
QScored: An Open Platform for Code Quality
Ranking and Visualization

Vishvajeet Thakur
Himachal Pradesh University

Shimla, India
vishvajeet10gfs@gmail.com

Marouane Kessentini
University of Michigan

Dearborn, USA
marouane@umich.edu

Tushar Sharma
Siemens Corporate Technology

Charlotte, USA
tusharsharma@ieee.org

Abstract—Though abundant source code repositories are avail-
able on code repository hosting platforms, their detailed code
quality information is not available readily. Software engineering
researchers often need to select a set of high-quality repositories.
Despite the code quality is an important concern for repository
selection, the lack of this information makes researchers depend
on alternatives such as the number of issues and the number
of stars associated with repositories. Furthermore, practitioners
expect user-friendly visual ways to assess the quality of their
projects during the evolution of the codebase without putting a
considerable effort. We propose an open platform QScored to fill
the gap for both researchers and practitioners. The platform
hosts detailed code quality analysis information for a large
number of repositories (currently more than eleven thousand
containing more than 171 million LOC), computes quality score
and assigns relative ranking of the hosted repositories based on
detected architecture, design, and implementation smells, as well
as offers a comprehensive set of visualization aids for code quality
aspects. Furthermore, the platform provides REST APIs to search
repositories based on their code quality scores and ranking of
hosted software projects.
Video of the demo: https://youtu.be/-IgvjGV-2X0

Index Terms—Code quality, visualization, quality score, quality
ranking, quality badge.

I. INTRODUCTION

Software development is a long, complex, and continuous
process. High code quality makes software maintainable [1],
[2] and in turn, helps to keep the productivity of a software
system high [3]. Code smells [1] and code quality metrics
[4] are the common mechanisms used traditionally to identify
issues that impact the code quality of a software system.
The software engineering community has explored not only
numerous tools and techniques to detect code smells but also
various aspects of code smells including their types, causes,
and impacts [5].

Today, abundant source code repositories are available on
code repository hosting platforms such as GitHub. However, a
detailed code quality analysis information is not available for
the hosted repositories unless we use an existing code quality
analysis tool to analyze the desired repository ourselves. Fur-
thermore, even if one analyzes a set of repositories, a relative
scale of code quality is non-trivial to establish. For empirical
research, it is often the case that the software engineering
researchers have to select a few high-quality repositories. Due
to the lack of a standard ranking mechanism based on code

quality of a large number of repositories, researchers adopt
alternative mechanisms such as the number of issues and
the number of stars for repository selection. Though there
have been some attempts to address this issue, for instance
RepoReapers [6] does not consider detailed code quality
measures for their repository evaluation.

Visualizing various aspects of software code quality pro-
vides a structure to the analysis and helps comprehending
the information generated by the code quality analysis tools.
Though, existing tools provide visualization aids, their cov-
erage to different code quality aspects as well as visualizing
mechanisms differ significantly. Therefore, ready made visual
aids in a common template, applicable for different program-
ming languages, for visualizing key code quality aspects such
as code smells at different granularities, code quality metrics,
and dependency diagram could offer great help in understand-
ing the code quality of open-source projects; existing tools and
platforms do not support the above need.

In this paper, we introduce QScored1—an open platform for
code quality ranking and visualization. The key contributions
of the platform are listed below.

• An open platform: QScored is an open and free platform
that not only provides code quality information for a large
number of open-source repositories (more than 11, 300 at
the time of writing this paper and increasing) analyzed
from existing tools but also allows its users to upload
their code quality analysis report of their projects to
the platform to determine a quality score and a relative
quality ranking.

• Quality ranking: QScored computes a quality score and
a relative quality rank for all of its hosted projects based
on the detected architecture, design, and implementation
smells.

• Language-agnostic code quality visualization: QScored
offers a detailed code quality visualization that includes a
dependency graph among components (namespaces in C#
or packages in Java), smells distribution among projects’
components by their types and their location, and code
quality metrics view for the entire project. Furthermore,
the platform publishes the XML template that provides a
common information exchange format so that the analysis

1http://www.qscored.com



report of other tools, apart from that are used by QScored
presently, complying to the template can also be uploaded
to the platform.

• REST APIs: The platform offers a set of REST APIs to
upload code analysis reports as well as to search a set of
projects based on various parameters.

• Quality badges: Software development teams may utilize
the quality badges indicating quality score and rank of
their project and put it within their repository web-page.

II. RELATED WORK

Though abundant repositories are hosted on websites such
as GitHub, a large number of repositories among them are
either too small, inactive, or low-quality [7]. To separate them
from high-quality active repositories, the software engineering
community has proposed a few mechanisms. GHTorrent [8]
provides a method to query GitHub projects, obtain metadata,
and select projects based on custom criteria. RepoRepears [6]
analyzed a large number of GitHub repositories and evaluated
them based on eight dimensions (architecture, community,
continuous integration, documentation, history, issues, license,
and unit testing).

The software engineering community has proposed many
tools and techniques to identify issues that affect code qual-
ity [5]. Apart from identifying metric violations and code
smells, researchers have proposed methods to visualize the
analyzed information [9]–[11]. For example, E-Quality [12]
is a software quality visualization tool that automatically
extracts quality metrics and class relations from Java source
code and visualizes them on a graph-based interactive visual
environment. Specifically for code smells visualization, re-
searchers have attempted techniques to visualize key aspects of
smells. For instance, AlTarawneh et al. [13] presents sunburst
diagrams to show not only the code smells frequency but also
to present their location. Ambient view developed by Murphy-
Hill et al. [14] shows code smells within IDE in the form of
petals. Similarly, Parnin et al. [15] presents various techniques
to visualize code smells covering key aspects of the smells.
Apart from academic attempts, presently used tools within the
developer community, such as NDepend2, SonarQube3, and
Designite [16], also use various visualization aids to present
smells and metric violations.

All of the above-mentioned tools and technique for code
smell detection and visualization could offer their services
only when a user analyzes the desired set of repositories
by herself that she would like to evaluate. By developing
QScored, we attempt to remove the manual step for open-
source repositories. With code quality aspects already available
to a researcher, the effort to investigate the projects of interest
can be reduced significantly. Apart from ready-made quality
information availability, the platform offers common visual-
ization for all analyzed repositories even if they belong to
different programming languages as well as provides means to
search open-source repositories based on code quality criteria.

2https://www.ndepend.com/
3https://www.sonarqube.org/

III. QSCORED: MECHANISM

A. Overview

Figure 1 presents an overview of the QScored functionality.
QScored allows its users to upload the analyzed code quality
analysis report generated from Designite [16] or any compat-
ible tool. A code analysis tool is compatible with QScored if
the tool produces code quality analysis report in the predefined
XML format published by QScored. In addition, QScored
deploys a program referred to as QScored agent that keeps
downloading open-source repositories from GitHub, analyzing
them using either Designite [16] or DesigniteJava [17], and
uploads the analyzed information to QScored using REST APIs
offered by the platform. When a new project (or a new version
of an existing project) is uploaded, QScored calculates its
quality score. Periodically (currently every week), QScored
computes quality ranking for all the projects in its corpus.
Quality score is the weighted sum of smell densities and hence
the lower the quality score, the better the project is from code
quality perspective.

Services such as 
upload, analyze, 
and visualize

Periodic rank 
computation

Database

User

QScored 
agent

upload

upload
uses

uses

Code quality 
ranking

Visualize your 
software

Quality 
badges

Fig. 1. Overview of the platform functionality

Table I presents some key size metrics for the developed
platform at the time of writing this paper. QScored uses
PostgreSQL as its database which is hosted on a scalable
cloud-based storage. We measured time to analyze and upload
100 randomly chosen repositories; it takes on an average 21.8
seconds to analyze and 4.05 seconds to upload (including
validation of uploaded file and storing it in the database) per
repository.

Entity Java C# Entity Java C#
LOC 93,830,016 77,475,461 #Repositories 6,360 4,970
#Types 1,139,657 764,496 #Components 130,492 98,491
#DS 913,578 792,550 #AS 116,803 65,859
#IS 5,852,030 3,207,806

TABLE I
KEY SIZE METRICS FOR THE CORPUS OF THE PLATFORM. AS, DS, AND IS

REFER TO ARCHITECTURE, DESIGN, AND IMPLEMENTATION SMELLS
RESPECTIVELY

B. Generating Code Quality Analysis Report

We use Designite [16] and DesigniteJava [17] for C# and
Java repositories respectively to analyze source code and ob-
tain a detailed code analysis report. Each such report contains
detected architecture, design, and implementation smells as
well as commonly used class and method metrics. Designite
detects seven kinds of architecture, 20 kinds of design, and
eleven types of implementation smells. Sharma et al. [18]
provide a detailed description of smells as well as the tool
validation for Designite. Specific commands to analyze a



repository and generate code quality analysis report in XML
format can be found in online documentation.4

C. Quality Score and Rank

QScored computes a quality score for each project in its
corpus based on the detected smells. Quality rank is computed
periodically (currently, weekly) based on the quality score of
the projects; a lower number of quality score is desired and
hence project with the smallest quality score is assigned the
highest quality rank. The quality score is computed as follows.

Quality score =
wa ×ASD + wd ×DSD + wi × ISD

wa + wd + wi
(1)

Here, ASD, DSD, and ISD refer to architecture, design, and
implementation smell density respectively. Smell density [18]
is a normalized metric representing the total number of smells
in each one thousand lines of code; it enables the comparison
of projects differing in size. wa, wd, and wi refer to weight
assigned to architecture, design, and implementation smell
density respectively.

1) Developers’ survey: We carried out a survey targeting
experienced software developers to obtain suitable weights
for architecture, design, and implementation smells in quality
score computation. We designed a short questionnaire con-
taining two questions. The first question asked the number
of years of software development experience. The second
question presented the following scenario to the participants:
“Imagine you are working on a large software project which
suffers from many code quality issues at architecture, design,
and implementation granularities. Given 100 units of time
available to you for addressing these issues, in what propor-
tion you would dedicate your time towards issues correspond
to each granularity considering their impact on the overall
code quality of the project?” We provided three sliders for
each granularity that may take a value between 0 to 100 with
step-size 5.

7%

17%

21%

4%

45%

3%3%
30-40-30

35-35-30

40-40-20

45-35-20

50-30-20

70-20-10

100-0-0

Fig. 2. Responses from the survey showing weights for architecture, design,
and implementation issues in x-y-z format

We sent this survey to 51 software developers and architects
across our network. We received total 31 responses; however,
two of the responses were not valid (sum of the weights
exceeded 100) and hence we discarded them. The participants
shown high experience level; 7% belonged to 1−2 years, 28%

4http://www.qscored.com/docs/upload

to 3−5 years, 31% to 6−10 years, 21% to 11−20 years, and
14% participants belonged to greater than 20 years experience
band. In the response for the second question (shown in
Figure 2), a majority of the participants (45%) responded that
they would distribute their 50% time on architectural quality
issues, 30% time on design quality issues, and 20% time
on implementation level code quality issues. Based on this
observation, we chose wa = 0.5, wd = 0.3, and wi = 0.2 as
weights for equation 1.
D. Visualization

Apart from a consolidated ranking page that offers search
and filter existing projects, QScored offers comprehensive
visualization aids for code quality aspects for each project. On
the summary page, some key figures (such as LOC, number
of types, metric violations, and detected smells) are presented
as shown in Figure 3. Also, the page shows an interactive
dependency graph showing dependencies among components,
a pie-chart exhibiting various detected smells, and a treemap
showing size and smell density of each component. Detected
smells are presented using an interactive sunburst diagram that
could also be used to filter the smells based on their type as
well as location. Similarly, all the metrics are presented using
an interactive pie-chart where the chart shows the code quality
of the entire project from the selected metrics perspective.

Fig. 3. Screenshot of QScored code quality summary page

Furthermore, the platform publishes the XML template—
a common information exchange format so that the analysis
report generated from any tool, that comply with the template,
can also be consumed by the platform. The XML schema can
be found online.5

E. REST APIs
QScored supports two APIs—upload and search. A user has

to acquire her API key first from QScored to invoke the APIs.

5http://www.qscored.com/docs/extend scope



Upload: The upload API requires username, project name,
version, repository link (optional), is open source flag, and
API key as inputs along with an XML file containing code
analysis report and returns a unique id of the created project
if successful. This API can also be used to update an existing
project with a fresh analysis on a new version.

Search: The first search API
search_project_by_quality allows users to search
projects based on their quality ranking. One may specify
filters language and LOC range to obtain a list of projects that
satisfy the criteria sorted in the order of their quality ranking.
The second API search_project returns the metadata
about the searched projects. The API takes project name and
repository link as inputs. Both of the search APIs returns a
list of project metadata containing project name and unique
id, repository link, LOC, programming language, as well as
quality rank and score. Examples of the above-mentioned
APIs can be found online6.

F. Quality Badges

The platform brings gamification aspects by letting its user
display quality rank and score of their projects on their
repository web-pages. QScored provides a dedicated link for
each project that could be used for the purpose. Any update
in the score or rank is reflected in the badge.

G. Privacy Concerns

Privacy is an important concern that we address in the
following ways. Users, while uploading code analysis report
of their projects, choose whether their project’s data and
identity will be accessible by others or only by themselves.
A project marked as private will be assigned a quality score
and rank; however, the identity and the detailed code analysis
information will be available only to the owner of the project.
Similarly, we implement double indirection to realize badge
functionality to hide the users’ private API keys from public
web-pages or repositories.

IV. LIMITATIONS

We identify the following limitations of the platform. First,
currently, the platform hosts repositories implemented in either
C# or Java. However, we have made the code quality analysis
report format open to invite tool builders and researchers
to develop their tools and emit output in the desired XML
template to enrich the platform. Also, currently, the platform
hosts relatively a small number of repositories compared to
the publicly available repositories. We plan not only to keep
adding new repositories periodically using QScored agent but
also re-analyze the changed repositories since the last analysis
to build a project-specific quality trend. In this pursuit, we aim
to keep our focus on C# and Java repositories that are active
(for instance, changed at least once in the last one year).

6http://www.qscored.com/docs/api

V. CONCLUSIONS

We present an open platform for code quality visualization
and quality ranking. The computed quality score and rank
considers smells detected at three granularities and provides
a convenient mechanism to select repositories based on the
code quality. In the future, we would like to extend the
platform by offering continuous integration mechanism for
software development teams to enable them make the process
of analysis and upload the code quality information completely
automated.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Programs,
1st ed. Addison-Wesley Professional, 1999.

[2] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
Software Design Smells: Managing Technical Debt, 1st ed. Morgan
Kaufmann, 2014.

[3] T. Besker, A. Martini, and J. Bosch, “Software developer productivity
loss due to technical debt—a replication and extension study examining
developers’ development work,” Journal of Systems and Software, vol.
156, pp. 41 – 61, 2019.

[4] S. H. Kan, Metrics and Models in Software Quality Engineering, 2nd ed.
Addison-Wesley Longman Publishing Co., Inc., 2002.

[5] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158 – 173, 2018.

[6] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, Dec 2017.

[7] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of mining
github,” Empirical Software Engineering, vol. 21, no. 5, pp. 2035–2071,
Oct 2016.

[8] G. Gousios, “The ghtorrent dataset and tool suite,” in Proceedings of the
10th Working Conference on Mining Software Repositories, ser. MSR
’13. IEEE Press, 2013, pp. 233–236.

[9] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: A research survey,” Journal of Software
Maintenance, vol. 15, no. 2, p. 87–109, Mar. 2003.

[10] P. Caserta and O. Zendra, “Visualization of the static aspects of software:
A survey,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 7, pp. 913–933, 2011.

[11] S. Bassil and R. K. Keller, “Software visualization tools: survey and
analysis,” in Proceedings 9th International Workshop on Program Com-
prehension. IWPC 2001, 2001, pp. 7–17.

[12] U. Erdemir, U. Tekin, and F. Buzluca, “E-quality: A graph based object
oriented software quality visualization tool,” in 2011 6th International
Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT), 2011, pp. 1–8.

[13] R. AlTarawneh and S. R. Humayoun, “Visualizing software structures
through enhanced interactive sunburst layout,” in Proceedings of the
International Working Conference on Advanced Visual Interfaces, 2016,
p. 288–289.

[14] E. Murphy-Hill and A. P. Black, “An interactive ambient visualization
for code smells,” in Proceedings of the 5th International Symposium on
Software Visualization, 2010, p. 5–14.

[15] C. Parnin, C. Görg, and O. Nnadi, “A catalogue of lightweight visual-
izations to support code smell inspection,” in 4th ACM Symposium on
Software Visualization, 2008, p. 77–86.

[16] T. Sharma, “ Designite - A Software Design Quality Assessment Tool,”
May 2016. [Online]. Available: https://doi.org/10.5281/zenodo.2566832

[17] ——, “Designitejava,” Dec. 2018,
https://github.com/tushartushar/DesigniteJava. [Online]. Available:
https://doi.org/10.5281/zenodo.2566861

[18] T. Sharma, P. Singh, and D. Spinellis, “An empirical investigation on
the relationship between design and architecture smells,” to appear
in Empirical Software Engineering (EMSE), Jun. 2020. [Online].
Available: http://www.tusharma.in/preprints/architecture smells.pdf


