic hierarchy smell. Rules or heuristics
are often combined with metrics to improve the effectiveness
of smell detection.

B. Machine learning approaches for code smells detection

Machine Learning for code smell detection has gained a
lot of momentum in the recent years. We elaborate on the
approaches used to detect smells using traditional machine
learning and deep learning techniques.

1) Smell detection using traditional machine learning:
Khomh et al. [6] use Bayesian Networks to predict blob, func-
tional decomposition, and spaghetti code in two open-source
projects. Maiga et al. [21] proposed SVMDetect, an approach
to detect anti-patterns, based on support vector machines. It
predicts functional decomposition, blob, swiss army knife and
spaghetti code. In a study conducted by Saeys et al. [22],
hybrid feature selection techniques such as recursive feature
selection with random forest and support vector machine were
employed. The performance measures of single and ensemble
feature selection were compared, and it was found that hybrid
feature selection outperformed the other methods. Jiarpakdee
et al. [23] examined 12 feature selection techniques on 14
open-source datasets and concluded that feature selection had
an impact of up to 9% on prediction, and that wrapper methods
were expensive to implement.

2) Smell detection using deep learning: Deep learning ap-
proaches, particularly those utilizing recurrent neural networks
(RNNs) such as LSTMs [24], are effective in capturing long-
term dependencies in sequential data. These methods have
been applied to source code, either for improving semantic
representations [25] or for solving downstream tasks.

Alternative approaches to mining source code have em-
ployed CNNs in order to learn features from various repre-
sentations of code. Li et al. [26] have used single-dimension
CNNs to learn semantic and structural features of programs
by working at the AST level of granularity and combining
the learned features with traditional hand-crafted features to
predict software defects. Their method, however, incorporates
hand-crafted features in the learning process and is not proven
to yield transferable results. Similarly, a one-dimensional CNN-
based architecture has been used by Allamanis et al. [27] in
order to detect patterns in source code and identify “interest-
ing” locations where attention should be focused. Similarly,
Ren et al. [28] use a CNN-based neural network to identify
self-admitted technical debt. Sharma et al. [29] used CNNs,
RNNs, and Autoencoders (AEs) to detect code smells without
explicitly specifying code features. They showed that DL



Fig. 1: Overview of the approach

models are able to detect smells in direct and transfer learning
context.

The main problem with ML-based methods for code smells
detection is the high degree of disagreement on what consti-
tutes a code smell among developers [30]. Hence, if a model
performs well on a dataset annotated by a set of developers, it
might perform poorly when evaluated by another set of devel-
opers. This deficiency makes these models unusable in real-life
within an industrial software development environment.

C. Human feedback in machine learning studies

Feedback loops play a vital role in machine learning,
enabling systems to continuously learn and adapt based on
previous outputs [31]. In the context of software engineer-
ing, feedback loops have been widely explored for various
purposes. Aguiar et al. [32] present a use case for feedback
learning in live programming, demonstrating how real-time
feedback can enhance the programming experience. Balzer’s
work [33] focuses on live coding and feedback learning, inves-
tigating how feedback loops can facilitate code development
and improve programming efficiency. Brun et al. [34] explore
the application of feedback loops in self-adaptive systems,
where the system dynamically adjusts its behavior in response
to changing environments and emerging requirements.

Despite the existing literature on feedback loops in software
engineering, to the best of our knowledge, no previous work
has specifically investigated the utilization of human feedback
for DL-based code smell detection. In our research, we propose
an approach that incorporates human feedback to enhance the
performance of code smell detection models.

III. OVERVIEW

The aim of this research is to investigate the feasibility of
customizing a DL model for code smell detection based on
user feedback. To realize the aim of the study, we develop an
initial DL model for smell prediction, gather user feedback
on the model’s predictions, and fine-tune the model based
on the feedback received. By comparing the performance of
the fine-tuned model with the original model, the study aims
to determine if the DL model can be effectively customized
to align with the specific preferences and requirements of
individual users. This paper attempts to answer the following
research questions:

RQ1 Whether and to what extent does user feedback
improve the accuracy of deep learning-based code
smell detection?

User feedback plays a crucial role in fine-tuning and refining
DL models [31]. With this research question we aim to validate
that user feedback can enhance the accuracy of DL-based code
smell detection and to understand the extent to which this
improvement can be observed.

RQ2 Whether and to what extent does user feedback influ-
ence the accuracy of deep learning-based detection
for individual code smells?

Code smells exhibit distinct attributes that differentiate them
from one another due to the variations in their characteristics,
patterns, and severity. With this research question, we aim to
examine whether the improvement in accuracy, if any, through
user feedback is consistent across all considered smells or if
it varies for each individual smell. Furthermore, we seek to
quantify the extent of this variation to understand the degree
of improvement achieved.

Figure 1 illustrates an overview of our approach. The
approach has two major steps—training the DL model and
conducting the controlled experiment. In the training phase
of our study, we begin with the data preparation step, where
we collect raw data samples from the DACOS dataset. To
ensure data integrity and uniqueness, we carefully remove
any duplicate samples from the collected data. With the clean
dataset in hand, we proceed to train the DL models. To enhance
the model’s ability to leverage contextual information from the
code samples, we employ two popular encoders: CodeBERT
and CodeT5. The code samples are then passed through the
tokenizer, which converts them into tokenized vectors. These
tokenized vectors serve as inputs to the DL models for training.
During the training process, we explore multiple DL models,
comparing their performance on the given code smells.

For the controlled experiment, we conduct our study with
the participation of users who are divided into two groups:
the control group and the experiment group. In the initial
phase, participants from both groups are presented with code
samples, where we utilize the TagCoder plugin to capture their
feedback. In the second phase, we introduce a feedback loop
for the experiment group. We fine-tune the model using the
user feedback captured from this group, tailoring the model’s



predictions according to their input. In contrast, the control
group continues to interact with the same base model as in the
first phase, without any fine-tuning based on user feedback.We
then show predictions to both groups, and collect and compare
their feedback.

IV. DEEP LEARNING MODELS TRAINING

We elaborate below the methods adopted to train and
evaluate the base DL models. Later in this section, we present
the obtained results for this training activity.

A. Methods

1) Code smells dataset: For the initial model training and
evaluation, we leverage the dataset curated by Nandani et
al. [10] for code smell detection. It is a manually labelled
dataset consisting of 10, 267 annotations for 5, 192 code snip-
pets. The dataset provide annotations for two implementation
smells viz. complex method, long parameter list and one design
smell multifaceted abstraction. The key advantage of using
the DACOS dataset is that it collected annotations for non-
trivial potentially subjective code snippets helping the machine
learning-based classifiers to learn to segregate smelly and
benign snippets with much more ease.

Allamanis [35] shows that duplicate samples can lead to
inflated and misleading results during testing. To avoid the
issues potentially caused by duplicate samples, we perform
data de-duplication using a hash function to compute a unique
hash value for each code instance and comparing the hash
values to identify any duplicates. For the classification task,
we create a dataset containing both smelly and benign samples
for each code smell. We use a 70:30 split for training and
testing. Table I illustrates statistics of the dataset. In the case
of multifaceted abstraction, a sample refers to a Java class,
whereas in case of complex method and long parameter list,
a sample refers to a Java method.

TABLE I: Dataset statistics

Code smells #Training
samples

#Test sam-
ples

Total sam-
ples

Complex method 1,535 658 2,193
Long parameter list 1,137 487 1,624
Multifaceted abstraction 952 408 1,360

2) Generating initial code representations: To enable the
DL model to leverage the contextual information present
in the code samples, we incorporate an embedding step in
our approach. By embedding the code samples, we facilitate
the generation of meaningful context representations for fur-
ther processing. In this study, we leverage the transformers1

implementation of two Large Language Models pre-trained
on code—CodeBERT [36] and CodeT5 [37]. CodeBERT is
a bimodal pre-trained language model tailored for Natural
Language–Programming Language (NL–PL) tasks such as
code search and documentation generation. It has been trained

1https://github.com/huggingface/transformers

on an extensive dataset of six million GitHub projects, in-
corporating various programming languages, and employs a
hybrid objective function to support its bimodal capabilities,
utilizing both NL–PL data and unimodal data. On the other
hand, CodeT5 is a unified pre-trained encoder-decoder Trans-
former model that capitalizes on the code semantics conveyed
through developer-assigned identifiers [38]. CodeT5 is pre-
trained with three distinct objective functions, namely masked
span prediction, identifier tagging, and masked identifier pre-
diction. These objectives serve as feedback signals to fine-tune
the model parameters and enhance the code understanding ca-
pabilities. Both CodeBERT and CodeT5 have been extensively
used in software engineering literature [39]–[41]. We use the
last hidden state of each encoder. We then take the mean
across all tokens, to generate a vector embedding for each
code snippet of 768 dimensions. These embeddings serves as
input for the classifiers described in the next sections.

3) Architecture of deep learning models: In this section,
we describe the architecture of the DL models we used. The
source code of the implementation is available online [42].
We implement three DL models: an Autoencoder with a dense
Multi-Layer Perceptron (AE-MLP) classifier, an Autoencoder
with a Long Short-Term Memory (AE-LSTM), and a varia-
tional Autoencoder (VEN) with a threshold-based strategy for
classification.

4) Autoencoder with a dense classifier and LSTM: Figure
2 shows the architecture of the first two models. Each model
is trained in two steps.

Fig. 2: Architecture of the employed Autoencoder model. It
is composed of an encoder that compresses input into a latent
representation that is then reconstructed using the decoder.

In the first step, we train an Autoencoder [43], a class
of feed-forward neural networks designed to reconstruct the
input data. Autoencoders possess the capability to compress
the input data into a lower-dimensional representation, known
as the latent representation, and subsequently reconstruct
the output from this compressed representation. This process
involves an encoder and a decoder as the key components. The
encoder starts with an input layer followed by a series of dense
layers. To improve training stability and efficiency, we add
Batch Normalization, a normalization layer that standardizes
inputs for each mini-batch. Subsequently, we replicate these
layers in reverse order to construct the decoder, which is
responsible for reconstructing the input data from the com-
pressed representation.



Fig. 3: Using Encoder of the Autoencoder for training the
dense classifier and LSTM model

Table II provides an overview of the hyperparameters
used for the DL models, including the Autoencoder. The
hyperparameters include the number of encoder and decoder
layers (Autoencoder), the loss functions used (MSE for the
Autoencoder, CrossEntropy for MLP and LSTM), batch sizes
(for all models), and the number of epochs.

TABLE II: Hyperparameters for the DL models

Hyperparameter Values

Encoder Layers (Autoencoder) 1,2
Decoder Layers (Autoencoder) 1,2
Loss functions MSE (AE), CrossEntropy (MLP, LSTM)
Batch Size (all) 32,64
Epochs (all) 5,10,15,20

During training, the autoencoder minimizes the reconstruc-
tion error between the input and the output. We use the
Mean Squared Error (MSE) loss function. The MSE loss
calculates the average squared difference between the input
and reconstructed output as shown in the following equation.

MSE =
1

N

N∑
i=1

(xi − x̂i)
2

By optimizing the network’s parameters to minimize this
loss, the autoencoder learns to encode and decode the input
data effectively, capturing the most salient features in the
process.

As Figure 3 shows, we extract the encoder and discard the
decoder once the Autoencoder model is trained. The encoder
is further utilized to compress new instances of input data into
vectors output by the bottleneck layer, that is fed to either the
dense classifier or the LSTM classification head.

5) Variational Autoencoders: A variational autoencoder
(VAE) [44] is an extension of the conventional autoencoder
that integrates probabilistic modeling. It serves as a deep
generative model that employs Bayesian inference to estimate
the latent representation. Similar to the autoencoder, the VAE
consists of an encoder and a decoder. The encoder transforms
the input x into a latent representation z, while the decoder
reconstructs the original input data (x̂) based on this latent
vector. The model’s joint distribution is defined as follows:

pθ(x, z) = pθ(x|z) · pθ(z)

The encoder, denoted as qϕ(z|x), where ϕ represents its
parameters, produces estimates of the mean and variance
variables of a Gaussian distribution. Using these estimated
parameters, the VAE generates a latent vector z by sampling
from the distribution. The decoder, denoted as pθ(x|z), then
reconstructs the original input by mapping the latent vector z
to the output space. The decoder’s parameters are represented
as θ. The VAE aims to find the maximum likelihood by
optimizing the following expression:

n∑
i=1

log pΘ(xi)

Where Θ represents the parameter of the encoder and decoder,
and log pΘ(xi) can be expressed as:

log pΘ(xi) = DKL (qΦ(z|xi)∥pΘ(z)) + L(Θ;Φ;xi)

Where DKL is the Kullback-Leibler divergence between the
posterior and prior distributions L(Θ;Φ;xi) and is called the
evidence variational lower bound (ELBO). We train a VAE for
each smell, similar to the two previous classifiers. Specifically,
we train the VAE on the positive training samples. To perform
the classification, we set a threshold α: if the loss measured is
greater than the threshold, then it is classified as negative.
The reason we do this is since the VAE has been trained
on one class, it would have learned the salient features of
that particular class, minimizing the reconstruction error after
epochs of training. Hence, a high loss entails that the VAE was
exposed to an outlier, i.e., a sample from a different class. The
value of α is chosen after experimenting with multiple loss
intervals with various steps, we report the value that yielded
the highest predictive performance.

B. Results

Table III provides an overview of the classification results.
using the encoders i.e., CodeBERT and CodeT5, used for initial
representation generation and used classifiers. With each en-
coder, we experiment with three combinations of Autoencoder
(AE) and classifiers. The performance metrics of precision,
recall, and F1-score are reported for each combination.

1) Using CodeBERT as an Encoder: For the multifaceted
abstraction smell, the AE-MLP classifier achieved F1-score
of 0.66. The AE-LSTM classifier demonstrated slightly better
results with F1-score of 0.71. However, the VAE classifier
outperformed both with F1-score of 0.85. This indicates that
the VAE, leveraging the latent space representation, captured
the distinguishing features of the multifaceted abstraction
smell more effectively.

For the complex method smell, the VAE classifier achieved
the best performance among the three models with a precision
of 0.80, recall of 0.99, and F1-score of 0.89. This suggests
that the VAE, by leveraging the probabilistic modeling and
the threshold-based classification, effectively distinguished the
complex method smell.

Finally, for long parameter list smell, the AE-MLP classifier
achieved F1-score of 0.69. The AE-LSTM classifier exhibited



TABLE III: Classification results for each type of smell using CODEBERT and CODET5 with different classifiers.

Encoder Smell AE-MLP AE-LSTM VAE

Precision Recall F1 Precision Recall F1 Precision Recall F1

CodeBERT
Multifaceted Abstraction 0.56 0.80 0.66 0.70 0.73 0.71 0.79 0.91 0.85

Complex Method 0.60 0.75 0.67 0.68 0.97 0.79 0.80 0.99 0.89
Long Parameter List 0.62 0.78 0.69 0.66 0.97 0.79 0.81 0.90 0.85

CodeT5
Multifaceted Abstraction 0.60 0.72 0.66 0.45 0.99 0.62 0.77 0.89 0.83

Complex Method 0.69 0.64 0.64 0.84 0.59 0.64 0.76 0.80 0.78
Long Parameter List 0.60 0.72 0.65 0.80 0.57 0.67 0.83 0.79 0.81

F1-score of 0.79. However, the VAE classifier achieved the best
results with F1-score of 0.85. The VAE’s ability to capture the
underlying probabilistic distribution of the long parameter list
smell seemed to contribute to its superior performance.

Summary: The VAE consistently outperformed the
AE-MLP and AE-LSTM classifiers across all three code
smells. This can be attributed to the VAE’s ability to
model the latent space and capture the underlying
probabilistic distribution. Leveraging the threshold-
based classification, the VAE effectively distinguished
positive and negative cases, resulting in higher pre-
cision and recall. In contrast, the AE-MLP and AE-
LSTM classifiers demonstrated lower performance,
potentially due to their limited capacity to capture
complex patterns and dependencies in the data.

2) Using CodeT5 as an Encoder: For the code smell
multifaceted abstraction, the CodeT5 model achieved an F1-
score of 0.66 when using the AE-MLP model. When using
the AE-LSTM model, F1-score was 0.62. For the VAE model,
F1-score was 0.83.

For the code smell complex method, the CodeT5 model
achieved an F1-score of 0.64 when using the AE-MLP model.
When using the AE-LSTM model, the F1-score was 0.64. For
the VAE model, the F1-score was 0.78.

For the code smell long parameter list, the CodeT5 model
achieved an F1-score of 0.65 when using the AE-MLP model.
When using the AE-LSTM model, F1-score was 0.67. F1-
score was 0.81. Overall, CodeT5 exhibits varying performance
across different code smells. While it demonstrates relatively
strong precision for some smells, its recall and F1-scores vary.

Summary: For CodeT5 as well, VAE consistently out-
performs AE-MLP and AE-LSTM across all the code
smells. However, the performance of CodeT5 as an
encoder is inferior compared to CODEBERT. CodeT5
shows lower recall scores for certain code smell types,
indicating a higher rate of false negatives. This implies
that CodeT5 has a more conservative approach to
detecting code smells and may miss instances of code
smells. Considering that the combination of AE-MLP
and CODEBERT performs the best, we select this
combination for our experiment.

V. THE CONTROLLED EXPERIMENT

A. Methods

In this section, we describe the tools and the protocol that
we developed to capture human feedback, and the results we
obtained.

1) Tools to capture human feedback: To conduct our ex-
periment, we have developed two key software components—
a web-server serving the model to perform inference and
a plugin for popular IntelliJ IDEA Integrated Development
Environment (IDE) for displaying classification results and
capturing developers’ feedback. In this section, we describe
each software component in detail.

A web-server: The primary objective of the web-server to
support the inference from our DL model that is decoupled
from the user feedback collection system. We minimize the
dependencies required to run the server by encapsulating the
server as a Docker container.

For the implementation of the server, we utilize the Django
framework, which is based on the Python programming lan-
guage. In the beginning of the experiment, the server accepts
method and class metrics generated by running Designite-
Java [45] on the project. These metrics are stored in memory
for subsequent processing. The server receives requests along
with required data (such as metrics) from the client (in our
case, our plugin for IntelliJ IDEA). The server offers the
following four endpoints:

• Metrics endpoint: This endpoint accepts a POST request
with two CSV files—one containing class metrics and
the other containing method metrics. These files are
generated by DesigniteJava and are recorded using our
IntelliJ IDEA plugin.

• Prediction endpoint: A POST endpoint that accepts a
source code file, along with a boolean value indicating
whether it pertains to a class or a method. The file is
passed to the DL model for inference.

• Feedback endpoint: Another POST endpoint that allows
users to provide feedback on the model’s predictions for
a specific file. When a user is presented with a prediction,
their feedback regarding the correctness (according to
them) of the prediction is collected through this endpoint.
The endpoint records the file and the user’s feedback.
Once a preset number of feedback instances have been
collected, the model is fine-tuned.



• Fine-tuning endpoint: A GET request that enables users
to explicitly trigger model fine-tuning whenever desired.

To expedite request processing and reduce server load, we
leverage the metrics collected by DesigniteJava along with the
rationale related to subjectivity used by Nandani et al. [10];
they identify whether a method or a class is definitely smelly
based on metrics values higher than a threshold. Similarly,
when the web-server receive a code snippet for prediction,
we first look up the corresponding metrics. Based on preset
thresholds as used in by Nandani et al. [10], we can quickly
identify whether the sample is definitively smelly or definitely
benign. For instance, if a method has eight parameters and
the threshold for the “Parameter Count” metric is set between
two and four, lower and higher threshold respectively, we can
conclude that the method exhibits the long parameter list code
smell. If the sample falls within the predefined threshold, we
use the model to infer whether a smell is present or not and
return the inference back to the plugin.

To simplify the deployment and setup process, we use a
Docker script. This script automatically downloads all the
necessary dependencies, including Python and the required
DL libraries, ensuring a streamlined deployment of the server.
We store the user feedback for the presented code samples
on a configurable volume within the Docker container. This
ensures that user feedback is not lost even if the container
is shut down or restarted. Additionally, we have implemented
a mechanism to fine-tune the model based on the collected
feedback. Once the number of feedback instances reaches to a
pre-defined, but configurable, threshold (currently set to 50),
the web-server invokes fine-tuning the model incorporating the
new information.

We setup and configure the web-server locally to avoid
sending code snippets to a third-party server configured out-
side of an organization boundary. However, due to the flexibil-
ity of the containerized web-server, one can choose to install
on their local machine, a server within their organization, or
on public cloud-infrastructure.

TagCoder—An IntelliJ IDEA plugin: To enhance the usability
and convenience of our code smell detection system, we
developed TagCoder—a plugin for IntelliJ IDEA, a widely-
used Integrated Development Environment (IDE) for software
development, particularly in Java.

The objective of TagCoder is to provide users with a seam-
less experience in obtaining predicted code smells for their
code and offering a straightforward mechanism for providing
feedback on these predictions. When a user opens a project
in the IDE, TagCoder automatically runs DesigniteJava in the
background to analyze the project. The obtained results are
then sent to our local web-server, which serves as the core of
our code smell detection system.

After the initial analysis, whenever the user opens a file
within the IDE, TagCoder automatically sends the corre-
sponding class and method information to the web-server for
code smell prediction. The server processes the received code
snippets and returns the predictions back to the plugin.

The plugin then displays the predictions in the gutter
on the left side pane of the IntelliJ IDEA editor, allowing
users to conveniently view the code smells associated with
specific classes and methods. This integration within the IDE’s
interface enables users to easily identify potential code smells
without disrupting their workflow.

In addition, TagCoder supports recording users’ feedback.
Users can provide feedback on the identified smells directly
from the plugin. This feedback is captured by the plugin and
sent to the web-server for documentation, analysis, and model
refinement. This iterative feedback loop helps improve the
accuracy and reliability of the code smell predictions over
time.

Fig. 4: Interaction between TagCoder and local web-server

Additionally, TagCoder offers an option to explicitly trigger
model fine-tuning when users feel that a sufficient amount of
feedback has been accumulated. This ensures that the model
remains up-to-date and capable of capturing evolving code
smells as the project progresses. By integrating TagCoder
into IntelliJ IDEA, we aim to streamline the code smell
detection process, providing developers with real-time insights
into potential code quality issues and facilitating their active
participation in improving the model’s accuracy.

Experimental design and setup: The third step of Figure 1 il-
lustrates the approach of conducing our controlled experiment.
We elaborate the experimental design and setup in the rest of
the section.

Participants: We recruited 14 participants that have a back-
ground in Computer Science and are enrolled in a graduate,
post-graduate or doctoral degree program. They were solicited
using a relevant internal mailing list. Participation was vol-
untary, but a small monetary reward was offered at the end
of the experiments to compensate their time. All participants
were informed about the purpose of the study and were asked
to provide consent to record and publish the anonymous data.
They were also informed that all personal information (such
as name and email) gathered will be confidential and only
the researchers involved in the study will have access to the



personal data collected. The experiment took place at (redacted
for blind review) spanning two days in May 2023.

Procedure: Before conducting the actual experiment, we
performed a pilot study involving a participant to get their
feedback regarding the TagCoder plugin. We do so to min-
imize any errors that could occur during the experimental
procedure and get an estimate of the needed time to perform
the annotation of at least 50 code snippets in each round. We
then make necessary changes in the plugin as well as in the
process based on the feedback we received.

During the experimentation days, each participant was ran-
domly assigned to a group (experimental or control) in a way
that both groups have the same number of participants. We
provide the same computer for each participant with IntelliJ
IDE and TagCoder plugin installed. The source code project
that was imported into the IDE can be found in the replication
package.

We then present the same source code to all the participants
and ask them to perform the following tasks:

• Open the IDE and navigate to the “Tools” menu. In the
menu, select the option to analyze code using TagCoder.

• Open the source code files one by one. The methods and
classes would have the TagCoder icon in the gutter of the
editor on the left.

• Assess the smells detected initially by the model by
clicking on the TagCoder icon. The plugin shows the
kind of the smell along with its description. They then
provide their feedback (i.e., agree or disagree with the
detected smell) to the model from the same dialog box.

For the experimental group, after annotating at least 50
samples in Round 1, the model is fine-tuned. Upon fine-
tuning the model, the web-server notifies the plugin, and the
plugin shows a popup notification to inform the user about
completing the fine-tuning process. However, a participant
can also manually trigger the model’s fine-tuning using the
option present in the menu bar. The participants in the control
group were presented with a modified version of the plugin.
The modified plugin looks and behaves the same as the one
presented to those in the experimental group except for a
minor tweak-the model is not fine-tuned for the control group.
Both the group members were unaware of their group and the
difference in the plugin. For each session with a participant,
we use a new copy of the original trained model and ensure
that the fine-tuned models are saved for individuals and are
not reused.

Data collection procedure: On average, completing both
rounds took every participant approximately 48 minutes. The
average number of annotations collected per user was 101
over both rounds. We collected 1, 421 annotations from this
experiment, where the number of annotations performed by the
control group ranged from 81 to 135. In contrast, the number
for the experiment group ranged from 73 to 135. For each
participant, we store the model’s prediction and their response
and calculate a hash for the code snippet to identify it uniquely.
The classification performance metrics were calculated based

on our received data by treating the participants’ responses as
the ground truth.

B. Results

In this section, we illustrate the results of the controlled
experiment.

RQ1: Whether and to what extent does user feedback
improve the accuracy of deep learning-based code smell
detection? The violin plot in Figure 5 represents the dis-
tribution of F1-scores recorded for both groups after each
round. The x-axis represents the rounds and the y-axis shows
the F1-scores. The F1-scores varied between 0.57 and 0.90
(0.78±0.1) for the experimental group in Round 1. In Round 1
of the experiment group, the violin plot exhibits a more widely
distributed line in contrast to the control group. This variation
can be attributed to human annotation behavior, where the
F1-score’s lower end, specifically a score of 0.57 for one
of the participants, contributes to this dispersion. After the
introduction of the feedback loop, the scores increased and
ranged from 0.81 to 0.97 (0.88±0.1) in Round 2. The results
indicate that the feedback helped the model learn to classify
smells better in the Round 2 for the experimental group.
However, for the control group, the difference in the F1-scores
in the both rounds is significantly lower than the control group.

Round 1 Round 2
Round

0.4

0.6

0.8

1.0

S
co

re

Experiment

Control

Fig. 5: Models’ performance for each round.

We conduct statistical tests to determine the significance
of the observed changes in the F1-score for both groups.
Given the size of each group, we use a Permutation test for
the parametric tests. We employ n = 5, 040 permutations,
representing all possible permutations, to ensure a robust
analysis. The significance level is set at α = 0.05 and we
use SciPy’s [46] implementation for each test.

First, we examine the changes within the experimental
group. The F1-scores obtained in Round 1 (p = 0.367) and
Round 2 (p = 0.197) are found to follow a normal distribu-
tion based on the Shapiro-Wilk test [47]. Additionally, they
satisfy the assumption of homoscedasticity, as determined by
Levene’s non-parametric test [48] (p = 0.718). Consequently,
we perform a paired t-test to assess the significance of the
F1-score changes within the experimental group. The null
hypothesis (H0) states that there is no significant increase in
F1-scores between the two rounds for the experimental group.



The test yields a p-value of 0.015 < α = 0.05, with a t-value
of −3.79. Therefore, we reject the null hypothesis, indicating
a significant difference in F1-scores between the rounds. In
addition, Hedge’s g = 1.13 suggests a substantial difference
between the experimental group’s performance before and
after introducing human feedback. The effect size indicates
that the introduction of human feedback had a significant
impact on the performance of the experimental group.

Furthermore, we explore the potential relationship between
the number of annotations and the difference in F1-scores. We
calculate Spearman’s coefficient [49], resulting in ρ = −0.03
and p = 0.963. These findings indicate a negligible or near-
nonexistent relationship between the two variables.

Similarly, the distributions of F1 measures for the control
group after each phase were found to be normally distributed
(p = 0.805 after Round 1 and p = 0.466 after Round 2)
and exhibited homoscedasticity (p = 0.6875). However, the
paired t-test yielded a p-value of 0.0625 > α with a t-value
of −2.497. With the t-test results, we cannot reject the null
hypothesis of a significant F1-score change in the control
group, i.e., the change is not significant.

Summary: Our findings provide evidence that incor-
porating human feedback enhances the performance
of DL models for code smell detection, as shown by
the significant improvement of 15.49% on an average
in F1-scores. The absence of a significant change in
the control group further supports the conclusion that
the observed improvements in the experimental group
can be attributed to the incorporated feedback.

RQ-2: Whether and to what extent does user feedback
influence the accuracy of DL-based detection for individual
code smells?

Table IV summarizes the impact of the user feedback on the
performance metrics for the complex method, long parameter
list and multifaceted abstraction smells. The findings demon-
strate the effectiveness of the feedback in enhancing the smell
detection performance of the trained model.

TABLE IV: Influence of the feedback on classifiers’ perfor-
mance for the considered code smells individually

Smell
Round 1 Round 2

Precision Recall F1 Precision Recall F1

Multifaceted Abstraction 0.91 0.88 0.88 0.93 ↑ 0.90 ↑ 0.91 ↑
Complex Method 0.86 0.77 0.81 0.86 − 0.81 ↑ 0.83 ↑
Long Parameter List 0.69 0.88 0.77 0.74 ↑ 0.95 ↑ 0.83 ↑

Before incorporating the feedback loop, the model achieved
a precision of 0.91, a recall of 0.88, and an F1-score of
0.88 for the multifaceted abstraction code smell. Following
the feedback loop, there was a slight improvement across all
metrics, with the precision increasing to 0.93, recall to 0.90,
and the F1-score to 0.91.

For the complex method code smell, the initial performance
showed a precision of 0.86, a recall of 0.77, and an F1-

score of 0.81. In the second round, there was a marginal
enhancement in the recall and F1-score, while the precision
remained unchanged at 0.86.

Similarly, the model’s performance for the long parameter
list smell demonstrated a precision of 0.69, a recall of 0.88,
and an F1-score of 0.77 for the base model. Subsequently,
introducing human feedback yielded significant improvements,
with the precision increasing to 0.74, recall to 0.95, and
the F1-score to 0.83. The results indicate that incorporating
human feedback positively influenced the models’ code smell
detection capabilities. The inclusion of human feedback re-
sulted in improved F1-scores, indicating enhanced precision
and recall trade-off in the models’ detection of code smells.
Notably, the long parameter list code smell exhibited the most
substantial improvement, followed by multifaceted abstraction
and complex method. This suggests that the effectiveness of
the feedback loop may vary depending on the specific code
smell being detected.

The variation in performance after incorporating human
feedback across different code smells can be attributed to
several factors. The number of training samples for each smell
influences the initial performance, with larger sample sizes
potentially resulting in higher performance. The complexity
and characteristics of each smell also play a role, with some
smells being more straightforward to detect and classify accu-
rately. For example, detecting complex method smell involves
considerably difficult than long parameter list smell due to
larger and more complex code snippet to process. Due to the
complexity, it requires more number of training samples to
learn to classify correctly.

Summary: Incorporating human feedback improves
the performance of DL models across all smells.
However, such improvement varies from one smell
to another. The variation in performance can be
attributed to different factors, such as the size and
availability of data on which the initial model was
trained and the nature of the code smell, where more
nuanced smells can benefit more from feedback.

VI. DISCUSSION

Deep learning models typically rely on a large dataset to
learn and generalize patterns. However, during the fine-tuning
process with extensive data, the subjectivity of individual users
can be lost, resulting in a more generalized model that may not
capture the unique perspectives and preferences of each user.
One may wonder whether the individual models preserve the
individual character due to learnt subjectivity and therefore,
differ from other similar models.

The subjectivity of code smells is reflected in the threshold
for a code snippet to become smelly; where it differs from one
developer to another. Statistical coefficients like the Kappa-
Cohen score [50], Gwett’s AC1/AC2 [51], and Krippendorff’s
Alpha [52] are used to measure inter-annotator agreements.
While all these metrics can be used to measure inter-annotator



agreements, the Kappa-Cohen coefficient works best when
used for comparison between two annotators [53]. Moreover,
Gwett’s AC1/AC2 and the Kappa-Cohen coefficient all possess
a significant bias when there are a large number of non-
random missing values [54]. For this reason, we selected
the Krippendorff’s Alpha coefficient to measure the inter-
annotator agreement values. Krippendorff’s Alpha works well
with any number of annotators and can handle the missing
data well [52]. Krippendorff’s Alpha is computed as follows:

Alpha = 1− Do

De

where Do is the observed disagreement and De is the expected
disagreement.

We generate a matrix of all the samples annotated by two
or more annotators before and after fine-tuning the model.
We then construct a two-dimensional matrix and passed it to
the Krippendorff Python library [55]. Table V presents the
Krippendorff values before and after fine-tuning.

TABLE V: Krippendorff’s Alpha coefficient values

Round Smell Alpha value

Round 1

Complex Method 0.44
Multifaceted Abstraction –

Long Parameter List 0.35

Overall 0.46

Round 2

Complex Method 0.51
Multifaceted Abstraction –

Long Parameter List 0.36

Overall 0.48

In Round 1, the complex method had an Alpha value of
0.44, while we did not have enough samples with common
annotations for multifaceted abstraction. The long parameter
list had an Alpha value of 0.35. The overall Alpha value for
Round 1 was 0.46. In Round 2, the complex method had an
Alpha value of 0.51, and the long parameter list had an Alpha
value of 0.36. The overall Alpha value for Round 2 was 0.48.
With these results, it is reasonable to state that the subjectivity
is not diluted in the updated models. Despite the increase in
the model’s performance, the continued presence of relatively
low Krippendorff’s alpha values indicates that the subjective
nature and variability among developers in their assessments
of code smells persist. In addition, this complements our
insight in Section V-B; the fact that certain smell models
showed more substantial improvements (long parameter list vs
complex method) with the consistent ranking of subjectivity,
indicates that they have become more attuned to the subjective
assessments of developers for those specific smells.

VII. THREATS TO VALIDITY

To address potential internal validity threats, we employed
random assignment of participants to the control and experi-
mental groups. This helps mitigate selection bias by ensuring
that any differences in the results between the groups are more
likely due to the introduction of human feedback rather than

pre-existing differences. Additionally, we controlled for the
potential influence of maturation by limiting each experiment
session to a maximum of 90 minutes. Moreover, to ensure the
validity of the tools used to capture feedback, we conducted
a pilot study to validate their effectiveness and reliability.
This helped us to mitigate any potential biases or limitations
associated with the data collection instruments.

Regarding external validity, we provided detailed infor-
mation about the participant characteristics, such as being
graduate students in Computer Science, and the source of
recruitment through the university’s mailing lists. This helps
readers assess the generalizability of the findings within the
target population. We also described the study setting, being
conducted in a university environment, and provided contex-
tual information to aid readers in evaluating the transferability
of the findings to similar settings. In addition, the provision
of a replication package, including the data and code used in
the study, contributes to the external validity of the research.

To manage conclusion validity threats, we aimed for ad-
equate sample size and performed statistical analysis using
well-known statistical tests. By doing so, we aimed to mini-
mize the risk of concluding a false effect. We controlled the
significance level (alpha) to manage the risk of Type-I errors.
Furthermore, by achieving sufficient statistical power, we
aimed to mitigate Type-II errors. Finally, to address potential
confounding variables, we employed randomization in the
assignment of participants.

CONCLUSIONS

This study explored the effects of introducing human feed-
back on the performance of trained models in detecting
code smells, considering the subjective nature of developers’
perceptions. The findings revealed a significant improvement
in the models’ performance after incorporating human feed-
back. These results emphasize the importance of continuous
feedback to align the model’s predictions with developers’
subjective judgments. The study also observed variations in
the performance improvements across different code smells,
suggesting that the impact of the feedback loop may be
influenced by specific characteristics of code smells. In terms
of implications, this research contributes to the understanding
of how human feedback can enhance the accuracy of code
analysis models. By leveraging the subjectivity of developers’
perceptions, models can be refined to better align with their
perspectives and improve overall software quality.

Future work in this direction includes applying the approach
used in this study to other areas in software engineering with
high subjectivity, such as code review and bug triaging. Ad-
ditionally, the integration of active learning techniques could
enhance the model’s performance by strategically selecting the
most informative samples for user feedback. We also aim to
diversify the experiments by inviting software professionals
in diverse domains as participants to not only generalize the
findings but also to spot differences in perception arising from
geography, organization, and other related factors.



REFERENCES

[1] M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[2] M. Fowler, Refactoring: Improving the Design of Existing Programs,
1st ed. Addison-Wesley Professional, 1999.

[3] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158 – 173, 2018.

[4] I. M. Bertran, “Detecting architecturally-relevant code smells in evolving
software systems,” in Proceedings of the 33rd International Conference
on Software Engineering, ser. ICSE ’11, 2011, p. 1090–1093.

[5] T. Mens and T. Tourwe, “A survey of software refactoring,” IEEE Trans.
Softw. Eng., vol. 30, no. 2, pp. 126–139, Feb. 2004.

[6] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “Bdtex: A
gqm-based bayesian approach for the detection of antipatterns,” Journal
of Systems and Software, vol. 84, no. 4, pp. 559–572, 2011, the Ninth
International Conference on Quality Software.

[7] A. Barbez, F. Khomh, and Y.-G. Guéhéneuc, “A machine-learning based
ensemble method for anti-patterns detection,” Journal of Systems and
Software, vol. 161, p. 110486, 2020.

[8] H. Liu, J. Jin, Z. Xu, Y. Zou, Y. Bu, and L. Zhang, “Deep learning based
code smell detection,” IEEE transactions on Software Engineering,
vol. 47, no. 9, pp. 1811–1837, 2019.

[9] D. Oliveira, W. K. G. Assunção, A. Garcia, B. Fonseca, and M. Ribeiro,
“Developers’ perception matters: machine learning to detect developer-
sensitive smells,” Empirical Software Engineering, vol. 27, no. 7, Oct.
2022.

[10] H. Nandani, M. Saad, and T. Sharma, “Dacos—a manually annotated
dataset of code smells,” 2023 IEEE/ACM 20th International Conference
on Mining Software Repositories (MSR), 2023.

[11] ——, “Smart-dal/dlfeedback: v1.1.0,” Aug. 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.8259957

[12] M. Fowler, Refactoring. Addison-Wesley Professional, 2018.
[13] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying ar-

chitectural bad smells,” in 2009 13th European Conference on Software
Maintenance and Reengineering. IEEE, 2009, pp. 255–258.

[14] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
software design smells: managing technical debt. Morgan Kaufmann,
2014.

[15] H. S. de Andrade, E. Almeida, and I. Crnkovic, “Architectural bad smells
in software product lines: An exploratory study,” in Proceedings of the
WICSA 2014 Companion Volume, 2014, pp. 1–6.

[16] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Toward a
catalogue of architectural bad smells,” in Architectures for Adaptive
Software Systems: 5th International Conference on the Quality of
Software Architectures, QoSA 2009, East Stroudsburg, PA, USA, June
24-26, 2009 Proceedings 5. Springer, 2009, pp. 146–162.

[17] PMD, PMD Source Code Analyzer, PMD, 2021. [Online]. Available:
https://pmd.github.io/

[18] SonarSource, SonarQube, SonarSource, 2021. [Online]. Available:
https://www.sonarqube.org/

[19] R. Marinescu, “Measurement and quality in object-oriented design,”
in 21st IEEE International Conference on Software Maintenance
(ICSM’05). IEEE, 2005, pp. 701–704.

[20] S. A. Vidal, C. Marcos, and J. A. Dı́az-Pace, “An approach to prioritize
code smells for refactoring,” Automated Software Engineering, vol. 23,
pp. 501–532, 2016.

[21] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y.-G. Guéhéneuc,
G. Antoniol, and E. Aı̈meur, “Support vector machines for anti-pattern
detection,” in 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, 2012, pp. 278–281.

[22] Y. Saeys, T. Abeel, and Y. Van de Peer, “Robust feature selection
using ensemble feature selection techniques,” in Machine Learning and
Knowledge Discovery in Databases, W. Daelemans, B. Goethals, and
K. Morik, Eds., Berlin, Heidelberg, 2008, pp. 313–325.

[23] J. Jiarpakdee, C. Tantithamthavorn, and C. Treude, “The impact of
automated feature selection techniques on the interpretation of defect
models,” Empirical Software Engineering, vol. 25, no. 5, p. 3590–3638,
2020.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[25] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” 2018.

[26] H. Li, Z. Liu, H. Zhu, H. Wang, and Z. Yang, “Cp-miner: A tool for
finding copy-paste and related bugs in operating system code,” IEEE
Transactions on Software Engineering, vol. 43, no. 4, pp. 335–355, 2017.

[27] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural cod-
ing conventions,” in Proceedings of the 38th International Conference
on Software Engineering (ICSE), 2016, pp. 378–389.

[28] R. Ren, C. Nistor, L. Schumacher, and B. Meyer, “Identifying self-
admitted technical debt: A machine learning approach,” Empirical
Software Engineering, vol. 24, no. 5, pp. 3204–3242, 2019.

[29] T. Sharma, V. Efstathiou, P. Louridas, and D. Spinellis, “Code smell
detection by deep direct-learning and transfer-learning,” Journal of
Systems and Software, vol. 176, p. 110936, 2021.

[30] T. Lewowski and L. Madeyski, “How far are we from reproducible
research on code smell detection? a systematic literature review,” Infor-
mation and Software Technology, vol. 144, p. 106783, 2022.

[31] J. W. Vaughan, “Making better use of the crowd: How crowdsourcing
can advance machine learning research,” Journal of Machine Learning
Research, vol. 18, no. 193, pp. 1–46, 2018. [Online]. Available:
http://jmlr.org/papers/v18/17-234.html

[32] A. Aguiar, A. Restivo, F. F. Correia, H. S. Ferreira, and J. a. P.
Dias, “Live software development: Tightening the feedback loops,” in
Companion Proceedings of the 3rd International Conference on the Art,
Science, and Engineering of Programming, ser. Programming ’19, 2019.

[33] R. Balzer, “A 15 year perspective on automatic programming,” IEEE
Transactions on Software Engineering, vol. SE-11, no. 11, pp. 1257–
1268, 1985.

[34] Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Müller, M. Pezzè, and M. Shaw, Engineering Self-Adaptive
Systems through Feedback Loops, Berlin, Heidelberg, 2009, pp. 48–70.

[35] M. Allamanis, “The adverse effects of code duplication in machine
learning models of code,” in Proceedings of the 2019 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, ser. Onward! 2019, 2019, p. 143–153.

[36] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained model for
programming and natural languages,” in Findings of the Association for
Computational Linguistics: EMNLP 2020, Online, Nov. 2020, pp. 1536–
1547.

[37] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, Online and Punta Cana,
Dominican Republic, Nov. 2021, pp. 8696–8708.

[38] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5:
Identifier-aware unified pre-trained encoder-decoder models for code
understanding and generation,” CoRR, vol. abs/2109.00859, 2021.
[Online]. Available: https://arxiv.org/abs/2109.00859

[39] S. Kwon, J.-I. Jang, S. Lee, D. Ryu, and J. Baik, “Codebert based
software defect prediction for edge-cloud systems,” in Current Trends
in Web Engineering, G. Agapito, A. Bernasconi, C. Cappiello, H. A.
Khattak, I. Ko, G. Loseto, M. Mrissa, L. Nanni, P. Pinoli, A. Ragone,
M. Ruta, F. Scioscia, and A. Srivastava, Eds., Cham, 2023, pp. 11–21.

[40] C. S. Xia and L. Zhang, “Less training, more repairing please: Revisiting
automated program repair via zero-shot learning,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2022, 2022, p. 959–971.

[41] M. Fu, C. Tantithamthavorn, T. Le, V. Nguyen, and D. Phung, “Vulre-
pair: A t5-based automated software vulnerability repair,” in Proceedings
of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2022, 2022, p. 935–947.

[42] H. Nandani, M. Saad, and T. Sharma, “himesh13/tagman phase2:
v1.1.0,” Jan. 2023. [Online]. Available: https://doi.org/10.5281/zenodo.
7549420

[43] M. A. Kramer, “Nonlinear principal component analysis using autoas-
sociative neural networks,” Aiche Journal, vol. 37, pp. 233–243, 1991.

[44] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[45] T. Sharma, “Designite - A Software Design Quality Assessment Tool,”
May 2016. [Online]. Available: https://doi.org/10.5281/zenodo.2566832

[46] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.

https://doi.org/10.5281/zenodo.8259957
https://pmd.github.io/
https://www.sonarqube.org/
http://jmlr.org/papers/v18/17-234.html
https://arxiv.org/abs/2109.00859
https://doi.org/10.5281/zenodo.7549420
https://doi.org/10.5281/zenodo.7549420
https://doi.org/10.5281/zenodo.2566832


Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henrik-
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

[47] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[48] B. Mandelbrot, “Contributions to Probability and Statistics: Essays in
Honor of Harold Hotelling (Ingram Olkin, Sudhist G. Ghurye, Wassily
Hoeffding, William G. Madow, and Henry B. Mann, eds.),” SIAM
Review, vol. 3, no. 1, pp. 80–80, 1961.

[49] C. Spearman, “The proof and measurement of association between two
things,” The American Journal of Psychology, vol. 100, no. 3/4, pp.
441–471, 1987.

[50] H. C. Kraemer, “Kappa coefficient,” Wiley StatsRef: statistics reference
online, pp. 1–4, 2014.

[51] K. L. Gwet, “Computing inter-rater reliability and its variance in the
presence of high agreement,” British Journal of Mathematical and
Statistical Psychology, vol. 61, no. 1, pp. 29–48, 2008.

[52] K. Krippendorff, “Computing krippendorff’s alpha-reliability,” 2011.
[53] A. Zapf, S. Castell, L. Morawietz, and A. Karch, “Measuring inter-rater

reliability for nominal data – which coefficients and confidence intervals
are appropriate?” BMC Medical Research Methodology, vol. 16, no. 1,
Aug. 2016.

[54] W. Thompson and S. D. Walter, “A reappraisal of the kappa coefficient,”
Journal of Clinical Epidemiology, vol. 41, no. 10, pp. 949–958, 1988.

[55] S. Castro, “Fast krippendorff,” 2023. [Online]. Available: https:
//pypi.org/project/krippendorff/

https://pypi.org/project/krippendorff/
https://pypi.org/project/krippendorff/

	Introduction
	Background and Related Work
	Traditional approaches for code smells detection
	Machine learning approaches for code smells detection
	Smell detection using traditional machine learning
	Smell detection using deep learning

	Human feedback in machine learning studies

	Overview
	Deep Learning Models Training
	Methods
	Code smells dataset
	Generating initial code representations
	Architecture of deep learning models
	Autoencoder with a dense classifier and lstm
	Variational Autoencoders

	Results
	Using Codebert as an Encoder
	Using Codet5 as an Encoder


	The Controlled Experiment
	Methods
	Tools to capture human feedback

	Results

	Discussion
	Threats to Validity
	References

