
Reinforcement Learning vs Supervised Learning:
A tug of war to generate refactored code accurately

Indranil Palit

indranil.palit@dal.ca

Dalhousie University

Halifax, Nova Scotia, Canada

Tushar Sharma

tushar@dal.ca

Dalhousie University

Halifax, Nova Scotia, Canada

Abstract

Automated source code refactoring, particularly extract method

refactoring, is a crucial and frequently employed technique during

software development. Despite its importance and frequent use by

practitioners, current automated techniques face significant limita-

tions such as the lack of automation. While machine learning-based

approaches have shown promise in intelligent code refactoring,

existing such approaches overlook code-specific sequence-level

characteristics, including but not limited to compilability, syntactic

correctness, and functional integrity. To address these challenges,

we propose a novel reinforcement learning-based approach for fine-

tuning and aligning code language models to perform automated,

intelligent extract method refactoring on Java source code. Our

approach fine-tunes sequence-to-sequence generative models and

aligns them using the Proximal Policy Optimization (PPO) algo-

rithm using code compilation and presence of the refactoring in

the generated code as reward signals. Our experiments demon-

strate that our approach significantly enhances the performance

of language models in code refactoring. The supervised fine-tuned

model, further aligned with PPO, surpasses traditional supervised

fine-tuning by 11.96% and 16.45% in terms of BLEU and CodeBLEU

scores, respectively. When subjected to a suite of 122 unit tests,

the number of successful tests increased from 41 to 66 for the rein-

forcement learning aligned fine tuned Code-T5 model, highlighting

the effectiveness of our approach in producing functionally correct

refactorings. Our work paves the way for intelligent, automated

code refactoring tools that can significantly reduce developers’

manual effort.

CCS Concepts

• Software and its engineering→Maintaining software.

Keywords

extract method refactoring, reinforcement learning, large language

models

ACM Reference Format:

Indranil Palit and Tushar Sharma. 2025. Reinforcement Learning vs Su-

pervised Learning: A tug of war to generate refactored code accurately.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

In Proceedings of The 29th International Conference on Evaluation and As-

sessment in Software Engineering (EASE 2025). ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Refactoring is an important software development activity that

employs various techniques to enhance the structure and quality

of source code without altering its functionality [20, 50]. By remov-

ing code smells [20] the practice aims to improve maintainability,

encapsulating quality attributes such as readability, flexibility, and

testability [10, 16]. Refactoring helps maintain high code quality,

facilitating long-term maintainability and evolution [46].

Extract method refactoring is one of the most commonly applied

refactoring techniques that involves moving a coherent code frag-

ment from a method into a new, aptly named method [20]. By creat-

ing cohesive and smaller methods, extract method refactoring not

only improves code quality and maintainability but also serves as a

foundation for more complex refactoring operations [88]. Extract

method refactoring constitutes a significant proportion, approxi-

mately 49.6%, of the total refactoring recommendations generated

by JDeodorant [71], a widely recognized tool for supporting extract

method operations. Furthermore, this refactoring technique has

been acknowledged as a crucial operation by both open-source

developers [66] and industry practitioners [76], underscoring its

importance in software maintenance.

Automatically performing extract method refactoring, consist

of two major steps [34]. First, identification of a candidate method

that requires extract method refactoring; and second, intelligently

extracting the logic and forming a new method with appropriate

parameters, without human intervention. For the first step, i.e.,

identifying a candidate method for the refactoring, practitioners

often rely on intuition and experience. They also utilize automated

tools to assess code quality metrics and detect code smells [64]

to get aid in the decision process. The second step of automated

extract method refactoring involves comprehending and extracting

source code into a new method. Several approaches have been pro-

posed to address this challenge. Hubert [27] developed a method

for generating extract method refactoring candidates using static

code analysis tools. Maruyama [27] proposed a candidate gener-

ation technique utilizing block-based slicing. Shahidi et al. [61]

introduced an algorithm for identifying, generating, and ranking

extract method candidates through graph analysis. However, these

approaches exhibit a few limitations. Specifically, most of these

approaches require the developers to manually identify the bounds

of a block to be refactored i.e., start and end statements, to perform

the refactoring. Such a reliance on human knowledge reduces the

efficacy and significance of automated refactoring. Furthermore,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Indranil Palit and Tushar Sharma

static analysis and metric-based methods often fail to capture latent

contextual and syntactical code characteristics that could enhance

the refactored code. For instance, these approaches do not offer

meaningful identifiers for the new method and its parameters.

The emergence of large language models (llms) has enabled the

convenience in generative tasks, including code generation with

high accuracy [1, 81]. The field of code generation has seen sig-

nificant advancements recently, with pre-trained language models

such as GitHub Copilot [23] and Amazon Q Developer [7] demon-

strating impressive capabilities. Though such llm perform well on

many text and code generation tasks, they show mediocre perfor-

mance for tasks requiring domain-specific or uncommon knowl-

edge. For example, llm have shown proficiency in generating code

for known and common problems but they struggle with unfamiliar

problems [12]. Similarly, in our context, current llm can generate

refactored code but often omit the contextual information or gener-

ate incomplete, broken, or even uncompilable code [29]. Moreover,

using third-party code completion services raises privacy concerns

for many organizations. A notable example is Samsung Electron-

ics [28], which reportedly experienced three data leakage incidents

while using online code completion tools such as ChatGPT. These

issues highlight the growing need for developing task-specific code

generation models.

Language models for code are sequence-to-sequence models pre-

trained on large corpus of code and can be fine-tuned for various

software engineering tasks, including code summarization [2, 68],

translation [18, 85], completion [8, 17], bug localization [84], vul-

nerability detection [43, 89], and program repair [63]. Despite these

advancements, to the best of our knowledge, the application of lan-

guage models for refactoring remains largely unexplored. Inspired

by applying llms on a variety of software engineering tasks, there

has been some attempts to generate refactored code using them.

For example, a recent contribution by Pomian et al. [55] introduced

EM-Assist, an IntelliJ IDEA plugin that leverages llms to generate

and rank refactoring suggestions using few-shot prompting.

Fine-tuning is another common technique to train a pre-trained

model for a specific downstream task.While fine-tuning pre-trained

code language models appears to be a promising solution, it has

been observed that a considerable portion of programs generated by

these models often fail to pass unit tests [12, 29, 40]. Such challenges

deter the adoption of the automated refactoring tools and methods.

To address these challenges, we evaluate performance of fine-

tuned models and propose a deep reinforcement learning approach

that aligns fine-tuned code language models to generate refactored

code by applying extract method refactoring automatically. Our

approach, first, creates a dataset using state-of-the-art tools such

as RefactoringMiner [72, 73]. We use the dataset to fine-tune four

languagemodels, pre-trained on code, using Supervised Fine Tuning

(sft) [26, 31] To enhance model performance and better align it

with the objective of generating compilable code while preserving

functionality, we use Proximal Policy Optimization (PPO) [60] for

reinforcement learning optimization.

Our reinforcement learning approach utilizes an actor-critic ar-

chitecture [33, 78], where the actor component generates refactored

code, and the critic component assesses the quality of the generated

code. This architecture enables the model to learn more efficiently

in the complex space of code refactoring by providing guidance on

the desirability of different refactoring decisions. The critic com-

ponent incorporates discrete, non-differentiable reward signals in

three stages. We first check for syntactic correctness, then assess

whether the code compiles successfully, and finally, we use Refac-

toringMiner to detect if the desired refactoring has been applied.

To strike a balance between generating refactorings and main-

taining the knowledge gained during supervised fine-tuning, we

introduce a Kullback-Leibler (KL) divergence [35, 65] term in the

reward function. This term measures the difference between the

model’s current behavior and its initial behavior learned during su-

pervised fine-tuning. By incorporating this term, we encourage the

model to explore new refactoring strategies while preventing it from

deviating too far from its initial understanding of code refactoring.

Our study yielded promising results. The plbart model, when

fine-tuned using supervised learning, demonstrates superior per-

formance among the chosen models when evaluated using con-

ventional metrics such as bleu, rouge, and codebleu. However,

code-t5 outperforms other models when trained with deep rein-

forcement learning. We observe that combining supervised

fine-tuning with deep reinforcement learning prove most

effective, compared to fine-tuning the models or training using

reinforcement learning individually. Qualitative evaluation further

validates that the combination works the best, exhibiting enhanced

syntactic accuracy, compilation rates, and unit test performance.

We list the key contributions of this paper below.

• We evaluate the effectiveness of supervised fine-tuned mod-

els for automatic extract method refactoring. The approach

addresses the limitations of existing approaches such as man-

ual code selection to specify the code block to-be extracted.

• The study presents a hybrid method that combines super-

vised fine-tuning with reinforcement learning optimization,

specifically tailored for extract method refactoring tasks. We

then evaluate the approach both quantitatively and qualita-

tively to ensure that it generates syntactically and semanti-

cally accurate refactorings.

• This study also contributes a tool for analyzing Java repos-

itories on GitHub to create an extract method refactoring

datasets with associated metadata. We provide the tool and

the dataset created using it for replication and extension pur-

poses. Our replication package including source code and

data is available online in our replication package [6].

2 Background

Supervised Fine-Tuning of Large LanguageModels: Supervised

fine-tuning is an add-on training for adapting pre-trained large

language models (LLMs), such as CodeT5 [81], to specialized tasks.

This adaptation is achieved by training the models on domain-

specific datasets, which is particularly important for enhancing

their performance in tasks such as extract method refactoring. In

this context, we focus on two predominant model architectures:

encoder-decoder and decoder-only models.

Encoder-decoder models consist of two main components. The

encoder processes the input sequence (i.e., source code, in our case)

to create a context-rich representation, which the decoder then uses

to generate the output sequence (refactored code with extracted

method, in our case). This architecture is particularly useful when

Reinforcement Learning vs Supervised Learning:
A tug of war to generate refactored code accurately EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

the input is a code snippet, and the output is the corresponding

refactored version. The fine-tuning objective for encoder-decoder

models aims to maximize the conditional probability of the cor-

rect output sequence given an input sequence. A technique called

teacher forcing is employed, where the correct output token from

the previous time step is fed as input to the next step.

Decoder-only models, such as those used in GPT-like architec-

tures [57], operate differently. They generate each token of the

output sequence directly, conditioned on all previous tokens and

the input sequence, without a separate encoding phase. The train-

ing process involves presenting the combined sequence of the input

code and the refactored code to the model, typically separated by a

special token, e.g., [sep].

For both architectures, the loss function commonly used is the

cross-entropy loss, calculated over the output sequence tokens. This

loss function helps the model learn to predict the correct tokens in

the output sequence.

Reinforcement Learning for Sequence Generation: Reinforce-

ment Learning (rl) is a branch of machine learning focused on

training agents to take actions in an environment to maximize

some notion of cumulative reward often involving a series of deci-

sions [62]. It uses a model known as the Markov Decision Process

(MDP) [56], which deals with decision-making where each action is

determined by steps, and outcomes are influenced by randomness.

In rl, an agent (i.e., an autonomous entity that takes action in the

given environment) improves its decisions through trial-and-error

interactions with its environment, learning from the rewards it

receives based on its actions. The agent’s decision-making strategy

is known as the policy, which determines the next action to take

given the current situation or state. The state represents the current

context or input on which the agent bases its decisions.

In the context of language models, rl can be employed as a

training mechanism. Here, the language model serves as the policy,

and the current text sequence is the state. The model generates an

action, the next word or token, altering the state into a new text

sequence. The quality of the completed text sequence determines

the reward, assessed either by human judgment or a trained reward

model based on human preferences. Prior studies [13, 67] has shown

that SFT serves as a reliable starting point for rl. Ouyang et al. [52]

employed a similar two-stage architecture like ours and found that

rl performs better when initially fine tuned using SFT. However,

none of the works focused on the applicability in the software

engineering domain especially in code refactoring.

In the software engineering domain, rl has been used for code

completion tasks [39, 65] and code summarization [78]. They all

use actor-critic methods to train the language models for specific

downstream tasks. The actor is the policy model, the main lan-

guage model pre-trained or fine-tuned on code data and the critic

is another component that evaluates the output generated by the

actor and provides a reward signal. Based on this architecture, we

formulate our problem as follows.

In this work, we focus on aligning a fine-tuned large language

model for extract method refactoring generation using Proximal

Policy Optimization (ppo) [60]—a popular actor-critic reinforce-

ment learning method. This alignment process involves several key

components: the actor, the critic, rewards, the value function, and

KL divergence. The actor in our setting is the language model itself,

which generates sequences of code such as extracting methods

from code snippets. It takes the current code as input and outputs a

refactored version with extracted methods. The critic is a separate

component that evaluates the quality of the refactoring produced

by the actor, providing a score or reward that reflects how well

the generated refactoring meets the desired criteria, such as syn-

tactically and semantically accurate refactored code. A reward is a

numerical score assigned to each generated refactoring, indicating

its quality. Higher rewards are given for refactorings that improve

code properties, while lower rewards indicate poor refactoring out-

comes, such as introduction of errors. These rewards guide the

actor in learning to generate more desirable refactorings over time.

The value function estimates the expected reward from a given

state or step in the sequence generation process. It predicts how

good the current refactoring is, considering future rewards. In prac-

tice, the value function is represented by a separate neural network

head, called a value head, which outputs a scalar value for each

input state, estimating the expected cumulative reward, denoted as:

𝑉 (𝑠) = E [𝑅 | 𝑠] ,𝑤ℎ𝑒𝑟𝑒 𝑅 𝑖𝑠𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑 (1)

Proximal Policy Optimization (ppo) is the algorithm used to train

the actor model. ppo optimizes the model’s parameters by adjusting

its behavior in small, controlled steps, ensuring that changes are not

too drastic. This balance between exploration (trying new refactor-

ing strategies) and stability (maintaining effective behaviors) helps

the model learn efficiently without losing its learned knowledge.

KL Divergence (Kullback-Leibler divergence) measures the dif-

ference between the old policy 𝜋𝜃𝑜𝑙𝑑 and the updated policy 𝜋𝜃 ,

ensuring that updates to the policy do not deviate excessively from

the original behavior. It is calculated as:

KL(𝜋𝜃𝑜𝑙𝑑 ∥ 𝜋𝜃) =
∑︁
𝑥

𝜋𝜃𝑜𝑙𝑑 (𝑥) log
(
𝜋𝜃𝑜𝑙𝑑 (𝑥)
𝜋𝜃 (𝑥)

)
, (2)

where 𝜋𝜃𝑜𝑙𝑑 (𝑥), 𝜋𝜃 (𝑥) represent the probability distributions over

the possible code refactoring actions that the model can take at a

given step.

In summary, the actor generates refactoring suggestions, and the

critic evaluates them using static non differential rewards that pro-

vide feedback on their quality. ppo optimizes the model’s behavior

gradually, guided by the value function, the objective function, and

loss components, while KL divergence ensures that changes remain

within reasonable limits. This framework enables the fine-tuning

of the language models to produce high-quality code refactorings

over time.

3 Methods

This section details the goal, research questions, and the approach,

including setup, and metrics used to rigorously test and validate

our proposed method.

3.1 Overview

The goal of this study is to evaluate the effectiveness of fine-tuned

llms pretrained on code and develop a deep reinforcement learning-

based approach for generating code for extract method refactoring.

We seek to demonstrate the effectiveness of our approach not only

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Indranil Palit and Tushar Sharma

Code
Repositories RefactoringMiner

Finetuning
Dataset

Finetuning with
PPO Dataset

PPO

Refactoring
Candidate Method

Refactored
MethodSFT

Seq2seq Model

Create x2 Copies

Generated
Code

L
Loss

Update model weights

Finetuned Model
to be Aligned

Reference
Finetuned Model

Generated
Code

KL Divergence

Syntax Compile Refactoring
Detected

Reward Model

PPO

Policy UpdateRefactoring Alignment using RL

Supervised Model Finetuning

3

1 Dataset Generation

2

Refactoring
Candidate Method

Figure 1: Overview of the proposed approach.

quantitatively but also qualitatively. We formulate the following

research questions.

RQ1. How does supervised fine-tuning perform for extractmethod

refactoring task?

By answering this research question, we aim to evaluate

how well does supervised fine-tuning a code large language

model perform in automatically performing extract method

refactoring.

RQ2. How well does a reinforcement learning approach perform

for automating extract method refactoring?

This question examines whether code large language models

can be directly aligned using reinforcement learning tech-

niques to effectively perform extract method refactoring.

RQ3. How does a reinforcement learning approach, combined

with fine-tuned large languagemodels, perform for automating

extract method refactoring?

This question assesses the impact of combining ppo with

custom reward signals on a fine-tuned model’s performance

in extract method refactoring tasks.

Figure 1 illustrates our methodology. We create our dataset by using

the tools such as SEART tool [15] and RefactoringMiner [72, 73]. Fol-

lowing dataset preparation, we fine-tune two encoder-decoder mod-

els (code-t5 and plbart) and two decoder-only models (codegpt-

adapt and codegen). We evaluate the performance of these models

using both quantitative and qualitative measures. After conducting

both quantitative and qualitative evaluations, we align the pre-

trained model directly using the ppo algorithm. Subsequently, we

align the fine-tuned model using the same ppo algorithm. We sys-

tematically evaluate the applied approach using standard evaluation

metrics. We also evaluate the models qualitatively using three key

checks i.e., syntactic validity, compilability, and the presence of the

desired refactoring in the generated code.

3.2 Dataset Creation

We employ a systematic approach to identify and collect extract

method refactoring instances across multiple open-source Java

repositories. Step 1 in Figure 1 shows an overview of the dataset

preparation pipeline. We use SEART [15] tool to select a list of

repositories for analysis. SEART tool is a GitHub project sampling

tool, offering various commonly used filters (such as number of

commits and stars). We obtain a list of all non-forked Java reposito-

ries created between 2013 and 2023, that are active in 2024, have at

least 100 commits, and minimum 50 stars. We obtained a total of

1, 618 repositories satisfying the criteria.

Algorithm 1 Procedure for Creating Dataset

1: Input: List of repositories 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟 .𝑛}
2: Output: JSONL file with keys “Input” and “Output”

3: procedure CreateDataset(𝑅)

4: 𝐷𝑎𝑡𝑎 ← ∅ ⊲ Initialize the dataset as an empty set

5: for each repository 𝑟𝑖 ∈ 𝑅 do

6: Retrieve branch details for 𝑟𝑖
7: Fetch the list of commits for the given branch

8: for each commit 𝑐 𝑗 in the list of commits do

9: Identify refactorings performed in 𝑐 𝑗
10: if extract method refactoring is detected then

11: Extract metadata associated with the refactoring

12: Extract the refactored method using the meta-

data

13: Checkout to the previous commit 𝑐 𝑗−1
14: Extract the original method from 𝑐 𝑗−1
15: Create output JSON object

16: Append this JSON object to 𝐷𝑎𝑡𝑎

17: end if

18: end for

19: end for

20: Store 𝐷𝑎𝑡𝑎 in a JSONL file

21: end procedure

To iteratively process the list of repositories to prepare the

dataset, we created a custom Command Line Interface (CLI) tool. Al-

gorithm 1 provides a pseudocode of the functionality of the tool. For

Reinforcement Learning vs Supervised Learning:
A tug of war to generate refactored code accurately EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

each repository, we retrieve branch details and fetch the commit his-

tory. We then iterate through each commit, identifying any extract

method refactorings performed using RefactoringMiner [72, 73].

When such a refactoring is detected, the algorithm extracts relevant

metadata and the refactored method from the current commit 𝑐 𝑗 .

It then checks out the previous commit, 𝑐 𝑗−1 to extract the origi-

nal, pre-refactored method. This pair of pre- and post-refactoring

methods, along with associated metadata (such as file path, class

content and start and end line of the methods), is packaged into

a JSON object. These JSON objects are accumulated into an array,

which is ultimately stored in a JSONL file format. This approach

enables the creation of a comprehensive dataset (D) that captures

the before and after states of extract method refactorings across

multiple repositories.

Table 1: Dataset statistics

Dataset

Before pre-processing After pre-processing

Avg.

source token

length

Avg.

target token

length

Avg.

source token

length

Avg.

target token

length

D𝑆𝐹𝑇 412.77 446.13 184.26 241.63

D𝑅𝐿 410.60 449.09 187.62 242.13

For RQ1 and RQ2, we use the entire dataset. For RQ3, we divide

the dataset into two mutually exclusive subsets one for supervised

fine tuning and the other for the aligning the fine-tuned model with

deep reinforcement learning. We divide the dataset to maintain data

integrity and avoid data leak while training for RQ3. We divide the

repository list of 1, 618 repositories, collected from the SEART tool,

in half. We applied the aforementioned procedure to process both

sets of repositories. This resulted in 38, 441 samples for the super-

vised fine tuning (D𝑆𝐹𝑇) and 9, 313 samples for deep reinforcement

learning (D𝑅𝐿). However, the resulting datasets contained sam-

ples that exceeded the context window (maximum input sequence

length) of our selected fine-tuning models. Among these models,

Code-T5 has the smallest context window of 512 tokens, while oth-

ers support up to 2, 048 tokens. To ensure compatibility across all

models, we use 512 as our maximum context length, eliminating

any samples that surpassed this 512-token threshold. After pre pro-

cessing, D𝑆𝐹𝑇 contains 26, 949 samples and 6, 528 samples in D𝑅𝐿 .

Table 1 presents the average token length distribution for both the

datasets. Finally, each of the dataset is divided in 70 : 20 : 10 ratio

for training, testing and validation.

3.3 Training Models

3.3.1 Fine tuning LLMs. We employ the following criteria to select

the models for fine-tuning. The selected models must belong to

encoder-decoder or decoder-only architecture. We exclude encoder-

onlymodels, such as CodeBERT, from our study because the encoder-

only models are not well-suited for sequence-to-sequence (seq2seq)

generation tasks [80]. Encoder-only model architectures like bert

are designed to understand input sequences but lack the ability to

generate new ones. They’re optimized for tasks like classification

or feature extraction, not for producing variable-length outputs

required in seq2seq tasks. Without a decoder component and au-

toregressive generation capability, these models can’t effectively

perform tasks such as translation or text generation that require

producing new sequences based on input. We select the following

models, two belonging to encoder-decoder and two to decoder-only

architecture family, based on the the above-mentioned criteria.

Code-T5: code-t5 [81] is a pre-trained encoder-decoder model

that incorporates token type information from code and employs

an identifier-aware pre-training objective to better utilize identi-

fiers. code-t5 offers a unified framework that supports both code

understanding and generation tasks, enabling multi-task learning.

This model has been successfully applied to various code related

tasks such as code summarization [3, 24], code translation [37] and

vulnerability detection [25, 54].

PLBART: plbart [1] is a pre-trained sequence-to-sequence model

that can perform a wide range of program and language under-

standing and generation tasks. It is trained on a large dataset of

Java and Python functions along with their associated natural lan-

guage text using denoising autoencoding. plbart has been used

in various software engineering applications especially in program

repair task [54, 83]

CodeGPT-adapt: codegpt-adapt [44] is a GPT-2-based decoder-

only Transformermodel for code completion, pre-trained on Python

and Java code from CodeSearchNet datasets. It learns code struc-

ture and syntax through pre-training, enabling it to generate code

automatically. It has been widely used for code generation tasks

such as code completion [25, 39].

CodeGen: codegen [49] is a Transformer-based autoregressive

language model trained on natural language and programming

language datasets. It employs next-token prediction as its learn-

ing objective and has shown outstanding performance in program

synthesis tasks [14].

Step 2 in Figure 1 illustrates the sft strategy employed for ex-

tract method refactoring. To train the encoder-decoder models, the

pre-refactored code is first tokenized to serve as the input sequence.

After a forward pass through the model, output tokens are gener-

ated and decoded using the same tokenizer. The resulting method

is then compared to the ground truth, which includes both the ex-

tracted method and the modified original method post-refactoring.

The model weights are updated based on the cross-entropy loss

computed between the predicted and ground truth methods. For

decoder-only models, the training process is similar, with the key

difference being in the format of the input. In this case, the input se-

quence is formed by concatenating the pre-refactored code and the

ground truth output, separated by a special [SEP] token. This format

enables the model to learn from both the context of the original code

and the desired output sequence in a single input representation.

3.3.2 Aligning the models with RL. In this study, we fine-tune and

align the selected large language models for extract method refac-

toring using rl techniques (step 3). We model the code transfor-

mation problem as a Markov Decision Process (MDP). We define

the state as the set of all possible code representations and the state

transition function as appending the chosen refactored token to

the current sequence.

Algorithm 2 describes the pseudocode for aligning the fine tuned

language model for extract method refactoring task. The algorithm

starts with an initial policy (decision-making strategy) and a value

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Indranil Palit and Tushar Sharma

function (which estimates how good a particular state is). It then

goes through multiple training iterations to improve these over

time. In each iteration, we sample a batch of code snippets from our

rl dataset. For each snippet, i.e. the pre-refactored method, we use

the current policy to generate a sequence of refactoring actions. To

assess the quality of the sequence generated at each training step,

we compute a reward based on three factors: syntactic correctness,

compilation success, and presence of a valid refactoring.

The reward function plays a crucial role in evaluating the quality

and correctness of the refactoring suggestions produced by the

model. Our reward function consists of three key components, each

addressing a specific aspect of the refactoring process:

(1) Syntactic Correctness: We assess the presence of errors in the

refactored code. For this purpose, we check the presence of

error nodes in the Abstract Syntax Tree (ast) generated by

tree-sitter of the generated code.

𝑅𝑠𝑦𝑛𝑡𝑎𝑥 =

{
+1 if no error nodes

−1 if error nodes present

(3)

(2) Compilation Success: We verify whether the refactored code

compiles successfully.While the compiler automatically checks

for syntactic issues, separating syntactic correctness from

compilation success allows us to provide the rl model with

more granular feedback. This distinction is important be-

cause refactored code might be syntactically correct but still

fail to compile due to semantic errors.

𝑅𝑐𝑜𝑚𝑝𝑖𝑙𝑒 =

{
+1 if code compiles

0 if code fails to compile

(4)

(3) Refactoring Detection: We validate the presence of extract

method refactoring in the generated code using Refactoring-

Miner.

𝑅𝑑𝑒𝑡𝑒𝑐𝑡 =

{
+1 if detected by RefactoringMiner

−1 if not detected

(5)

The sum of these individual components gives us the total reward

for a given refactoring suggestion.

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑠𝑦𝑛𝑡𝑎𝑥 + 𝑅𝑐𝑜𝑚𝑝𝑖𝑙𝑒 + 𝑅𝑑𝑒𝑡𝑒𝑐𝑡 (6)

This reward function encourages the language model to generate

syntactically correct, compilable code that successfully implements

the extract method refactoring.

The value head is used to estimate the value of the current state

using the value function as shown in Equation 1. The algorithm

then calculates how much better or worse each action was than

expected (the advantage). This information is used to update the

policy, aiming to increase the probability of actions that led to

high rewards. However, to ensure stable learning, the algorithm

checks how much the new policy differs from the old one using

a measure called KL divergence as described in equation 2. If the

difference is too large, the update is adjusted to prevent drastic

changes. Finally, the value function is updated to better predict

future rewards. By repeating this process many times, the algorithm

gradually improves its ability to make good refactoring decisions.

Algorithm 2 DRL Training for Extract Method Refactoring with

KL Divergence

Require: Initial policy 𝜋𝜃 , value function 𝑉𝜙 , KL divergence coef-

ficient 𝛽 , weights𝑤1,𝑤2,𝑤3

1: for each training iteration do

2: Sample batch of code snippets from dataset

3: for each code snippet 𝑥 do

4: Generate a refactored snippet using current policy 𝜋𝜃
5: Compute syntactic correctness: 𝑅𝑠𝑦𝑛𝑡𝑎𝑥 using Eq. 3

6: Compute compilation success: 𝑅𝑐𝑜𝑚𝑝𝑖𝑙𝑒 using Eq. 4

7: Compute refactoring validity: 𝑅𝑑𝑒𝑡𝑒𝑐𝑡 using Eq. 5

8: Compute total reward: 𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑤1 · 𝑅𝑠𝑦𝑛𝑡𝑎𝑥 + 𝑤2 ·
𝑅𝑐𝑜𝑚𝑝𝑖𝑙𝑒 +𝑤3 · 𝑅𝑑𝑒𝑡𝑒𝑐𝑡

9: Estimate the value of the current state: 𝑉𝜙 (𝑠)
10: Calculate advantage: 𝐴 = 𝑅𝑡𝑜𝑡𝑎𝑙 −𝑉𝜙 (𝑠)
11: end for

12: Compute policy update to maximize:

13: 𝐽 (𝜃) = E
[

𝜋𝜃 (𝑎 |𝑠)
𝜋𝜃𝑜𝑙𝑑 (𝑎 |𝑠)

𝐴

]
− 𝛽 · KL(𝜋𝜃𝑜𝑙𝑑 | |𝜋𝜃)

14: Apply the update to the policy: 𝜃𝑜𝑙𝑑 ← 𝜃

15: Update value function to minimize: 𝐿(𝜙) =
∑(𝑅𝑡𝑜𝑡𝑎𝑙 −

𝑉𝜙 (𝑠))2
16: end for

3.3.3 Fine tuning setup. We fine-tune the supervised model for 10

epochs on the datasetD for RQ1, and on the datasetD𝑆𝐹𝑇 for RQ3.

The training is conducted with a global batch size of 16, using the

Adam optimizer [32] with an initial learning rate of 1.33×10−5. For
aligning the models with rl, we utilize and extend the trl Python

library, which is widely used for training transformer language

models with reinforcement learning. The generation parameters

are set with min_tokens as −1 and max_tokens as 512. The training

consists of 20, 000 steps, with themodel undergoing 10 ppo optimiza-

tion epochs for each step. A global batch size of 16 is maintained,

and the Adam optimizer [32] is employed. We apply Adaptive KL

control with an initial KL coefficient of 0.2. All experiments are

conducted with a fixed seed value to ensure reproducibility and

are performed on nodes of a High Performance Computing (HPC)

cluster, utilizing 2 V100-32GB GPUs and 32 GB of RAM.

3.4 Evaluation

In this section, we summarize the metrics commonly used for code

generation tasks. Also, we provide details about qualitative evalua-

tion that goes beyond the standard metrics.

3.4.1 Evaluation Metrics. To assess the effectiveness of our models

quantitatively, we utilize established metrics from natural language

processing field bleu [53] and rouge [41], as well as specialized

metrics tailored for code evaluation, codebleu [59] and syntax

match score [90]. The widespread adoption of these metrics in

academic research for evaluating generative models supports our

decision to use them.

3.4.2 Qualitative Evaluation. To evaluate the effectiveness of our

fine-tuned code language models in performing extract method

refactoring, we construct a diverse test suite encompassing various

complexity levels to ensure a thorough evaluation of the model’s

Reinforcement Learning vs Supervised Learning:
A tug of war to generate refactored code accurately EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

refactoring capabilities. To create the test cases for evaluation, we

first identified pre-refactored original methods from the test sets of

each of the dataset as mentioned in Section 3.2. We then selected

150 methods at random from 4, 001 test split samples (2, 695 for sft

and 1, 306 for rl). Among these methods, few were very trivial like

one or two liners and we discarded such methods. Trivial cases were

removed because they do not effectively test the model’s ability to

handle complex refactoring tasks, providing limited insight into

its true capabilities. Finally, we collected 122 such methods which

underwent extract method refactoring across various repositories.

A significant challenge in creating unit test cases is the lack of

corresponding unit tests for many methods in the selected reposi-

tories. To address this, we leveraged gpt-4o (version: gpt-4o-2024-

05-13) API [51] to generate unit tests and corresponding data. This

approach aligns with recent research demonstrating the promising

results of using language models for test case generation [47, 74].

We specifically employed the ChatTester framework proposed by

Yuan et al. [86], to generate unit tests for our samples. The frame-

work utilized the class context of the smelly method, extracted as

per Algorithm 1, to create relevant unit test cases. The authors man-

ually validated these generated test cases to ensure their quality

and relevance. All the qualitative samples and corresponding test

cases can be found in our replication package.

This combination of qualitative testing and quantitative analysis

provides a systematic and objective assessment of our model’s

performance in extract method refactoring tasks. The multi-faceted

evaluation approach allows for a comprehensive understanding

of the model’s capabilities and limitations across various extract

method refactoring scenarios.

4 Results

This section summarizes the obtained results corresponding to each

research question.

RQ1: How does supervised fine-tuning perform for extract

method refactoring task?:

The research question aims to evaluate the performance of the

fine-tuned models for the refactored code generation. The first part

of Table 2 (i.e., pt + sft column) presents the results obtained by

the considered models for the refactored code generation task. The

results presented in the table demonstrate that the plbart model

outperforms other models metrics and code-specific evaluation

measures. Specifically, plbart achieves the highest scores on the

bleu and rougemetrics, which assess the lexical and semantic sim-

ilarity of the generated text to the ground truth. Crucially, plbart

also exhibits superior performance on the codebleu metric, which

captures the syntactic and structural fidelity of the generated code.

Furthermore, a comparative analysis reveals that plbart sub-

stantially outperforms the code-t5 model, achieving a 4.54% higher

codebleu score. The performance gap is even more pronounced

when contrasted with the codegpt-adapt model, for which plbart

demonstrates an 12.98% improvement on the codebleu metric.

These findings suggest that the plbart model was successful in

generating extract method refactored outputs that closely resemble

the ground truth in terms of syntactic correctness.

To gain a more thorough understanding of the validity and ro-

bustness of the generated refactored outputs, additional validation

checks and analyses are necessary. As detailed in Section 3.4.2,

we create a manually validated dataset for qualitative evaluation.

The dataset contains 122 samples with before and after refactored

code and corresponding test cases. We use this qualitative dataset

to check whether the trained model generates code without any

syntactic and compilation errors, whether the generated code has

extract method refactoring, and to what extent the generated code

is passing the test cases. Table 3 presents the obtained results. For

RQ1, notably, fine-tuned code-t5 achieved the highest performance

in qualitative evaluation. This supports our assertion that relying

solely on quantitative metrics may yield misleading results and

potentially produce low-quality refactored code.

RQ1 Summary: Fine tuning code large language models

show an effective way to teach language models to gener-

ate refactored code automatically. Specifically, plbart out-

perform othermodels in all the consideredmetrics. It show

significant improvements over code-t5 and codegpt-

adapt, particularly in codebleu scores. However, qual-

itative evaluation reveals that code-t5 performs best in

generating syntactically correct and functionally valid

refactored code.

RQ2: How well does a reinforcement learning approach per-

form for automating extract method refactoring?:

This research question aims to evaluate the application of rl on

the refactoring task when applied on pre-trained llm. The second

part of the Table 2 (i.e., PT + RL column) shows the obtained results.

Our results show that code-t5 model demonstrates superior per-

formance across all evaluation metrics compared to other language

models when trained using rl.

Interestingly, unlike the results observed in RQ1 with traditional

fine-tuning, direct fine-tuning using rl with ppo does not perform

well. This outcomemay be attributed to the complexity of the extract

method refactoring task and the potential mismatch between the rl

objective and the nuanced requirements of code refactoring. Fine-

tuning language models that have been pre-trained on tasks other

than code refactoring directly using non-differentiable rewards

poses challenges. The disparity between the pre-training task and

the target task of code refactoring makes it difficult to effectively

train the models using rl techniques.

Qualitatively also, as shown in RQ2 of Table 3, the generated

refactorings exhibit poor quality. The rl method’s poor perfor-

mance in functional areas highlights a misalignment with the refac-

tored code’s true requirements. This suggests that the rl reward

signals may insufficiently penalize syntactic and semantic errors,

resulting in models to produce functionally valid code. A potential

explanation for this behavior could be that the rl, performed on

a generic pretrained language model, may not receive appropri-

ate reward signals from our reward framework or the non-score

rewards (KL divergence penalty). This hypothesis can be corrob-

orated by examining Figure 2. Figure 2a illustrates the persistent

high standard deviation of rewards for the rl fine-tuned model

throughout increasing training steps. This trend indicates that the

reward signals fail to effectively steer the model towards optimal

performance. Concurrently, Figure 2b reveals an upward trajectory

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Indranil Palit and Tushar Sharma

Table 2: Experimental results for different learning objectives. Here, PT, SFT, and RL refer to pre-trained, supervised fine-tuned,

and reinforcement learning-based models

Models

PT + SFT (RQ1) PT + RL (RQ2) PT + SFT + RL (RQ3)

BLEU ROUGE CodeBLEU BLEU ROUGE CodeBLEU BLEU ROUGE CodeBLEU

Code-T5 67.80 77.49 53.13 38.80 37.62 31.99 75.91⋆ 79.92⋆ 61.87⋆

PLBART 68.28 80.62 55.66 30.21 29.56 22.48 71.20 69.68 58.17

CodeGPT-adapt 62.68 65.76 49.29 27.68 30.76 20.29 64.96 67.82 47.99

CodeGen 59.32 63.74 42.11 34.32 33.74 27.11 61.59 60.52 46.67

(a) Standard Deviation of Rewards (b) Negated KL Divergence Penalty

Figure 2: RL training observations

Table 3: Qualitative evaluation of fine tuned models

Models Syntactically

correct (%)

Refactoring

detected (%)

Compile

success-

fully (%)

of unit

tests passed

(out of 122)

Code-T5 (FT) 78.6 66.4 72.1 41

PLBART (FT) 76.9 63.8 69.5 38

CodeGPT-adapt (FT) 77.5 64.3 70.1 39

RQ1

CodeGen (FT) 78.3 65.1 71.2 40

Code-T5 + RL 21.4 20.2 22.3 21

PLBART + RL 21.7 18.9 21.5 16

CodeGPT-adapt + RL 19.7 14.1 20.2 14

RQ2

CodeGen + RL 23.6 19.2 21.1 9

Code-T5 (FT) + RL 85.7 74.9 79.8 66
PLBART (FT) + RL 82.4 71.6 76.3 58

CodeGPT-adapt (FT) + RL 83.1 72.2 77.5 61

RQ3

CodeGen (FT) + RL 84.3 73.5 78.6 63

in the KL-Divergence penalty over time. This escalation suggests

a growing divergence between the trained model and the refer-

ence model, further supporting our hypothesis that the current

reward system may be inadequate for guiding the model towards

generating functionally sound code refactorings.

RQ2 Summary: Generating refactored code from a pre-

trained model directly aligned with rl does not produce

comparable results to the corresponding fine-tuned mod-

els as shown in RQ1 quantitatively or qualitatively.

RQ3: How does a reinforcement learning approach, com-

bined with fine-tuned large language models, perform for

automating extract method refactoring?:

In this research question, we aim to evaluate the efficacy of apply-

ing rl to generate refactored code, focusing on model performance

when fine-tuned using a combination of supervised fine-tuning

(sft) and rl objectives. Specifically, we start with the trained fine-

tuned models from RQ1, and train them with ppo and reward from

a feedback system to observe any improvements in the models

compared to their fine-tuned counterparts.

Table 2 presents the results in the column titled PT + SFT +

RL along with results obtained in other settings as discussed in

RQ1 and RQ2. The results demonstrate that the most effective

outcomes are achieved when models are trained using both

sft andrl objectives. This combined approach leads to significant

improvements across various metrics. Specifically, we observed

an approximate 10% increase in codebleu compared to models

trained solely with sft, and an 11% improvement over those trained

exclusively with rl. Similar performance gains were noted in other

metrics, including bleu and rouge. The superiority of the combined

approach can be attributed to the complementary nature of sft

and rl. sft excels at identifying inherent patterns and structures

within data, primarily utilizing large labeled datasets. In contrast, rl

adapts through environmental interactions, optimizing predefined

reward metrics.

Our combined approach demonstrated a significant improve-

ment in the evaluated quality metrics. The number of successfully

passing test cases increased substantially, rising from 41 in the

best-performing model, code-t5, to 66—a significant improvement

of approximately 61%. Also, RefactoringMiner identified increased

number of cases, from 87 to 98. These results highlight the efficacy

of rl in producing accurate extract method refactored code.

Figure 2 illustrates the trends in the standard deviation of rewards

and the KL-Divergence penalty across training steps. The initial

decline in standard deviation, followed by stabilization, coupled

with consistent KL-divergence penalties, suggests that our reward

modeling strategy effectively aligns a fine-tuned language model

for the extract method refactoring task.

Reinforcement Learning vs Supervised Learning:
A tug of war to generate refactored code accurately EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

We discuss an illustrative example of an extract method refac-

toring that can be found in our replication package (README.md
file) [6]. highlighting the differences of sft and rl techniques. The

original method belongs to aws/aws-dynamodb-encryption-java
repository, commit ea43801. Snippets B and C are generated by sft

model and combined sft with rl aligned models respectively. As

we can see from the generated example, there are few syntactic

errors (highlighted by red background color) present in the out-

put generated by the fine-tuned only model. The combined rl

model seems to be more aligned to the ground truth. However,

the generated code is not accurate because at line 10 it throws an

IllegalArgumentException instead of IndexOutOfBoundException.
But this example strengthens our claims that the combined sft

model with rl alignment enhances language model performance

to generate more accurate extract method refactored code.

RQ3 Summary: Our results demonstrates that combin-

ing supervised fine-tuning and rl objectives yields supe-

rior results in generating refactored code. This integrated

approach outperforms individual methods, showing sig-

nificant improvements in codebleu, bleu, and rouge

metrics, while mitigating common limitations associated

with single-objective training.

5 Discussions

Qualitative vs quantitative evaluation: While static metrics pro-

vide valuable insights, they may not fully capture a model’s ability

to generate high-quality code. We can observe the phenomenon

in Table 2 and Table 3. The evaluation metrics used in Table 2

do not show very drastic difference in the RQ1 and RQ3 results.

However, the qualitative results presented in Table 3 present very

different narrative. We observe that the models trained using both

supervised fine-tuning and rl techniques show significantly better

results. Specifically, the number of test cases passed by the best

model in RQ3 is 61% more than that of the best model in RQ1. This

observation highlights the importance of qualitative evaluation in

addition to traditional metrics-based evaluation.

Reward values: In their study of code generation using reinforce-

ment learning, Le et al. [38] defined reward values based on heuris-

tic evaluation of functional correctness from unit test signals. We

adopted a similar approach for our reward value definition. To

validate our reward signal design (𝑅syntax, 𝑅compile
, 𝑅

detect
), we per-

formed a pilot study using a representative subset of D𝑅𝐿 . This

study evaluated how each reward signal influenced the model’s

alignment quality.We trained four versions of the PPO-basedmodel:

three versions each using one of the reward signals with heuris-

tically chosen values in the range −1, 0, 1, and a fourth version

incorporating all three signals. The models were evaluated using

both quantitative metrics (bleu, codebleu) and qualitative mea-

sures (compilation success rate and refactoring detection rate via

RefactoringMiner). Our evaluation demonstrated that the combined

reward signal configuration achieved superior performance.

Comparison with baseline: Despite increasing interest in devel-

oping fully-automated refactoring code generation tools, we did

not find any previous work focusing on automatically generating

refactored code using fine-tuned llm and enhancing it through rl.

In our search, we found the study by Szalontai et al. [69] as the clos-

est to this study, who addressed a similar problem with a different

approach. Their method consists of two stages—code block localiza-

tion using neural networks, followed by alternative code generation

using a Sequence-to-Sequence architecture. Their work employs a

grammar-based approach for training data generation. As we could

not locate replication package of their study nor could get a re-

sponse from them, we reconstructed their refactoring generation ar-

chitecture based on the paper’s description and trained it using our

dataset D𝑆𝐹𝑇 . Our implementation of their approach can be found

in our replication package (/src/baseline/reprod_main.py). We

compared the performance quantitatively, with results shown in

Table 4.

Table 4: Comparison with baseline

Approach BLEU ROUGE CodeBLEU

PT + FT + RL (CodeT5) 75.91 79.92 61.87

Baseline Seq-to-Seq 29.77 31.33 19.45

Our approach combining fine-tuning and reinforcement learning

significantly outperform the baseline implementation, achieving

a 218.1% improvement in codebleu. This substantial performance

gap can be attributed to two main factors. First, the baseline archi-

tecture uses Bi-LSTM-based model; the model relies on recurrent

layers, which struggle with long-term dependencies due to vanish-

ing gradients—a known problem with LSTM-based models. llms

leverage transformer-based architectures with significantly larger

parameter counts, enabling them to capture more complex pat-

terns, long-range dependencies, and contextual relationships in

data [9, 77]. Second, the baseline approach do not involve training

using real-world refactoring examples, potentially leading to under-

fitting. rl-aligned llms on the other hand, can refine their outputs

iteratively to balance trade-offs between fluency, correctness, and

task-specific goals [13, 67].

6 Related Work

Automated refactoring: Many studies have explored automated

refactoring candidate identification using machine learning tech-

niques. Typically, these studies use source code metrics or commit

messages to train models. Aniche et al. [5] predict 20 kinds of refac-

torings at method, class, or variable levels using code, process, and

ownership metrics, with Random Forest performing best among six

algorithms. Gerling [22] extended this work by improving the data

collection process to create a high-quality, large-scale refactoring

dataset. Van Der Leij et al. [76] analyze five machine learning mod-

els to predict Extract Method refactoring, comparing results with

industry experts. Using 61 code metrics, they also found Random

Forest to be the best performing model. Kurbatova et al. [36] employ

code embeddings generated from Code2Vec [4] to train their model

for Move Method refactoring prediction.

In this domain, researchers have developed a variety of special-

ized tools and approaches. CeDAR [70], an Eclipse plugin, focuses

on identifying and eliminating duplicate code. JDeodorant [45, 71]

detects code smells and proposes refactoring strategies. Fokaefs et

al. [19] extended JDeodorant’s capabilities to prioritize and imple-

ment class extraction refactorings. SOMOMOTO [87] facilitates

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Indranil Palit and Tushar Sharma

move method refactoring and code modularization. Szalontai et

al. [69] developed a deep learning method for refactoring source

code, initially designed for the Erlang programming language. Tu-

fano et al. [75] conducted a quantitative investigation into the poten-

tial of Neural Machine Translation (NMT) models for automatically

applying code changes implemented during pull requests. Their

approach leverages NMT to translate code components from their

pre-pull request state to their post-pull request state, effectively

simulating developer-implemented changes. To facilitate the re-

name refactoring process and reduce cognitive load on developers,

Liu et al. [42] proposed RefBERT, a two-stage pre-trained frame-

work based on the BERT architecture.

Current automated refactoring tools lack semantic understand-

ing and require manual intervention. To address this, we propose a

hybrid approach combining supervised fine-tuning with rl, enhanc-

ing the accuracy and completeness of extract method refactoring.

This is the first study to apply deep rl for this task, contributing to

the automated refactoring tools literature.

Reinforcement learning in software engineering: Sequence

modeling has emerged as a fundamental paradigm for addressing

a wide array of software engineering challenges. In recent years,

researchers have explored the application of deep reinforcement

learning (DRL) techniques to mitigate exposure bias in supervised

fine-tuned models for sequence generation tasks [30, 58]. Notably,

Ranzato et al. [58] pioneered the use of established metrics such as

BLEU and ROUGE as reward signals in DRL algorithms to optimize

network parameters in machine translation, effectively addressing

exposure bias. The intersection of DRL and sequence modeling has

led to innovative frameworks, such as the one proposed by Chen et

al. [11], which reconceptualizes reinforcement learning problems

as sequence modeling tasks. This approach has paved the way for

novel applications in various domains.

In the realm of software engineering, DRL methods have gained

traction, particularly in code completion and summarization tasks.

Wang et al. [79] leveraged compiler feedback as a reward signal

to enhance the quality of language model-generated code. Le et

al. [38] introduced CodeRL, a framework that integrates RL with

unit test signals to fine-tune program synthesis models. Shojaee et

al. [65] conducted comprehensive research, proposing a framework

for fine-tuning code language models using DRL and execution sig-

nals as rewards. Recent advancements in this field include IRCOCO

by Li et al. [39], which employs immediate rewards to fine-tune lan-

guage models for code completion tasks. Wang et al. [82] developed

RLCoder, combining DRL with Retrieval-Augmented Generation

(RAG) pipelines for repository-level code completion. Furthermore,

Nichols et al. [48] demonstrated the potential of DRL in generating

efficient parallel code, expanding the application of these techniques

to performance optimization.

To our knowledge, llms have not been specifically trained or

aligned for extract method refactoring. Our approach, which com-

bines supervised fine-tuning with ppo alignment, is a first in this do-

main. This novel methodology produces accurate refactored meth-

ods, marking a significant advancement in the field.

7 Threats to Validity

Internal validity: Internal validity concerns relate to the reliability

of conclusions drawn from our experimental results. To enhance the

trustworthiness of our findings, we implemented several measures.

Firstly, we addressed the potential confounding effect of varying

hyperparameters by utilizing consistent settings across all models,

based on the optimal configurations identified in prior research by

Li et al. [39]. Additionally, we employed identical data splits for

training and testing across all models, ensuring equitable learn-

ing opportunities and evaluation conditions. These methodological

decisions mitigate the risk of spurious results attributable to incon-

sistent experimental conditions, thereby strengthening the validity

of our conclusions regarding the efficacy of deep reinforcement

learning in generating refactored code methods.

External validity: External validity concerns in our study per-

tain to the generalizability of our findings beyond the Java con-

text. Despite this focus, we argue that our methodology is highly

transferable. Our data collection technique is language-agnostic,

applicable to any refactoring scenario. The general-purpose models

we employed, trained on vast code corpora, are adaptable to various

programming languages. While these factors suggest broad applica-

bility, further research across multiple languages and environments

would be necessary to conclusively establish the universal validity

of our approach.

8 Conclusions

In this study, we introduce a novel approach that integrates tra-

ditional fine-tuning with reinforcement learning alignment to au-

tomatically generate extract method refactorings for Java code.

To evaluate the generated code, we not only rely on traditional

metrics such as bleu and rouge but also construct a detailed quali-

tative evaluation mechanism to check the syntactic and semantic

correctness. Experimental results demonstrate that our approach

significantly improves the performance of large language models in

code refactoring compared to supervised fine-tuning, as evidenced

by quantitative evaluation metrics and qualitative measures.

Our future research will focus on expanding the scope of our

approach to encompass various types of refactorings, different pro-

gramming languages, and industry-based codebases. We also plan

to increase the size of our dataset, especially the qualitative eval-

uation set, for more comprehensive evaluations. We also plan to

explore the use of automated test suite generation tools such as

EvoSuite [21] to expand our sample size. Furthermore, we intend

to investigate alternative reinforcement learning algorithms and

reward strategies to further enhance the performance and effective-

ness of our automated code refactoring approach.

Code and data availability: Our replication package including

source code and data is available online [6].

Acknowledgements

We would like to express our sincere gratitude to Dr. Janarthanan

Rajendran for his valuable feedback on the reinforcement learn-

ing methodology. We also thank Mootez Saad for his important

contribution in preparing figures.

Reinforcement Learning vs Supervised Learning:
A tug of war to generate refactored code accurately EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

References

[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.

2021. Unified Pre-training for Program Understanding and Generation.

arXiv:2103.06333 [cs.CL] https://arxiv.org/abs/2103.06333

[2] Toufique Ahmed and Premkumar Devanbu. 2022. Few-shot training LLMs for

project-specific code-summarization. In Proceedings of the 37th IEEE/ACM Inter-

national Conference on Automated Software Engineering. 1–5.

[3] Ali Al-Kaswan, Toufique Ahmed, Maliheh Izadi, Anand Ashok Sawant, Premku-

mar Devanbu, and Arie van Deursen. 2023. Extending source code pre-trained

language models to summarise decompiled binaries. In 2023 IEEE International

Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,

260–271.

[4] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-

ing distributed representations of code. Proceedings of the ACM on Programming

Languages 3, POPL (2019), 1–29.

[5] Mauricio Aniche, ErickMaziero, Rafael Durelli, and Vinicius HSDurelli. 2020. The

effectiveness of supervised machine learning algorithms in predicting software

refactoring. IEEE Transactions on Software Engineering 48, 4 (2020), 1432–1450.

[6] Anonymous authors. [n. d.]. Replication package for this study. https:

//anonymous.4open.science/r/extract-method-generation-2CDC

[7] AWS. [n. d.]. AI Coding Assistant - Amazon Q Developer - AWS —

aws.amazon.com. https://aws.amazon.com/q/developer/. [Accessed 03-09-2024].

[8] Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Arun Iyer, Suresh

Parthasarathy, Sriram Rajamani, B Ashok, and Shashank Shet. 2024. Codeplan:

Repository-level coding using llms and planning. Proceedings of the ACM on

Software Engineering 1, FSE (2024), 675–698.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. 2020. Language models are few-shot learners. Advances in neural

information processing systems 33 (2020), 1877–1901.

[10] Mandeep K Chawla and Indu Chhabra. 2015. Sqmma: Software quality model for

maintainability analysis. In Proceedings of the 8th Annual ACM India Conference.

9–17.

[11] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover,

Michael Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. 2021.

Decision Transformer: Reinforcement Learning via Sequence Modeling.

arXiv:2106.01345 [cs.LG] https://arxiv.org/abs/2106.01345

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde

De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,

Greg Brockman, et al. 2021. Evaluating large language models trained on code.

arXiv preprint arXiv:2107.03374 (2021).

[13] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario

Amodei. 2017. Deep reinforcement learning from human preferences. Advances

in neural information processing systems 30 (2017).

[14] Fenia Christopoulou, Gerasimos Lampouras, Milan Gritta, Guchun Zhang, Yin-

peng Guo, Zhongqi Li, Qi Zhang, Meng Xiao, Bo Shen, Lin Li, et al. 2022. Pangu-

coder: Program synthesis with function-level language modeling. arXiv preprint

arXiv:2207.11280 (2022).

[15] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in

GitHub for MSR Studies. In 18th IEEE/ACM International Conference on Mining

Software Repositories, MSR 2021. IEEE, 560–564.

[16] I Eee. 1990. Standard G lossary of softwareengineering terminology. IEEE S o f t

w are E n g ineerin g S tandards & oll ecti o n. I EEE (1990), 610–12.

[17] Aryaz Eghbali and Michael Pradel. 2024. De-hallucinator: Iterative grounding

for llm-based code completion. arXiv preprint arXiv:2401.01701 (2024).

[18] Hasan Ferit Eniser, Hanliang Zhang, Cristina David, Meng Wang, Brandon

Paulsen, Joey Dodds, and Daniel Kroening. 2024. Towards Translating Real-World

Code with LLMs: A Study of Translating to Rust. arXiv preprint arXiv:2405.11514

(2024).

[19] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou.

2012. Identification and application of extract class refactorings in object-oriented

systems. Journal of Systems and Software 85, 10 (2012), 2241–2260.

[20] M. Fowler, P. Becker, K. Beck, J. Brant, W. Opdyke, and D. Roberts. 1999. Refac-

toring: Improving the Design of Existing Code. Addison-Wesley Professional.

[21] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation

for object-oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium

and the 13th European Conference on Foundations of Software Engineering (Szeged,

Hungary) (ESEC/FSE ’11). ACM, New York, NY, USA, 416–419. https://doi.org/

10.1145/2025113.2025179

[22] Jan Gerling. 2020. Machine learning for software refactoring: a large-scale

empirical study. (2020).

[23] GitHub. [n. d.]. GitHub Copilot · Your AI pair programmer — github.com. https:

//github.com/features/copilot. [Accessed 03-09-2024].

[24] Jian Gu, Pasquale Salza, and Harald C Gall. 2022. Assemble foundation models for

automatic code summarization. In 2022 IEEE International Conference on Software

Analysis, Evolution and Reengineering (SANER). IEEE, 935–946.

[25] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,

David Lo, John Grundy, and Haoyu Wang. 2024. Large Language Models for

Software Engineering: A Systematic Literature Review. arXiv:2308.10620 [cs.SE]

https://arxiv.org/abs/2308.10620

[26] Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning

for text classification. arXiv preprint arXiv:1801.06146 (2018).

[27] Johannes Hubert. 2019. Implementation of an automatic extract method refactoring.

Master’s thesis.

[28] Contributing Writer Jai Vijayan. 2023. Samsung engineers feed sen-

sitive data to CHATGPT, sparking workplace AI warnings. https:

//www.darkreading.com/vulnerabilities-threats/samsung-engineers-sensitive-

data-chatgpt-warnings-ai-use-workplace

[29] Akshita Jha and Chandan K Reddy. 2023. Codeattack: Code-based adversarial

attacks for pre-trained programming language models. In Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 37. 14892–14900.

[30] Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, and Chandan K. Reddy.

2019. Deep Reinforcement Learning For Sequence to Sequence Models.

arXiv:1805.09461 [cs.LG] https://arxiv.org/abs/1805.09461

[31] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. Bert:

Pre-training of deep bidirectional transformers for language understanding. In

Proceedings of naacL-HLT, Vol. 1. 2.

[32] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-

mization. arXiv:1412.6980 [cs.LG] https://arxiv.org/abs/1412.6980

[33] Vijay Konda and John Tsitsiklis. 1999. Actor-critic algorithms. Advances in neural

information processing systems 12 (1999).

[34] Mark Kramer and Philip H Newcomb. 2010. Legacy system modernization of

the engineering operational sequencing system (eoss). In Information Systems

Transformation. Elsevier, 249–281.

[35] Solomon Kullback. 1997. Information theory and statistics. Courier Corporation.

[36] Zarina Kurbatova, Ivan Veselov, Yaroslav Golubev, and Timofey Bryksin. 2020.

Recommendation of move method refactoring using path-based representation

of code. In Proceedings of the IEEE/ACM 42nd International Conference on Software

Engineering Workshops. 315–322.

[37] Kusum Kusum, Abrar Ahmed, C Bhuvana, and V Vivek. 2022. Unsupervised

translation of programming language-a survey paper. In 2022 4th International

Conference on Advances in Computing, Communication Control and Networking

(ICAC3N). IEEE, 384–388.

[38] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven

Chu Hong Hoi. 2022. Coderl: Mastering code generation through pretrained

models and deep reinforcement learning. Advances in Neural Information Pro-

cessing Systems 35 (2022), 21314–21328.

[39] Bolun Li, Zhihong Sun, Tao Huang, Hongyu Zhang, Yao Wan, Ge Li, Zhi Jin,

and Chen Lyu. 2024. IRCoCo: Immediate Rewards-Guided Deep Reinforcement

Learning for Code Completion. Proceedings of the ACM on Software Engineering

1, FSE (2024), 182–203.

[40] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi

Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. 2022.

Competition-level code generation with alphacode. Science 378, 6624 (2022),

1092–1097.

[41] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.

In Text summarization branches out. 74–81.

[42] Hao Liu, Yanlin Wang, Zhao Wei, Yong Xu, Juhong Wang, Hui Li, and Rongrong

Ji. 2023. Refbert: A two-stage pre-trained framework for automatic rename

refactoring. In Proceedings of the 32nd ACM SIGSOFT International Symposium on

Software Testing and Analysis. 740–752.

[43] Guilong Lu, Xiaolin Ju, Xiang Chen, Wenlong Pei, and Zhilong Cai. 2024. GRACE:

Empowering LLM-based software vulnerability detection with graph structure

and in-context learning. Journal of Systems and Software 212 (2024), 112031.

[44] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio

Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou,

Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan,

Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE:

AMachine Learning Benchmark Dataset for Code Understanding and Generation.

arXiv:2102.04664 [cs.SE] https://arxiv.org/abs/2102.04664

[45] Davood Mazinanian, Nikolaos Tsantalis, Raphael Stein, and Zackary Valenta.

2016. JDeodorant: clone refactoring. In Proceedings of the 38th international

conference on software engineering companion. 613–616.

[46] Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, and Gi-

ancarlo Succi. 2007. A case study on the impact of refactoring on quality and

productivity in an agile team. In IFIP Central and East European Conference on

Software Engineering Techniques. Springer, 252–266.

[47] Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023. Retrieval-based prompt

selection for code-related few-shot learning. In 2023 IEEE/ACM 45th International

Conference on Software Engineering (ICSE). IEEE, 2450–2462.

[48] Daniel Nichols, Pranav Polasam, Harshitha Menon, Aniruddha Marathe, Todd

Gamblin, and Abhinav Bhatele. 2024. Performance-aligned llms for generating

fast code. arXiv preprint arXiv:2404.18864 (2024).

https://arxiv.org/abs/2103.06333
https://arxiv.org/abs/2103.06333
https://anonymous.4open.science/r/extract-method-generation-2CDC
https://anonymous.4open.science/r/extract-method-generation-2CDC
https://aws.amazon.com/q/developer/
https://arxiv.org/abs/2106.01345
https://arxiv.org/abs/2106.01345
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://github.com/features/copilot
https://github.com/features/copilot
https://arxiv.org/abs/2308.10620
https://arxiv.org/abs/2308.10620
https://www.darkreading.com/vulnerabilities-threats/samsung-engineers-sensitive-data-chatgpt-warnings-ai-use-workplace
https://www.darkreading.com/vulnerabilities-threats/samsung-engineers-sensitive-data-chatgpt-warnings-ai-use-workplace
https://www.darkreading.com/vulnerabilities-threats/samsung-engineers-sensitive-data-chatgpt-warnings-ai-use-workplace
https://arxiv.org/abs/1805.09461
https://arxiv.org/abs/1805.09461
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Indranil Palit and Tushar Sharma

[49] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,

Silvio Savarese, and Caiming Xiong. 2022. Codegen: An open large language

model for codewithmulti-turn program synthesis. arXiv preprint arXiv:2203.13474

(2022).

[50] William F. Opdyke. 1992. Refactoring: A Program Restructuring Aid in Designing

Object-Oriented Application Frameworks. Ph. D. Dissertation. University of Illinois

at Urbana-Champaign.

[51] Open-AI. [n. d.]. OpenAI API. https://platform.openai.com/docs/models/gpt-4o

[Accessed 19-01-2025].

[52] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-

man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Pe-

ter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training language

models to follow instructions with human feedback. arXiv:2203.02155 [cs.CL]

https://arxiv.org/abs/2203.02155

[53] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a

method for automatic evaluation of machine translation. In Proceedings of the 40th

Annual Meeting on Association for Computational Linguistics (Philadelphia, Penn-

sylvania) (ACL ’02). Association for Computational Linguistics, USA, 311–318.

https://doi.org/10.3115/1073083.1073135

[54] Rishov Paul, Md. Mohib Hossain, Mohammed Latif Siddiq, Masum Hasan,

Anindya Iqbal, and Joanna C. S. Santos. 2023. Enhancing Automated Program

Repair through Fine-tuning and Prompt Engineering. arXiv:2304.07840 [cs.LG]

https://arxiv.org/abs/2304.07840

[55] Dorin Pomian, Abhiram Bellur, Malinda Dilhara, Zarina Kurbatova, Egor Bogo-

molov, Andrey Sokolov, Timofey Bryksin, and Danny Dig. 2024. EM-Assist: Safe

Automated ExtractMethod Refactoring with LLMs. In Companion Proceedings of

the 32nd ACM International Conference on the Foundations of Software Engineering

(FSE ’24). ACM. https://doi.org/10.1145/3663529.3663803

[56] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons.

[57] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. 2019. Language models are unsupervised multitask learners. OpenAI blog

1, 8 (2019), 9.

[58] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech

Zaremba. 2016. Sequence Level Training with Recurrent Neural Networks.

arXiv:1511.06732 [cs.LG] https://arxiv.org/abs/1511.06732

[59] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sun-

daresan, Ming Zhou, Ambrosio Blanco, and Shuai Ma. 2020. CodeBLEU: a

Method for Automatic Evaluation of Code Synthesis. arXiv:2009.10297 [cs.SE]

https://arxiv.org/abs/2009.10297

[60] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347

(2017).

[61] Mahnoosh Shahidi, Mehrdad Ashtiani, and Morteza Zakeri-Nasrabadi. 2022. An

automated extract method refactoring approach to correct the long method code

smell. Journal of Systems and Software 187 (2022), 111221.

[62] Ashish Kumar Shakya, Gopinatha Pillai, and Sohom Chakrabarty. 2023. Rein-

forcement learning algorithms: A brief survey. Expert Systems with Applications

231 (2023), 120495.

[63] Tushar Sharma, Maria Kechagia, Stefanos Georgiou, Rohit Tiwari, Indira Vats,

Hadi Moazen, and Federica Sarro. 2024. A survey on machine learning techniques

applied to source code. Journal of Systems and Software 209 (2024), 111934.

https://doi.org/10.1016/j.jss.2023.111934

[64] Tushar Sharma and Diomidis Spinellis. 2018. A survey on software smells. Journal

of Systems and Software 138 (2018), 158 – 173. https://doi.org/10.1016/j.jss.2017.

12.034

[65] Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. 2023.

Execution-based code generation using deep reinforcement learning. arXiv

preprint arXiv:2301.13816 (2023).

[66] Danilo Silva, Nikolaos Tsantalis, andMarco Tulio Valente. 2016. Whywe refactor?

confessions of github contributors. In Proceedings of the 2016 24th acm sigsoft

international symposium on foundations of software engineering. 858–870.

[67] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea

Voss, Alec Radford, Dario Amodei, and Paul F Christiano. 2020. Learning to

summarize with human feedback. Advances in Neural Information Processing

Systems 33 (2020), 3008–3021.

[68] Weisong Sun, Yun Miao, Yuekang Li, Hongyu Zhang, Chunrong Fang, Yi Liu,

Gelei Deng, Yang Liu, and Zhenyu Chen. 2024. Source Code Summarization in

the Era of Large Language Models. arXiv preprint arXiv:2407.07959 (2024).

[69] Balázs Szalontai, Péter Bereczky, and Dániel Horpácsi. 2023. Deep Learning-

Based Refactoring with Formally Verified Training Data. Infocommunications

journal 15, SI (2023), 2–8.

[70] Robert Tairas and Jeff Gray. 2012. Increasing clone maintenance support by

unifying clone detection and refactoring activities. Information and Software

Technology 54, 12 (2012), 1297–1307.

[71] Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2009. Identification of Extract

Method Refactoring Opportunities. In 2009 13th European Conference on Software

Maintenance and Reengineering. 119–128. https://doi.org/10.1109/CSMR.2009.23

[72] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2022. RefactoringMiner

2.0. IEEE Transactions on Software Engineering 48, 3 (2022), 930–950. https:

//doi.org/10.1109/TSE.2020.3007722

[73] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian,

and Danny Dig. 2018. Accurate and Efficient Refactoring Detection in Commit

History. In Proceedings of the 40th International Conference on Software Engineering

(Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY, USA, 483–494. https:

//doi.org/10.1145/3180155.3180206

[74] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel

Sundaresan. 2020. Unit test case generation with transformers and focal context.

arXiv preprint arXiv:2009.05617 (2020).

[75] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and

Denys Poshyvanyk. 2019. On learning meaningful code changes via neural

machine translation. In 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE). IEEE, 25–36.

[76] David van der Leij, Jasper Binda, Robbert van Dalen, Pieter Vallen, Yaping Luo,

and Maurício Aniche. 2021. Data-driven extract method recommendations: a

study at ING. In Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering.

1337–1347.

[77] A Vaswani. 2017. Attention is all you need. Advances in Neural Information

Processing Systems (2017).

[78] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and

Philip S Yu. 2018. Improving automatic source code summarization via deep rein-

forcement learning. In Proceedings of the 33rd ACM/IEEE international conference

on automated software engineering. 397–407.

[79] Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yitong Li, Pingyi Zhou, Jin Liu,

Hao Wu, Xin Jiang, and Qun Liu. 2022. Compilable neural code generation with

compiler feedback. arXiv preprint arXiv:2203.05132 (2022).

[80] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and

Steven CH Hoi. 2023. Codet5+: Open code large language models for code

understanding and generation. arXiv preprint arXiv:2305.07922 (2023).

[81] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. 2021. CodeT5:

Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-

standing and Generation. arXiv:2109.00859 [cs.CL] https://arxiv.org/abs/2109.

00859

[82] Yanlin Wang, Yanli Wang, Daya Guo, Jiachi Chen, Ruikai Zhang, Yuchi Ma, and

Zibin Zheng. 2024. RLCoder: Reinforcement Learning for Repository-Level Code

Completion. arXiv preprint arXiv:2407.19487 (2024).

[83] Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr

Babkin, and Sameena Shah. 2023. How effective are neural networks for fixing

security vulnerabilities. In Proceedings of the 32nd ACM SIGSOFT International

Symposium on Software Testing and Analysis. 1282–1294.

[84] Aidan ZH Yang, Claire Le Goues, Ruben Martins, and Vincent Hellendoorn. 2024.

Large language models for test-free fault localization. In Proceedings of the 46th

IEEE/ACM International Conference on Software Engineering. 1–12.

[85] Xin Yin, Chao Ni, Tien N Nguyen, Shaohua Wang, and Xiaohu Yang. 2024. Recti-

fier: Code Translation with Corrector via LLMs. arXiv preprint arXiv:2407.07472

(2024).

[86] Zhiqiang Yuan, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, Xin Peng,

and Yiling Lou. 2024. Evaluating and Improving ChatGPT for Unit Test Genera-

tion. 1, FSE (2024). https://doi.org/10.1145/3660783

[87] Marcelo Serrano Zanetti, Claudio Juan Tessone, Ingo Scholtes, and Frank

Schweitzer. 2014. Automated software remodularization based on move refac-

toring: a complex systems approach. In Proceedings of the 13th international

conference on Modularity. 73–84.

[88] Apostolos V. Zarras, Theofanis Vartziotis, and Panos Vassiliadis. 2015. Navigating

through the archipelago of refactorings. In Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015).

Association for Computing Machinery, New York, NY, USA, 922–925. https:

//doi.org/10.1145/2786805.2803203

[89] Xin Zhou, Sicong Cao, Xiaobing Sun, and David Lo. 2024. Large Language Model

for Vulnerability Detection and Repair: Literature Review and Roadmap. arXiv

preprint arXiv:2404.02525 (2024).

[90] Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravindran, Sindhu Tipirneni,

and Chandan K. Reddy. 2022. XLCoST: A Benchmark Dataset for Cross-lingual

Code Intelligence. arXiv:2206.08474 [cs.SE] https://arxiv.org/abs/2206.08474

https://platform.openai.com/docs/models/gpt-4o
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2304.07840
https://arxiv.org/abs/2304.07840
https://doi.org/10.1145/3663529.3663803
https://arxiv.org/abs/1511.06732
https://arxiv.org/abs/1511.06732
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://doi.org/10.1016/j.jss.2023.111934
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1109/CSMR.2009.23
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://doi.org/10.1145/3660783
https://doi.org/10.1145/2786805.2803203
https://doi.org/10.1145/2786805.2803203
https://arxiv.org/abs/2206.08474
https://arxiv.org/abs/2206.08474

	Abstract
	1 Introduction
	2 Background
	3 Methods
	3.1 Overview
	3.2 Dataset Creation
	3.3 Training Models
	3.4 Evaluation

	4 Results
	5 Discussions
	6 Related Work
	7 Threats to Validity
	8 Conclusions
	References

