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ABSTRACT
Feature toggles are conditional variables that control program ex-
ecution flow. Toggles are used to control feature states and allow
developers to introduce unfinished features to a limited user group
while maintaining regular software functionality. Due to the lack of
comprehensive best practices, guidelines, or a coding standard for
using feature toggles, developers often use them in an inappropriate
way leading to code quality issues. In this paper, we investigate four
feature toggle usage patterns identified in two popular open-source
software projects and assess their impact on code-complexity and
size. We develop a tool ts-detector to identify the usage patterns
automatically. Our investigation indicates that spread toggle and
mixed toggle usage patterns occur most and least in the analyzed
subject systems. We also found that feature toggle usage patterns
collectively have a strong influence on the code complexity and size
metrics. Our fine-grained analysis reveals that spread and nested
toggle usage patterns have a significant correlation with selective
size and complexity metrics. This paper not only offers a tool for
software developers and researchers to identify the usage patterns
and take corrective actions, but also, the study will motivate other
researchers to further extend the experiments to understand and
mitigate issues arising from misusing feature toggles.
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1 INTRODUCTION
Developers use feature toggles (also known as flags, switches, and
flippers) in conditional statements allowing them to enable or dis-
able features [6]. Primarily, feature toggles are used for feature
branching and merging in Continuous Integration and Deployment
(CI/CD) environments [13]. Toggles, short for feature toggles, come
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with benefits and risks. Implementing feature toggles offers the ben-
efit of streamlined merging and simplified deployment processes.
However, it also comes with significant responsibilities such as
deleting unused toggles and awareness of toggle life span since
feature toggles typically have a longer life span [17].

Due to the lack of comprehensive best practices, guidelines, or
a coding standard for using feature toggles, developers use them
similar to “if” conditions. With the increasing adoption of feature
toggles by software companies, the downsides of not properly main-
taining feature toggles have surfaced as unfortunate tales [21]. This
indicates the importance of identifying and categorizing potential
improper usages of feature toggles. Similar to code smells [7, 22],
improper usages of toggles may lead to toggle smells. Therefore,
thorough investigations become necessary not only to understand
different feature toggle usage patterns, but also to identify when a
certain feature toggle pattern starts to influence aspects of software
maintainability (such as readability and understandability).

There has been studies to catalog feature toggles, their usage
patterns, and identify them in a large software project. For exam-
ple, Rahman [18] observed six toggle usage patterns in Google
Chromium and reported three empirically. However, overall, the
current research do not investigate whether a toggle usage pattern
impacts software maintainability and can be identified as toggle
smell. Toggle type and toggle usage patterns are different in the
context. There are different types of feature toggles, such as, release
toggle, dev toggle, business toggle [12, 17]. In this study we are
interested in toggle usage patterns regardless of toggle type.

Our aim is to implement algorithms for identifying various toggle
usage patterns, quantify their presence in multiple C++ projects,
and find correlations with code quality metrics. Towards the goal,
we developed a tool, ts-detector, to detect four toggle smells observed
by Rahman [18] since no tool has been developed to detect feature
toggles in the previous study.

The tool that we developed detects dead toggle, nested toggles,
spread toggle, and mixed toggle usage patterns in C++ based soft-
ware projects. The tool offers a customizable way of using the tool
allowing analysis of software projects with diverse organization
and source code structure. We obtain the detected toggles using ts-
detector empirically and investigate the code complexity of the files
containing toggle usages. We compute correlation between toggle
usage patterns and code complexity to explore any relationship
between the two concepts. Furthermore, we conduct a developers’
survey to gather their opinions and compare with our empirically
observed results.

2 BACKGROUND AND RELATEDWORK
Martin Fowler [6] and Jez Humble emphasized the significance of
feature toggles in continuous deployment and feature development.
Large software companies, such as Google [24], Facebook [23],
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Uber [2], Netflix [16], Flickr [5], and Apptimize [1], use feature
toggles to roll out features in a controlled manner.

Hezaveh et al. [13] elucidated the utilization of feature toggles in
the software development through qualitative analysis, classifying
them into five distinct types: release toggles, experiment toggles, ops
toggles, permission toggles, and development toggles. Their study
offered comprehensive insights into operational techniques and
diverse strategies for managing feature toggles. Similarly, Rahman
et al. [17] categorized feature toggles based on their life span and
their purpose of use into three types development toggles, release
toggles, and business toggles.

Usage patterns of the C/C++ pre-processors i.e., “#ifdef”s have
been studied by many researchers [4, 9, 10, 14]. Medeiros et al. [14],
and Leibig et al. [10] discussed the disciplines of using #ifdef s.
Meinicke et al. [15] explored the differences and commonalities
between feature toggles (referred to as flags) and C pre-processors.
Our study focuses on the usage patterns of feature toggles where
one of the usage patterns named as mixed usage pattern involves
both pre-processors and run-time toggle variable.

Rahman [18] identified six usage patterns of feature toggles
in Google Chromium and empirically reported their occurrence
characteristics such as frequency and components with multiple
toggle usages. Rahman also validated the findings with Google
Chromium developers confirming the naming of the usage patterns,
and whether developers believe there is a necessity of establishing
global standards for using feature toggles. According to the study,
Chromium developers express the necessity of having a common
standard and guideline of feature toggle usage patterns and believe
that there might be some usage patterns with potentials of turning
into toggle smells. In this context, we would like to extend the
aforementioned study to design the algorithms to detect toggle
usage patterns, implement them, and make the tool available to the
community.

Regular expressions are typically used in identifying feature tog-
gle usage patterns [18]. Though Rahman [18] shared the data used
in that study, the regular expressions used to find usage patterns
were not shared. Therefore, we designed our own regular expres-
sions for toggle usage pattern identification. Moreover, we made
them customizable via a configuration file so that the developed
tool can be used on any C++-based code-base. Within the scope of
this short paper, we tested ts-detector on Google Chromium1 and
Dawn2 open-source projects.

3 METHODS
3.1 Overview
Our overarching goal is to identify feature toggle usage patterns
and explore their effects on code quality. To steer this study and sub-
stantiate our analysis, we sought answers to the following research
questions.

RQ1. What feature toggle usages are prevalent in C++ projects?
With this research question we would like to understand
whether certain toggle usage patterns are more common
than the others across C++ projects.

1https://github.com/chromium/chromium
2https://dawn.googlesource.com/dawn

data

C++
Projects

Toggles

Source Code

Nested

Dead

Spread

Mixed

AvgLOC

CC

ILOC

ExLOC

MNesting

Toggle
SmellNot Smell

ts-detector

Sci-Tools
Understand

Figure 1: Methodology at a Glance.

RQ2. Do feature toggle usage patterns collectively exhibit any
influence on the code complexity?
Answering this question will help us identify the role of
toggle usage patterns in code complexity.

RQ3. Do individual feature toggle usage patterns show correla-
tion with code complexity?
This research question aims to find out whether specific
toggles influence code complexity with their presence.

Figure 1 offers an overview of the employed methodology of
the study. First, we develop a tool to detect toggle usage patterns
supporting detection of dead toggle, nested toggle, spread toggle,
and mixed toggle. We design the detection algorithm and imple-
ment in Python to detect and report from C++ projects. We also
obtain code complexity metrics, average Cyclomatic Complexity
(CC), and Maximum Nesting (MNesting), and code size metrics, av-
erage Lines of Code (AvgLOC), Inactive Lines of Code (ILOC), and
Executable Lines of Code (ExLOC) with the help of static analysis
tool Understand [20].

3.2 Mining Toggles From C++ Projects
To identify the toggle usage patterns, we follow the process outlined
by Rahman [18]. First, we collect all the feature toggle variables used
in the code. Toggles are typically maintained in configuration files
following a specific naming convention. Following code snippet
shows some of the feature toggles used to control GPU features
specified in a toggle configuration file gpu_switches.cc of Chromium.

1 // Disable the GL error log limit.

2 const char kDisableGLErrorLimit [] = "disable -gl-error -

limit";

3 // Disable the GLSL translator.

4 const char kDisableGLSLTranslator [] = "disable -glsl -

translator";

5 // Turn off user -defined name hashing in shaders.

6 const char kDisableShaderNameHashing [] = "disable -shader -

name -hashing";

Listing 1: Chromium: GPU Toggles

Similarly, we list a couple of feature toggles specified in a configu-
ration file Features.cpp of Dawn project.

1 static constexpr FeatureEnumAndInfo kFeatureInfo [] = {

2 {Feature :: HostMappedPointer ,
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3 {"Support creation of buffers from host -mapped

pointers.",

4 "https :// dawn .../ docs/dawn/features/

host_mapped_pointer.md",

5 FeatureInfo :: FeatureState :: Experimental }},

6 {Feature :: FramebufferFetch ,

7 {"Support loading the current framebuffer value in

fragment shaders.",

8 "https :// dawn .../ docs/dawn/features/

framebuffer_fetch.md",

9 FeatureInfo :: FeatureState :: Experimental }},

10 };

Listing 2: Dawn: Toggles

The project specific toggles not only are limited to the specific
way of naming them and declaring them in their own way; the
structure of toggle variable specification is also tend to be project-
specific. For example, in Chromium each component has its own
set of feature toggles configured in a separate file with a similar
naming convention of *_switches.cc. On the other hand, Dawn lists
all feature toggle variables in one single file.

3.3 Toggle Usages
To identify toggle usage patterns, we rely on toggle usage defini-
tions discussed by Rahman [17]. However, we refine and extend
Rahman’s algorithms to identify toggle usages in a reliable and
generalizable manner. We present below the algorithm used for
each of the toggle usage patterns considered in this study.

3.3.1 Nested Toggle. It is also referred to as “interaction-between”
toggles [25]. This pattern is identified when one feature toggle
is dependent on the state of one or more other toggles. Listing 1
presents the employed algorithm to identify nested toggles from
C++ projects.

Algorithm 1 Extract Nested Toggle Usage
Require: 𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑖𝑙𝑒𝑠, 𝑡𝐶𝑜𝑛𝑓 𝑖𝑔𝐹𝑖𝑙𝑒𝑠
𝑛𝑒𝑠𝑡𝑒𝑑𝑇𝑜𝑔𝑔𝑙𝑒𝑠 ← 𝑛𝑒𝑤𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ()
𝑠𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠 ← 𝑔𝑒𝑡𝑆𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠 (𝑙𝑎𝑛𝑔, 𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑖𝑙𝑒𝑠)
𝑛𝑒𝑠𝑡𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ← 𝑔𝑒𝑡𝑁𝑒𝑠𝑡𝑒𝑑𝑇𝑜𝑔𝑔𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (𝑙𝑎𝑛𝑔)
𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑁𝑒𝑠𝑡𝑒𝑑𝑇𝑜𝑔𝑔𝑙𝑒𝑠 = 𝑛𝑒𝑤𝑠𝑒𝑡 ()
for 𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑖𝑙𝑒, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑛𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑖𝑙𝑒𝑠, 𝑠𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠 do

for 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖𝑛𝑛𝑒𝑠𝑡𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 do
𝑝𝑀𝑎𝑡𝑐ℎ𝑒𝑠 ← 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑀𝑎𝑡𝑐ℎ(𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡)
for𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑀𝑎𝑡𝑐ℎ𝑒𝑠 do

𝑛𝑒𝑠𝑡𝑒𝑑𝑇𝑜𝑔𝑔𝑙𝑒𝑠 [𝑐𝑜𝑑𝑒𝐹𝑖𝑙𝑒] ←𝑚𝑎𝑡𝑐ℎ

end for
end for
𝑜𝑢𝑡𝑝𝑢𝑡 ← {𝑛𝑒𝑠𝑡𝑒𝑑𝑇𝑜𝑔𝑔𝑙𝑒𝑠, 𝑓 𝑜𝑢𝑛𝑑𝐼𝑛𝑃𝑎𝑡ℎ𝑠, 𝑐𝑜𝑢𝑛𝑡𝑇𝑜𝑔𝑔𝑙𝑒𝑠}
𝑜𝑢𝑡𝑝𝑢𝑡 𝐽𝑆𝑂𝑁 ← 𝑗𝑠𝑜𝑛.𝑐𝑜𝑛𝑣𝑒𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡)
𝑟𝑒𝑡𝑢𝑟𝑛𝑜𝑢𝑡𝑝𝑢𝑡 𝐽𝑆𝑂𝑁

end for

The algorithm requires two parameters: source code path and
toggle configuration file name. A toggle is considered in a nested
usage when one or more toggle variables are dependent in a nested
relationship. In the algorithm, the variable nestedPatterns contains
the patterns of a typical usage of a toggle variable in nested way.

3.3.2 Spread Toggle. According to Rahman [18], if a feature toggle
is used in multiple files and components then this type of spreading
nature of usage is referred to as spread toggles.

The prerequisite to identify this usage pattern is to know the list
of components for the project. In his study, Rahman provided the
list of Chromium components as an input and hence it was easier
to ignore the challenges to obtain component information for a
software project reliably. However, it could be challenging for a
user to understand how the software is structured and what source
code elements are actually considered components. In this context,
we apply a different strategy to define spread toggles. We identify a
feature toggle if a toggle is used in code files more than one folder.
Listing 2 shows the key steps in the underlying logic that spots the
spread toggles.

Algorithm 2 Extract Spread Toggle Usage
Require: 𝑙𝑎𝑛𝑔, 𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑖𝑙𝑒𝑠, 𝑡𝐶𝑜𝑛𝑓 𝑖𝑔𝐹𝑖𝑙𝑒𝑠
𝑡𝑜𝑔𝑔𝑙𝑒𝐿𝑜𝑜𝑘𝑢𝑝 ← 𝑛𝑒𝑤𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ()
𝑠𝑝𝑟𝑒𝑎𝑑𝑇𝑜𝑔𝑔𝑙𝑒𝑠 ← 𝑛𝑒𝑤𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ()
𝑎𝑙𝑙𝑇𝑜𝑔𝑔𝑙𝑒𝑠 ← 𝑔𝑒𝑡𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑇𝑜𝑔𝑔𝑙𝑒𝑠 (𝑙𝑎𝑛𝑔, 𝑐𝑜𝑛𝑓 𝑖𝑔𝐹𝑖𝑙𝑒𝑠)
𝑡𝑜𝑔𝑔𝑙𝑒𝐿𝑜𝑜𝑘𝑢𝑝 ← 𝑔𝑒𝑡𝐵𝑦𝐷𝑖𝑟 (𝑙𝑎𝑛𝑔, 𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑖𝑙𝑒𝑠, 𝑎𝑙𝑙𝑇𝑜𝑔𝑔𝑙𝑒𝑠)
𝑠𝑝𝑟𝑒𝑎𝑑𝑇𝑜𝑔𝑔𝑙𝑒𝑠 ← 𝑓 𝑖𝑛𝑑𝑆𝑝𝑟𝑒𝑎𝑑 (𝑡𝑜𝑜𝑔𝑙𝑒𝐿𝑜𝑜𝑘𝑢𝑝)
𝑜𝑢𝑡𝑝𝑢𝑡 ← {𝑠𝑝𝑟𝑒𝑎𝑑𝑇𝑜𝑔𝑔𝑙𝑒𝑠, 𝑐𝑜𝑢𝑛𝑡𝑇𝑜𝑔𝑔𝑙𝑒𝑠}
𝑜𝑢𝑡𝑝𝑢𝑡 𝐽𝑆𝑂𝑁 ← 𝑗𝑠𝑜𝑛.𝑐𝑜𝑛𝑣𝑒𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡)
𝑟𝑒𝑡𝑢𝑟𝑛𝑜𝑢𝑡𝑝𝑢𝑡 𝐽𝑆𝑂𝑁

3.3.3 Mixed Toggle. This usage pattern is identified when a run-
time feature toggle is found within a compile-time macro (#ifdef,
#endif) [18]. Listing 3 shows our mechanism to identify mixed
toggles.

Algorithm 3 Extract Mixed Toggle Usage
Require: 𝑙𝑎𝑛𝑔, 𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑖𝑙𝑒𝑠, 𝑡𝐶𝑜𝑛𝑓 𝑖𝑔𝐹𝑖𝑙𝑒𝑠
𝑚𝑖𝑥𝑒𝑑𝑇𝑜𝑔𝑔𝑙𝑒𝑠 ← 𝑛𝑒𝑤𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ()
𝑠𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠 ← 𝑔𝑒𝑡𝑆𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠 (𝑙𝑎𝑛𝑔, 𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑖𝑙𝑒𝑠)
𝑚𝑖𝑥𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ← 𝑔𝑒𝑡𝑀𝑖𝑥𝑒𝑑𝑇𝑜𝑔𝑔𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (𝑙𝑎𝑛𝑔)
for 𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑖𝑙𝑒, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑛𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑖𝑙𝑒𝑠, 𝑠𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠 do

for 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖𝑛𝑚𝑖𝑥𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 do
𝑝𝑀𝑎𝑡𝑐ℎ𝑒𝑠 ← 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑀𝑎𝑡𝑐ℎ(𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡)
for𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑀𝑎𝑡𝑐ℎ𝑒𝑠 do

𝑚𝑖𝑥𝑒𝑑𝑇𝑜𝑔𝑔𝑙𝑒𝑠 [𝑐𝑜𝑑𝑒𝐹𝑖𝑙𝑒] ←𝑚𝑎𝑡𝑐ℎ

end for
end for
𝑜𝑢𝑡𝑝𝑢𝑡 ← {𝑚𝑖𝑥𝑒𝑑𝑇𝑜𝑔𝑔𝑙𝑒𝑠, 𝑐𝑜𝑢𝑛𝑡𝑇𝑜𝑔𝑔𝑙𝑒𝑠}
𝑜𝑢𝑡𝑝𝑢𝑡 𝐽𝑆𝑂𝑁 ← 𝑗𝑠𝑜𝑛.𝑐𝑜𝑛𝑣𝑒𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡)
𝑟𝑒𝑡𝑢𝑟𝑛𝑜𝑢𝑡𝑝𝑢𝑡 𝐽𝑆𝑂𝑁

end for

3.3.4 Dead Toggle. Feature toggle that no longer exists in the con-
figuration file but has not been removed from where it was used,
and actively encapsulating a feature code is referred to as a dead
toggle [18]. Listing 4 shows the underlying logic for extracting the
dead usage patterns. If the toggle variable is absent in the config-
uration file(s) but the toggle usages are still present in the source
files then such usage is detected as dead toggle usage.
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Algorithm 4 Extract Dead Toggle Usage
Require: 𝑙𝑎𝑛𝑔, 𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑖𝑙𝑒𝑠, 𝑡𝐶𝑜𝑛𝑓 𝑖𝑔𝐹𝑖𝑙𝑒𝑠
𝑑𝑒𝑎𝑑𝑇𝑜𝑔𝑔𝑙𝑒𝑠 ← 𝑛𝑒𝑤𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ()
𝑎𝑙𝑙𝑇𝑜𝑔𝑔𝑙𝑒𝑠 ← 𝑔𝑒𝑡𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑇𝑜𝑔𝑔𝑙𝑒𝑠 (𝑙𝑎𝑛𝑔, 𝑡𝐶𝑜𝑛𝑓 𝑖𝑔𝐹𝑖𝑙𝑒𝑠)
𝑠𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠 ← 𝑔𝑒𝑡𝑆𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠 (𝑙𝑎𝑛𝑔, 𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑖𝑙𝑒𝑠)
𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑈𝑠𝑎𝑔𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ← 𝑔𝑒𝑡𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑈𝑠𝑎𝑔𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (𝑙𝑎𝑛𝑔)
for 𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑖𝑙𝑒, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑛𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑖𝑙𝑒𝑠, 𝑠𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠 do

for 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑈𝑠𝑎𝑔𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 do
𝑝𝑀𝑎𝑡𝑐ℎ𝑒𝑠 ← 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑀𝑎𝑡𝑐ℎ(𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡)
for𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑀𝑎𝑡𝑐ℎ𝑒𝑠 do

if 𝑚𝑎𝑡𝑐ℎ𝑛𝑜𝑡𝑖𝑛𝑎𝑙𝑙𝑇𝑜𝑔𝑔𝑙𝑒𝑠 then
𝑑𝑒𝑎𝑑𝑇𝑜𝑔𝑔𝑙𝑒𝑠 [𝑐𝑜𝑑𝑒𝐹𝑖𝑙𝑒] ←𝑚𝑎𝑡𝑐ℎ

end if
end for

end for
𝑜𝑢𝑡𝑝𝑢𝑡 ← {𝑑𝑒𝑎𝑑𝑇𝑜𝑔𝑔𝑙𝑒𝑠, 𝑐𝑜𝑢𝑛𝑡𝑇𝑜𝑔𝑔𝑙𝑒𝑠}
𝑜𝑢𝑡𝑝𝑢𝑡 𝐽𝑆𝑂𝑁 ← 𝑗𝑠𝑜𝑛.𝑐𝑜𝑛𝑣𝑒𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡)
𝑟𝑒𝑡𝑢𝑟𝑛𝑜𝑢𝑡𝑝𝑢𝑡 𝐽𝑆𝑂𝑁

end for

3.4 Tool Support
We implement the above algorithms in a python-based tool. The
tool can be downloaded from an anonymous link3; the GitHub
repository is not provided to adhere to double-blind norms and will
be made public if the paper is accepted.

The tool uses regular expressions extensively to identify and
report supported feature toggle usage patterns. We define a default
set of regular expressions that can be overridden, if required, to
customize the functionality of the tool based on the project under
analysis. The tool takes optionally a configuration file as an input
to help the user specify all project-specific customizations.

The tool can be used by downloading the source code of the tool
and running tsd.py file using Python environment. An example
of the invocation of the tool is provided below.

1 python3 tsd.py <Language > </Source/code/path/> <

confi_file > <toggle_usage >

Listing 3: Command template to use ts-detector

Here, there are four parameters needed from the user, language,
source path, configuration file, and toggle usage pattern. For ex-
ample, if we are running this tool on Chromium source code, the
command should look like as follows.

1 python3 tsd.py C++ ~/ Downloads/chromium/ switches.cc

spread

Listing 4: Example command to use ts-detector

Although, the tool is currently compatiblewith only C++ projects,
since we are continuing our study on implementing other toggle
usage patterns and also to generalize this tool with all possible
high-level programming languages, we have the “language” as a
parameter.

4 ANALYSIS
To analyze the influence of toggle usage patterns on code complexity
we collected two datasets. The first dataset was collected using
3https://shorturl.at/hAEL9

Understand API [19]. The second dataset is collected by running
our ts-detector tool on Chromium and Dawn source code where
we collected toggle usages counts per file.

4.1 Complexity Metrics
The powerful python-based API provided by Scitools for the popular
static analysis tool Understand allowed us to conveniently extract
the code quality metrics—average Cyclomatic Complexity per file
(CC), average lines of code in methods per file (AvgLOC), number of
inactive lines per file (ILOC), Executable LOC per file (ExLOC), and
Maximum Nesting level of control constructs per file (MNesting).
The code metrics are also collected at the file level including both
class files, and non-class files.

Table 1 presents code quality metrics obtained from Chromium
and Dawn projects. In the median case, each file in Chromium has
an average cyclomatic complexity of 1 with amaximum of 70; on the
other hand, Dawn has a similar median complexity with amaximum
of 205. Although the Chromium project is larger than Dawn in
terms of code size (25GB and 0.5GB of disk space, respectively),
each file in Chromium has 8 AvgLOC, while Dawn has 10 in the
median case. Clearly, Dawn’s files are much larger since it has 1.17
times more Executable LOC (ExLOC) than Chromium. However,
the median MNesting (maximum nesting) in all Dawn files is 1,
while Chromium has 2.

Table 1: Chromium and Dawn Code-Metrics

CC AvgLOC ILOC ExLOC MNesting
Chromium

Median 1 8 0 12 1
Max 70 682 3563 1703 10

Dawn
Median 1 10 0 8 0
Max 205 4572 577 2006 8

Many code-metrics have been studied as complexity metrics in
the literature [3, 8, 11, 26] while cyclomatic complexity has always
been popular among both researchers and practitioners. However,
we have included AvgLOC metrics as well along with maximum
nesting (MNesting) metrics since toggles may cause nesting, create
additional lines of code, leave dead code, and may contribute to the
increase of cyclomatic complexity.

4.2 Quantify Toggle Usages
To quantify the toggle usages, we ran our tool ts-detector on both
Chromium and Dawn source code. Following is a snippet of the
JSON output of ts-detector resulting from command to analyze
Chromium for spread toggles.

1 {

2 ...

3 "kUseSystemDefaultPrinter": [

4 ["/Users/taj/Documents/Research/Data/chromium/

chrome/browser/prefs/chrome_command_line_pref_store.

cc", 1],

5 ["/Users/taj/Documents/Research/Data/chromium/

chrome/common/chrome_switches.cc", 1]

6 ],
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7 "kNoPings": [

8 ["/Users/taj/Documents/Research/Data/chromium/

chrome/browser/prefs/chrome_command_line_pref_store.

cc", 1],

9 ["/Users/taj/Documents/Research/Data/chromium/

chrome/common/chrome_switches.cc", 1]

10 ]

11 },

12 "total_count": 1147

13 }

Listing 5: ts-detector output for spread toggles

The toggle variable is one of the two keys of the output JSON.
Each toggle key contains a dictionary of file paths where the usage
instances of that key toggle variable been has found. The total count
is also collected as a separate key for convenience.

We collected these JSON outputs and stored into data tables for
each four toggle usage patterns. Each table contains the file name
where the toggle usage was found, and the count of how many
usage instances were found. We then map the two datasets (one
using Understand, and another using our ts-detector) and merge
into one final dataset for our analysis.

5 RESULTS AND DISCUSSION
We analyzed the final consolidated dataset to provide answers to
our research questions.

0

1000

2000

3000

4000

5000

6000

Dead Spread Nested Mixed

Number of Instances of Toggle Usages

Figure 2: Number of instances of four types of Toggle Usages.

We used our tool ts-detector to extract four types of toggle usage
instances. The bar-chart in Figure 2 shows all four types of toggle
usage instances. Spread toggle is the one dominating with 5k in-
stances because of its cross-cutting nature. Mixed usage pattern
has been found the least number of times (539). Dead and nested
usages are found 1.1k, and 2.5k times respectively.

Answer to RQ1—Our analysis reveal that Spread is the most
frequently occurring feature toggle pattern; Mixed toggle usage
pattern instances occur the least in analyzed C++ projects.

We further investigated if feature toggle usage patterns collec-
tively exhibit any correlation with code complexity and size met-
rics. To understand this, we aggregated the code quality metrics in
four groups: complexity metrics (CC, and MNesting) in files with
toggles, and in files without toggles, code size metrics (AvgLOC,
ILOC, ExLOC) in files with toggles, and in files without toggles.
We compared the complexity metrics sum and code size metrics
sum separately as shown in Figure ?? and Figure 3. In median case
the sum of the complexity metrics (CC and MNesting) in files with
toggle usages (WT) is double compared to the files without any
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Figure 3: Comparing complexity metrics, and code size met-
rics between files with and without toggles usage patterns.

toggle usages (WoT). Similarly, the median code size metrics sum
in files WT (10) is much higher than that (43) in files WoT.

Answer to RQ2—Feature toggle usage patterns collectively
exhibit an influence on the increase of aggregated code com-
plexity and size metrics. Files using feature toggles seem to have
high number of complexity and size metrics compared to the files
that do not use any feature toggles.

This led us to our last investigation (RQ3) of this paper where
we wanted to understand whether there are certain toggle usage
patterns that exhibit correlations with certain complexity and size
metrics. We calculated Spearman correlations for each of the con-
sidered code quality metrics with each of the toggle usages. Figure 4
depicts the correlations between four toggle usage patterns (Spread,
Nested, Dead, and Mixed) and the code quality metrics (CC, Av-
gLOC, ILOC, ExLOC, and MNesting).

The Spread usages displayed positive correlations with all of
the code metrics. However, the significant correlations with ILOC,
ExLOC, and MNesting are 0.56, 0.1, and 0.08 respectively with the
p-values of 2.2𝑒−16, 1.7𝑒−16, and 7.7𝑒−05.

The Nested usages have shown the highest correlations except
for ILOC compared to the three other usage patterns. However,
only two of them are statistically significant. The most significant
correlations with AvgLOC, ExLOC, and MNesting are 0.5, 0.25, and
0.8 respectively, with the p-values of 7.1𝑒−07, 0.009, and 2.2𝑒−16.

Dead toggle usages show no correlation with any of the metrics.
Similar results for Mixed toggle usages showing no significant
correlation with any of the metrics.

Answer to RQ3– The Spread and Nested toggles have shown
significant correlations with ILOC, ExLOC, MNesting.
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Figure 4: Correlation between toggle usage patterns and the
code metrics. Insignificant correlations are faded.

It is notable that Nested toggle usages are highly correlated to
“MNesting” which (highest among all) was expected because the
nature of nested usage is to create nested conditions with toggle
variables. The results indicates that all toggles do not have a similar
influence on code quality. Since Nested and Spread usages are highly
correlated to code complexity and code size metrics, we are prone
to call them as toggle-smells. Further progress on this study will
make us more convinced on this.

6 THREATS TO VALIDITY
Construct validity concerns with the degree to which our analyses
measure what we intend to analyze. We developed a tool in this
study to identify feature toggle usage patterns automatically in C++
projects. Due to the nature of feature toggles, the definition and
usage of toggles are highly dependent on the development team.
Hence, it is not guaranteed that one set of patterns (in the form of
regular expressions) will work for all software projects. To mitigate
this issue, we implement the tool using a configuration file that
can be optionally provided to the tool. In the future we plan to
comprehensively evaluate the tool with multiple language based
projects. External validity concerns with the ability to generalize
the results. Our study focuses on identifying feature toggles and
their relationship with C++ code complexity. However, the analysis
can be easily extended to other programming languages as our tool
can look for specific patterns in provided source code based on the
provided regular expressions.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we explore the frequency of feature toggle usage
patterns and investigate if there is any correlation to the code-
complexity. Toward this goal, we developed a tool to identify four
toggle usage patterns in C++ source code. We investigated the cor-
relation between code complexity captured via complexity metrics
and the number of toggle usage patterns. Our results reveal that
Nested and Spread usages are significantly correlated to the code
complexity and code size. The results will motivate further results
to understand the characteristics of toggles and optimize their us-
age. At this stage we are likely to call the Nested and Spread toggles
as toggle smells, however, we need to expand this study further on
all popular high-level language based source code. We also need to
study the extent of nesting and spreading toggle variables before
we call them toggle smells. The developed tool will help future

studies to replicate and extend this study. We aim to extend our
investigation to check the influence of the toggles and their density
on other aspects of code quality, such as cognitive complexity, size,
and testability in a future study.
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