Mapping Code Smells and Refactorings Accurately:
Insights from an Empirical Study

Gautam Shetty, Tushar Sharma
Dalhousie University, Canada
{gautam.shetty, tushar} @dal.ca

Abstract—Background: Code smells indicate underlying qual-
ity issues that negatively impact software maintainability. Refac-
toring is a common way to improve code quality by restructuring
it, often removing these code smells. While many recommen-
dations exist on how to refactor code smells, we do not fully
understand how developers how they are removed by developers
in the real world.

Aim: In this study, we aim to investigate the evolution of code
smells and the impact of applied refactoring techniques.
Method: Our study addresses this gap by investigating both
implementation and design smells and the refactoring techniques
developers use to remove them. We also explore how often code
smells are removed using established refactoring techniques. We
analyzed 212,664 commits from 87 open-source Java projects
using both automated tools and manual review to understand
the relationship between code smells and refactoring.

Results: Our key findings include: a) Extract method refactoring
is most effective at fixing multiple smell types, b) Most applied
refactorings do not remove code smells, ¢) About 82% of removed
code smells are ‘“dangling” i.e., they are removed without a
matching refactoring technique, and d) Design smells typically
last longer in codebases than implementation smells.
Conclusions: This research improves our understanding of the
interplay between code smells and refactoring effectiveness. Our
results can help researchers develop better tools and guide
software engineers in making their refactoring processes more
efficient.

I. INTRODUCTION

Software maintenance is a critical aspect of the software
development lifecycle, often consuming a significant portion
of development resources [1]. As software systems evolve,
maintaining high code quality becomes increasingly challeng-
ing, particularly when code smells start to accumulate [2],
[3l. These code smells—surface indicators of deeper design
issues—increase technical debt and negatively impact software
maintainability [4].

Refactoring, the process of improving the internal structure
of software without altering its external behavior, has long
been recognized as an effective approach to mitigating code
smells and improving code quality [2]. Developers employ
various refactoring techniques; among them, the common
refactoring techniques include rename, extract method, and
move method. Refactoring offers several benefits, including
increased readability, reduced complexity, and, in general,
enhanced maintainability [2], [5], [6].

Numerous studies have investigated tools and methodolo-
gies for examining code smells and refactoring practices. They
address dimensions including detection approaches, quality

impact assessment, and their relationship with software devel-
opment activities and artifacts’ quality [6]-[9]. Some studies
attempt to understand the impact of code smells or applied
refactorings on software quality attributes such as maintain-
ability [[7], [8]. Others examine how code smells evolve over
time; for example, Tufano er al. [[10] reveal that most code
smells are introduced at file creation rather than through grad-
ual changes and often persist throughout a project’s lifetime.
Despite these advancements, current tools mostly examine
code smells and refactorings separately, limiting our under-
standing of how they interact and influence each other. To the
best of our knowledge, the study by Yoshida et al. [11]] is the
only attempt to understand the relationship between applied
refactorings and the code smells that the refactorings remove.
Their short study reveals that the smells are removed by a code
edition operation that does not represent a known refactoring
technique. These observations indicate that there is a lack of
understanding how code smells persist, evolve, or are resolved
by applying specific refactoring techniques. By studying these
characteristics, we can gain a deeper understanding of the
connection between code smells and refactoring techniques.
This knowledge can guide developers on how to make smarter
choices about when and how to refactor their code, which leads
to improved software maintainability.

Though existing research attempts to understand the connec-
tion between refactoring and code smells, it exhibits many lim-
itations. First, most existing studies analyze this relationship at
a coarse level and do not capture the fine-grained interactions
between specific code smell instances and refactoring actions.
Second, there is limited understanding of what type of refactor-
ings to perform to resolve an existing smell. Third, prior works
mainly focuses on identifying correlations between smells
and refactorings as observed by automated means, without
exploring the underlying semantic or meaningful relationships
between them.

To address these gaps, our study conducts a detailed analysis
of individual code smell instances and their corresponding
refactoring actions. We also examine the lifespan and surviv-
ability of smells when analyzed at the granular level (i.e., up to
the scope identified by the changed lines of code) of individual
smell instances. Furthermore, we investigate deeper trends that
emerge from the interaction between different types of code
smells and refactorings.

This study investigates the evolution of code smells over
time and the impact of various refactoring techniques on

smells’ lifespan. We analyze 212,664 commits gathered from
87 Java-based open-source repositories. Our analysis explores
the lifecycle of code smells and examines the relationship
between refactorings and smells. We provide actionable in-
sights by mapping refactoring techniques to smells for each
commit i.e., identifying the refactorings used to address a type
of smell, facilitating a deeper understanding of how refactoring
may influence persistence of smell instances. We construct this
mapping using state-of-the-art smell and refactoring detection
tools, which is subsequently refined through a manual analysis.
This analysis uncovered relevant connections between smells
and refactorings. Additionally, we identify refactorings not
associated with any smell instance to assess their role and
significance in software evolution.
The primary contributions of our study are listed below.

o We present a detailed mapping between code smell and
refactoring techniques observed in the version history of
analyzed repositories. We also conduct a manual analysis
of this mapping to recognize refactoring techniques that
are most frequently applied and likely to be considered
effective for removing particular smells.

o We analyze dangling smells (i.e., smells that are removed
without any corresponding refactoring) and dangling
refactorings (i.e., applied refactorings that do not result
in removing any smell). This analysis helps us understand
the inter-dependence and the gap that emerges from the
lack of it.

o We perform a comprehensive survivability analysis of
code smells over the course of a project’s evolution. This
reveals how long code smells typically persist.

Replication package: Our replication package including
scripts and instructions to execute the scripts can be found
online [[12f]. The collected smells, refactorings and their map-
ping dataset can be found here [|13].

II. METHODS
A. Overview

This study investigates the intricate relationship between
code smells and refactoring techniques. Specifically, we aim to
explore whether and to what extent code smells are refactored
and how long they survive. Furthermore, we aim to explore
refactoring techniques that do not remove smells as well as
smells that are removed by changes other than commonly-
known refactorings. To achieve the above goals, we define the
following research questions.

RQ1. Which refactoring techniques are used to remove
individual code smells?

This research question (RQ) focuses on understanding the
mapping between code smells and corresponding refactoring
techniques that are used to remove the smells. Exploring the
mapping will help us better understand the concrete refactor-
ing techniques commonly applied by software developers to
address specific code smells.

RQ2. Do refactorings always remove code smells?

In this RQ, we examine refactorings that do not appear to
remove any code smells. Additionally, we aim to investigate
cases where the removal of code smells was not made by any
refactoring. This analysis will help us understand the degree
of inter-dependence of smells and refactorings.

RQ3. How does the relationship between code smells and
refactoring evolve over time?

With this RQ, we examine the evolution of code smells

across successive versions of a repository and understand the

lifespan of smells. We aim to identify trends in the emergence,

persistence, and resolution of code smells and their evolving
relationship with refactoring over time.

To address the questions, we outline our approach in Fig-
ure[T] We first identify and download a set of Java repositories
from GITHUB. With the help of REFACTORINGMINER, we
identify refactorings applied across all the commits of the
selected repositories. Similarly, we analyze the repositories
to identify code smells in their entire commit history using
DESIGNITEJAVA. We develop scripts to automate these steps
and analyze the collected information to establish a collation
mapping between identified smells and refactoring techniques.
Furthermore, we complement the automated analysis with
manual assessment to ensure the correctness and reveal deeper
insights. In the rest of the section, we elaborate on each of the
steps.

B. Repositories selection

In step 0 of Figure El, we leverage the SEART GITHUB
search tool [14] to identify a set of repositories suitable for
our research objectives. We query GITHUB to fetch Java
repositories that have more than 1,000 commits, with at least
5,000 stars, 10 contributors, and at least 100 forks excluding
forked repositories. The criteria are chosen to avoid analyzing
small and low-quality repositories and select repositories that
show wide popularity. This criteria resulted in 183 repositories.
We apply out repositories with more than 20,000 commits
to avoid excessive computing resources. We download the
remaining 87 repositories using a Python script. We analyze
the default branch of each repository.

C. Data preparation

Our approach requires detection of code smells and identifi-
cation of refactorings throughout a repository’s history i.e., for
each commit. The selection of appropriate tools is guided by
three key requirements. First, the tools must support detection
of smells and refactorings at the commit-level granularity. Sec-
ond, the tools must have comprehensive detection capabilities
that are well-accepted by the community and third, the tools
must have an established reliability through prior validation.

Based on these criteria, we select DESIGNITEJAVA [15] to
detect code smells. DESIGNITEJAVA is a state-of-the-art Java
code quality analysis tool that computes various code quality
metrics and supports the detection of a comprehensive set of
code smells across various abstraction levels. It also supports
multi-commit analysis, making it suitable for our study. This
extensive coverage has led to its widespread adoption in

refactorings

Collocation map

ol=

Manual analysis

Smells lifespan

= &-&

Detected
RefactoringMiner
GitHub 0 i
- = P o
SEI Java

v repositories% D/ |:>

DesigniteJava

Detected
code smells

° (&)

Smell and refactoring
intersection

{
Wl
o> | M

Postprocess

€ J

=
=

Fig. 1: Overview of the proposed approach.

numerous studies [16]—[20]. For the purposes of our study,
we focus specifically on design and implementation smells
to maintain a clear scope. Similarly, we select REFACTOR-
INGMINER [21]] to mine applied refactoring techniques in a
Java-based repository. REFACTORINGMINER, detects over a
hundred refactoring types. It has demonstrated high precision
(99.6%) and recall (94%) in refactoring detection, outperform-
ing other similar tools. It is the state-of-the-art tool widely used
by software engineering community [22[]-[25].

We use these tools to detect smells and applied refactorings
in all the commits of the selected repositories. We use Python
scripts to invoke these tools on the default branch of each
repository. The detected smells and refactorings are systemat-
ically stored for further analysis.

Computational environment: We used a high-performance
Linux machine equipped with 144 GB RAM and 36 cores
to analyze the selected repositories. Our scripts utilize the
available cores in the machine using parallelism in the form of
multi-threading and multi-process tasks. We used the following
key tools and development environment: DESIGNITEJAVA
(v2.5.9), REFACTORINGMINER (v3.0.9), Python (v3.11.5),
and Java runtime (v17).

D. Data analysis

Figure [2] describes the naming convention and different
phases that characterize the life spans of smells and refac-
torings used in this study. The figure shows evolution of a
repository in terms of commits, detected smells, and refac-
toring horizontally. At phase @, a new smellInstance is
introduced at commit co. In subsequent commits, the location
of a smellInstance may change, or the smellInstance may
get removed.

We show a smelllnstance at @) that is moved locally
due to changes in the code (for example, when a few lines
are deleted in the same file before the smell location). It
is also possible that the smells are moved to another file
(for example, due to renaming the file). In this scenario,

other refactoring actions that do not directly affect the smell
are taken into consideration, and smelllnstance metadata is
updated accordingly (if there is any). So when this step is
performed on smelllnstance, it is termed as movedSmell.

In step @, at commit ¢ 1, the smellInstance is no longer
present compared to the previous commit; in this case, the
smell is considered removed. As this smelllnstance does
not persist after commit ¢y, it is termed as removedSmell.
Here, the refactorings’ right side diff range is checked for
intersection with any smelllnstances’ range at the same
commit. If they intersect, the particular refactoring is mapped
to smellInstance.

Commit G G G . G

Crs1

Code smell

oo @ °

Refactoring

Fig. 2: Naming convention and smell lifespan

We calculate the lifespan of a removedSmell, in terms of
number of commits and number of days, it took to remove
a particular smellInstance. For example, the difference be-
tween cj, and cg, as indicated by @), is the lifespan of the smell.
During this process at the latest version of the repository,
not all smelllnstance are considered removedSmell. Some
smells, such as shown at @ remain; these are a set of
aliveSmells. These smells are smelllnstances, which still
persist in the latest version of the repository. We do not
compute lifespan for aliveSmells since those are still active
and do not have an end date or an end commit.

1) Smell and refactoring mapping: ldentifying collocated
refactoring changes and code smells is an important step of our
analysis. We map a code smell with an applied refactoring, if
the scope of the both the smell and refactoring is same and the
smell is removed in the commit due to the applied refactoring.
The scope of a code smell or refactoring is defined by its file
location and the specific lines of code it encompasses.

For implementation smells, we identify the commit where
a smell is removed and analyze the original code (i.e., left-
side of the code diff) as shown in Figure [2] for the presence
of refactorings. We then compare the range, in terms of lines
of code, of the refactoring operation with the range of the
removed smells.

We also map refactorings that introduced smells by con-
sidering the changed code (i.e., the right-side of code diff).
We only consider changes where the range of refactorings
intersects with the smells’ range for mapping. To summarize,
let S be the set of smell instances and R be the set of
refactoring instances. For each s € S and r € R, we define a
mapping function M:

1, if range(s) Nrange(rieq) # 0
(for smell removal)
M(s,r) = {1, if range(s) Nrange(rign) # 0
(for smell introduction)

0, otherwise

where range(s) represents the method’s range in lines of code
affected by smell s, range(ren) and range(righ) represent
the range of refactorings found in the left-side or right-side of
the code-diff.

For Design smells [8], we identify the newly introduced
and removed smells and applied refactorings in a commit.
We map smells to refactorings based on their common scope.
We consider the scope of a smell and refactoring same when
the refactoring is applied in the same file(s) where the smell
is detected. Let F(s) and F(r) be the set of files affected
by a smell s and a refactoring » in a commit respectively.
The mapping function for the smell s and the refactoring r is
defined as:

if F(s)NF(r)#£0
0, otherwise

2) Smells lifespan calculation: We determine a code smell’s
lifespan by counting the commits between its introduction and
removal. Given that many smells may occur multiple times in a
code block (such as magic number) and they may move within
and outside the file, the lifespan computation is complex. We
develop an algorithm that tracks each smell instance from its
inception to its resolution considering complex cases. Algo-
rithm [1| presents the smell lifespan calculation mechanism. In
the algorithm, ¢, p, and t refer to current commit, previous
commit, and commit timestamp, respectively.

Algorithm 1: Smell lifespan calculation

Input: Commits sorted (by time in ascending order)
C= {(Cl7 t1)7 (627 t2)7 ey (cn7 tn)}
Input: Smell instances S. detected for each commit ¢
Output: List of smell instances across repository history
1 liveSmells < 0; smellInstances < 0;
2 foreach (c,t) € C do
prevSmells < Sp;
currSmells <+ S.;
foreach s € currSmells N prevSmells do
if s is “implementation smell” then
liveSmells[s|.range < s.range;
liveSmells[s].commit < (c,t);

=TT T LY I

end

10 end

1 addedSmells < currSmells — prevSmells;

12 foreach s € addedSmells do

13 | liveSmells|s].introducedCommit < (c,t);

14 end

15 liveSmells < liveSmells U addedSmells;

16 removedSmells < prevSmells — currSmells;
17 foreach s € removedSmells do

18
19

liveSmells[s].removedCommit + (c,t);
smellInstances <
smellInstances + {liveSmells[s]};

20 end

21 liveSmells < liveSmells — removedSmells;
2 P

23 end

// Handle smells that were never removed
24 foreach s € liveSmells do
35 | smellInstances < smellInstances + {s};
26 end
27 return smelllnstances;

The algorithm processes a repository’s commit history
in ascending order of commits, maintaining a set of ac-
tive smells (liveSmells) and a list of all smell in-
stances (smelllnstances). For each commit, it identifies
addedSmells as those present in the current commit but not
in the previous one and adds them to liveSmells. It detects
removedSmells as those present in the previous commit but
not in the current one, marking their resolution and recording
their lifespan in smellInstances. For moved smells (specific
to implementation smells), the algorithm tracks changes in
line numbers without considering them as removed, updating
their metadata in liveSmells. Finally, any smells remaining
in liveSmells after processing all commits are added to
smellInstances, ensuring all lifespans are captured including
smells that were never removed. The algorithm outputs a list
of smell instances, each representing the lifespan of a smell in
terms of smell metadata, commit count, and temporal duration.

Smell Lifespan in Commits (SLCy) for a smell instance s is
calculated as the number of commits from its introduction to
its removal. For example, if a smell is introduced in commit ¢;
and removed in commit c;, then SLC; is j — 2+ 1. This metric
quantifies the duration, in terms of the number of commits,
taken to address a smell. We also compute Smell Lifespan in
Time (SLT,), which measures the time (typically in number

of days) between the introduction and removal of a smell s.

E. Postprocessing

We carry out a mapping between code smells and identi-
fied refactoring operations in Section However, across
multiple commits in a repository, there can be several smell
instances that are semantically identical but appear as separate
instances due to minor changes in metadata, such as variations
in package name, type name, or method name of the smell.
For instance, if a method foo that suffers from a complex
method code smell, is renamed to bar, then bar should
not be considered as a new instance of complex method”.
These variations are often caused due to move or rename
type refactorings, which result in the creation of new smell
instances instead of updating the existing ones.

To address this issue, we introduce a postprocessing step,
indicated as step e in Figure |1} This step links smell instances
that were split due to refactoring operations. Specifically,
we identify cases where a refactoring removes one smell
instance and introduces another, and we merge these as a
single instance specially when the old and new smell instance
are essentially the same instance but differs in a minor way
(such as change in the starting line or a change in the type
name). Through this process, we identify a total of 74,450
smell instances initially terms as different but were merged
after analyzing the occurrence pattern and associated metadata.

F. Manual analysis

After refining the initial mapping by aligning code smells
with refactorings, some associations remained practically in-
valid. This limitation arises because the mapping is primarily
based on collocation, which does not inherently guarantee
meaningful relationships between code smells and refactoring
actions. In a similar study, Yoshida ez al. [11]] also observed the
spurious mapping between code smells and refactoring when
the basis of mapping is collocation. To assess the correctness
of the identified associations, a thorough manual verification
is essential. The aim of the manual analysis is to identify and
eliminate spurious smell-refactoring mappings and improve
the reliability of the generated dataset.

For this manual analysis, we select the five most frequently
applied refactoring techniques corresponding to each identified
code smell in the dataset. For each of these top smell-
refactoring pairs, we randomly select six instances, resulting
in a total of 802 samples for manual evaluation. The analysis
is conducted by the first author of the study primarily, who has
3 years of software development experience. The assessor an-
alyze the collected metadata, including the mapped smell and
refactoring names and changes in the code to assess whether
the mapped smell and refactoring pair is genuine and must be
kept. For example, class javac.handlers.Handle Builder in
this commit [26] is genuine, as refactoring technique Change
method access modifier help resolve smell Imperative abstrac-
tion in this class. Whereas, class ApiAccessLogRespV O [27]]
has refactoring Remove class annotation mapped to removal of
smell Unnecessary abstraction because both affects the same

class. But the refactoring practically never impacts the smell,
hence these types of pairs were considered impractical and
discarded in further study.

The assessor also employ a Large Language Model (LLM)
to avoid bias in the assessment. We use state-of-the-art model
from OpenAl GPT-4o0-mini-2024-07-18 for the task. We de-
sign a suitable prompt for the task based on the recommended
best practices [28]. We conduct a short pilot study to ensure
that the prompt is designed appropriately and providing rea-
sonable response for the given samples. The prompt that we
used is listed below.

Role: You are an expert software developer with a strong
understanding of code smells and refactoring, especially in
Java programming.

Instructions:

o correct_mapping: Respond with true if the refactor-
ing effectively removes the code smell; respond with
false if it does not, and provide a brief explanation.

o Output Format: The answer must be in the format:
{correct_mapping : true/ false,
reason : < brie fexplanation >}

Context: A code smell was removed in a commit with the
following details:

o File: smell_file_name

o Method: smell_method (Lines s_method_range)
o Smell Kind: smell_kind

o Smell Type: smell_type

A refactoring was applied in the same commit:

o Refactoring Type: ref_type
o Description: ref_description
o Code Changes:

— Before: ref_left_changes
— After: ref_right_changes

We invoke the LLM for each of the 802 samples for which
we already have an assessment from one human assessor.
We compare the responses provided by the LLM with the
assessor’s assessments and flag the samples where the LLM
is in disagreement with the assessor. These flagged samples
were further reviewed by another author to ensure accuracy.
The inter-rater agreement between the human assessor and the
LLM responses is measured using Cohen’s Kappa (x = 0.84).

One common observation after human assessment was the
coincidental collocation of smells. A smell-refactoring pair
is considered spurious or coincidental when the pair is col-
located; however, the refactoring semantically does not and,
sometimes, cannot remove the smell occurrence. Instead, the
refactoring modifies other aspects, such as a shared method or
class associated with the smell. During the manual analysis, we
find such coincidental collocation in 115 (out of 135) smell-
refactoring pairs.

For example, long statement is mapped to add parameter
refactoring based on collocation analysis in this commit [29] .
In propagated Headers method in type Protocol belonging
to package org.asynchttpclient.providers.nettyd.handler,
we have a long statement at line 116. This smell was removed
in this commit, as visible in the left side diff of the commit.

Add parameter refactoring is mapped to this smell. A new
parameter boolean switchToGet is added to the same method
propagatedH eaders of smell does affect the smell’s removal.
The reason the refactoring is mapped to the smelllnstnace
lies in the limited factual information, i.e., intersection in
method range in this scenario. Semantically, the refactoring
does not impact smell because add parameter refactoring
only adds a new parameter to the method definition that do
not affect the smelly statement length in any way. Hence,
such kind of smell-refactoring pair is considered incorrect and
excluded from set of filtered smell-refactoring pairs.

Additionally, we also observe that some of the design
smells, such as wide hierarchy, unutilized abstraction, re-
bellious hierarchy, multipath hierarchy, hub-like modulariza-
tion, cyclically-dependent modularization, cyclic hierarchy,
and broken hierarchy, cannot be mapped with the adopted
collocation approach. Their accurate mapping requires con-
siderations such as the dependency graph and selective code
change mapping to refactorings.

This evaluation process identify spurious smell-refactoring
pairs arising merely due to coincidental collocations. By
removing these spurious mappings, we ensure that our final
dataset contains only correct and consistent smell-refactoring
pairs. This curated mapping serves as a reliable basis for
further analysis in our study.

III. RESULTS

A. RQI: Smell and refactoring mapping and understanding
their relationship

Approach: RQ1 aims to identify the common refactoring
techniques applied to resolve code smells. To achieve this ob-
jective, we map the identified smells to respective refactorings
using state-of-the-art tools DESIGNITEJAVA and REFACTOR-
INGMINER, as discussed in Section |[I-DI| We ensure that
minor changes in the code do not result in a new set of smells
by following a set of postprocessing steps (Section [[I-E). To
further verify the mappings and reduce the coincidental and
spurious collocations, we conduct a thorough manual analysis.
We outline the steps involved in manual analysis in [[I-F
Manual analysis helps us provide meaningful pairs of smells
and refactorings in the generated mapping. Therefore, result
of the manual analysis is a set of smell-refactoring mappings
that needs to be discarded from the final analysis. We refer
to our dataset as the filtered dataset after filtering out such
mappings; the retained refactoring techniques corresponding
to each smell is referred as the effective refactoring technique.

Results: Figure [3|illustrates the identified mapping between
smells and refactorings. Our observations show that 15.1%
detected smells remain alive without significant changes. The
majority (71.1%) of detected smells are not mapped to any
refactorings that may help resolve the smell. Only a fraction of
detected removed smells (13.8%) are mapped to a refactoring
technique.

Figure [4] visualizes the evolution of code smells across mul-
tiple software repositories over normalized development time.
The X-axis represents the commit history, normalized from 0

I Mapped to
refactorings:204,249

Design: 705,185 I

Implementation: 774,883

Did not b
ove:1,293,551 Removed: 1,256,578
No mapping: 1,052,329

Moved: 186,517 Alive: 223,490

Fig. 3: Code smell-refactoring mapping overview

(first commit) to 1 (last commit), which allows for consistent
aggregation across projects with varying commit counts. The
Y-axis shows the average smell count per repository and is
displayed on a logarithmic scale for better readability.

The Smells Introduced per Commit curve, shown in green,
represents the average number of new code smells introduced
at each normalized point in time. The Smells Removed per
Commit curve, shown in red, represents the average number
of smells removed at each point. Removals are constrained
to only eliminate smells that were previously introduced. The
Net Alive Smells curve, shown in blue, reflects the number
of active smells remaining in the codebase over time. This
is calculated by tracking the net change between introduced
and removed smells. The Cumulative Smells Removed curve,
shown as an orange dashed line, indicates the total number of
smells removed up to each point in time.

The aggregated time series shows the cumulative number
of removed smells often exceeds the count of alive smells by
the end of the timeline. This occurs because smells can be
introduced and removed repeatedly across different commits,
leading to a higher overall count of removed smells than those
that persist.

100000

—— Smells Introduced per Commit
—— Smells Removed per Commit
10000 1 —— Net Alive Smells

Cumulative Smells Removed

1000

-
o
3

-
o

Average Smell Count per Repository (Log Scale

0 0.25 s 0.75 1
Normalized Commit Index (0 = first commit, 1 = last commit)

Fig. 4: Code smell evolution

Figure [3] presents the mapping of code smells and corre-
sponding Refactoring techniques that we find effective for
smell resolution. Our results indicate that the extract method
refactoring is the most frequently applied technique for ad-
dressing multiple types of code smells. It is also the most
effective in resolving various types of smells, including long
method, complex method, complex conditional, multifaceted
abstraction, imperative abstraction and insufficient modular-
ization. One example of extract method refactoring to elim-
inate an implementation smell, specifically long method, can
be observed in the function writeField in type Structure from

lae7d commit of “java-native-access/ina” repository [30].

Broken Modularization: 228 I Move Attribute: 228

Deficient Encapsulation: 202 Bl Change Attribute Access Modifier: 202

Insufficient Modularization: 365

Multifaceted Abstraction: 4

Extract Method: 729
Complex Method: 82

Long Method: 247 [} = Extract and Move Method: 41
Change Method Access Modifier: 3
= Extract Variable: 50
Change Parameter Type: 4

Imperative Abstraction: 10
Complex Conditional: 115
Unexploited Encapsulation: 9

Change Variable Type: 1,195

Long Statement: 1,966

Rename Variable: 806

Long Identifier: 30 —
Abstract Function Call From Constructor: &
Empty Catch Block: 53 =

Remove Class Modifier: 4
Add Parameter: 2
Assert Throw: 53

Long Parameter List: 305] Remove Parameter: 305

Fig. 5: The refactoring techniques used to refactor each type
of code smells

Another interesting case is the remove parameter refac-
toring, which directly addresses and reduces the severity
of the long parameter list smell. Other notable refactorings
include change method access modifier, which is effective in
removing design smell imperative abstraction and assert throw
refactoring to resolve empty catch block.

Some refactorings did not completely resolve smells most
of the time, but they help reduce the severity of smells. For
example, in commit e90736 of project “cryptomator” ,
method FxApplication (line 64), Remove parameter refac-
toring helps reduce the severity of smell type Long parameter
list. Although this refactoring did not resolve the smell, but
helped reduce the severity of the smell.

RQ1 Summary. We identify smell-refactoring pairs
where specific refactoring techniques effectively re-
move code smells. Extract method refactoring is the
most effective in resolving multiple types of smells.

B. RQ2: Unmapped smells and refactorings

Approach: RQ2 aims to investigate the dangling links in
the code smell and refactoring mapping analysis. A code
smell instance is referred to as dangling when removal of the
smell is not mapped with any refactoring technique. Similarly,
an applied refactoring is treated as a dangling refactoring
instance when it does not remove a smell. Our collocation
logic that maps detected code smells and applied refactorings
in each commit of a repository reveals such unmapped smells
and refactorings. We elaborate the collocation mechanism in
Section

We also analyze such dangling links to understand the
reasons behind their occurrence. We randomly select ten
samples from each dangling smell type. We analyze each
instance by manually examining the code that introduces the

smell, the intermediate commits that retain it and changes in
the code that removes the smell. This verification is carried
out using the raw smell data produced by DESIGNITEJAVA
as well as version control metadata and corresponding code
changes. When we identify a refactoring in the code that
successfully removes a code smell, we analyze the raw data
generated by REFACTORINGMINER to investigate why the
tool failed to detect this refactoring. Similarly, we analyze
dangling refactorings pairs to understand the reason behind
such unmapped refactorings. Here, we randomly select five
samples for each refactoring type in the top 15 dangling
refactoring types identified across the corpus.

Percentage of smell instances without any removal refactorings
60 65 70 75 80 85 9% 95 100
unnecessary Abstraction (1442s0) T
roken Mocuarzation zocer) T
——
beficent encapsutaton (oas10) RIS
Unutized Abstracton Gesoor) I
Wide Hierarchy (1293)

Rebellious Hierarchy (1689)

nsuficient Modtarzaton (507>) | T

Long Parameter List (47658)
complex Method (41156) - NMMMIRIEEESS
wissing defautt (10ss+) | NS
g Long Statement (236445)
=
= Long Method (3610) - I
5 Broken Hierarchy (23507)
Complex Conditional (23516)
Empty catch clause (17640) - NIRELLY
cycic Hierarchy (s56) MM
Multifaceted Abstraction (62) MMM
Missing Hierarchy (696)
Unexploited Encapsulation (485) 374
Imperative Abstraction (1125) n
Feature Envy (8185) 6277
Long wdentifier (12367) NI
Abstract Function Call From Constructor (199) n
Cyclically-dependent Modularization (19991)
Hub-like Modularization (176) m

85 90 95 100

8-

65 70 75 8

o
8

Fig. 6: Distribution of dangling code smells

Results: Figure [shows dangling code smells i.e., the
number of code smell instances where no refactorings are
identified against their removal. About 82% of smell instances
do not have any removal refactorings mapped. We further
analyze the dangling smells to identify their root cause. We
manually analyze 270 such smells and categorize our findings
in the following categories.

Valid dangling smells: These are genuine smell removals, but
the mapping to refactorings is partially or completely missing.

e Removal without any refactorings involved (48.7%):
Smells are removed due to general code changes not
classified as standard refactorings.

e Removal with refactoring involved, but missed correct
mapping (0.6%): Smells are removed via valid refactor-
ings and the refactoring is detected; however, the mapping
of the refactoring to smells is missed.

o Removal with refactoring involved, but tool missed refac-
toring identification (5.6%): Smells are removed by refac-

torings, but REFACTORINGMINER failed to detect these

refactorings, leading to unmapped smelllnstances.
Invalid dangling smells: These are cases where the smell
appears to be removed due to other reasons.

o Version workflow issue (20.2%): The smelllnstances
removed due to complex Git workflows, such as merges
from older commits or squash operations during rebase.
These scenarios obscure the actual timeline of changes,
leading to a false impression of smell removal.

o Needs further analysis (24.9%): Some design smells need
deeper semantic or dependency analysis, especially when
analysis of a smell instance is dependent on the type
dependency graph.

Similarly, we also observe that half of the identified refac-
torings (51.82%) are not mapped to any smell instances.
Table [I] shows the top 15 dangling refactoring types. To
better understand the persistence of these dangling refactoring
instances, we manually analyze 75 such refactoring instances
and categorize the causes in the following categories:

Valid dangling refactorings: These are valid refactoring
operations, but their mapping to smell removals is either absent
or incomplete.

o Refactoring instances without any smells involved
(84.57%): Refactorings in this category were applied in-
dependently and did not lead to removal of any supported
code smell.

e Refactoring instances with smells involved, but missed
correct mapping (0.2%): The related smell instance is
present and removed, but the mapping between the smell
and the refactoring is not established.

e Refactoring instances with smells involved, but the tool
missed smell identification (0.4%): Although the refactor-
ing removed a relevant smell, DESIGNITEJAVA did not
identify its presence.

Potentially invalid dangling refactorings (14.83%): A com-
mit has several changes, and if refactoring-related changes are
less than half of the changed lines of code, it indicates that
the refactorings are incidental and potentially side effects of
other changes.

TABLE I: Top 15 dangling refactoring types

Refactoring technique Count Distribution
Add method annotation 50,517 8.58%
Change variable type 37,447 6.36%
Change return type 33,692 5.72%
Change parameter type 33,605 5.71%
Add parameter 30,519 5.18%
Rename method 22,104 3.76%
Change method access modifier 21,907 3.72%
Rename parameter 20, 247 3.44%
Change attribute type 19,022 3.23%
Rename variable 15, 882 2.70%
Extract method 15,498 2.63%
Extract variable 14,446 2.45%
Remove method annotation 14, 386 2.44%
Remove parameter 14,243 2.42%
Move class 13,310 2.26%
other refactoring types 231,789 39.38%

RQ2 Summary. Our results show that the major-
ity of removed code smells (~82%) are dangling
smells, primarily because they are removed through
normal feature changes or bug fixes rather than explicit
refactorings. Additionally, over half of the detected
refactorings (~ 52%) are dangling refactorings, often
performed independently during routine maintenance.
The findings suggest that many smell removals and
refactorings occur incidentally during general devel-
opment activities rather than intentional cleanup.

C. RQ3: Smells lifespan analysis

Approach: The objective of RQ3 is to examine how code
smells evolve over time and how long they persist. To answer
this question, we first calculate the lifespan of smell instances
using the approach described in Section We measure the
persistence of each smell instance in terms of the number of
commits it spans and its duration in days. Based on this data,
we perform survival analysis using Kaplan-Meier curves [32]]
to assess the persistence patterns of different types of smells.

TABLE II: Survival probabilities for code smells across all
projects for both commits and days over 10 and 100 range.
Values highlighted in green refer to low survival probability,
while those in red indicate high survival probability.

Smell r[\ype Survill:alol"::::lshllny Survlv;:: g;;ls)ahlllty
10 100 10 100
Broken hierarchy 0.31 0.18 0.50 0.26
Broken modularization 0.35 0.14 049 0.16
Cyclic hierarchy 0.39 0.20 0.60 0.28
Cyclically-dependent modularization 0.52 0.15 0.64 0.24
Deficient encapsulation 027 0.12 049 0.20
Feature envy 0.33 0.19 0.50 0.25
Hub-like modularization 0.59 035 0.70 0.41
Imperative abstraction 0.37 0.20 0.53 0.30
Insufficient modularization 025 0.12 043 0.17
Missing hierarchy 0.38 0.20 0.54 0.27
Multifaceted abstraction 036 0.17 0.56 0.25
Multipath hierarchy 0.19 0.11 034 0.18
Rebellious hierarchy 022 0.11 0.38 0.19
Unexploited encapsulation 037 0.24 0.55 032
Unnecessary abstraction 0.34 0.16 0.52 0.22
Unutilized abstraction 0.34 0.16 0.52 0.23
Wide hierarchy 026 0.12 046 0.18
Abstract function call from constructor 0.34 0.20 0.53 0.37
Complex conditional 0.34 0.17 0.52 0.25
Complex method 0.32 0.16 0.52 0.24
Empty catch clause 032 0.16 052 0.20
Long identifier 043 0.28 0.56 0.31
Long method 034 0.18 0.56 0.26
Long parameter list 0.30 0.16 047 0.22
Long statement 0.36 0.19 0.53 0.23
Magic number 0.30 0.16 0.51 0.20
Missing default 035 0.19 0.57 0.30

Results: Table [II] presents the survival probabilities of var-
ious smells measured in both commits and days. On average,
design smells have a survival probability of 0.35 after 10
commits and 0.19 after 100 commits. In contrast, implemen-
tation smells average 0.33 and 0.17 for the same thresholds,

1.0 —}

e
®

0.8

Smell Type
—— Unnecessary Abstraction
Unutilized Abstraction
—— Deficient Encapsulation
—— Feature Envy
—— Cyclically-dependent Modularization
—— Broken Hierarchy
Unexploited Encapsulation
—— Missing Hierarchy
Wide Hierarchy
—— Insufficient Modularization
—— Broken Modularization
Cyclic Hierarchy
—— Rebellious Hierarchy
—— Hub-like Modularization
—— Multipath Hierarchy
—— Multifaceted Abstraction
Imperative Abstraction

10 100 1000
Days (Log Scale)

(a) Survival curve for design smells

> >
£ £
= o
T 0.6 @ 0.6
o o
4 <
o o
© ©
> 04 > 04
= =
c c
=3 =3
wn wn
0.2 0.2
0.0 0.0
1 10 100 1000 1
Commits (Log Scale)
10 Lo
08 08—
) 2
£ 0.6 2
® o g 06
2 e
a o
© ©
> 04 > 04
< I
3 =3
) [0}
0.2 0.2
0.0 0.0
1 10 100 1000 1

Commits (Log Scale)

smell Type
—— Magic Number
Missing default
—— Complex Method
—— Empty catch clause
—— Long Statement
—— Long Parameter List
Complex Conditional
—— Long Identifier
Long Method
—— Abstract Function Call From Constructor

10 100 1000
Days (Log Scale)

(b) Survival curve for implementation smells

Fig. 7: Code smell survival curves based on survivability of smell by commits and days

respectively. This suggests that design smells generally persist
longer in the codebase than implementation smells. Smells
such as cyclic-dependent modularization and hub-like mod-
ularization show high survival probabilities, indicating they
are less likely to be removed promptly. On the other hand,
smells like multipath hierarchy and rebellious hierarchy have
lower survival rates, implying they are resolved more quickly.
Notably, while cyclic-dependent modularization persists in the
short term (10 commits), it is more likely to be addressed by
the 100" commit.

Among implementation smells, long identifier exhibits the
highest survival probabilities. Most other implementation
smells show similar trends, with approximately 0.33 survival
at 10 commits and 0.17 at 100 commits. These findings
suggest that developers may prioritize fixing certain types of
smells over others, potentially due to their perceived impact
on maintainability or system behavior. The differences in
survival patterns between design and implementation smells
also highlight the need for targeted refactoring strategies
tailored to the nature and persistence of each smell type.

Figure [/| shows the Kaplan-Meier survival curves for both
design and implementation smells. Most smell instances do
not survive beyond 10 commits. Design smells generally ex-
hibit longer lifespans than implementation smells. Consistent
with Table |m smells such as hub-like modularization, cyclic-
dependent modularization, and long identifier demonstrate

strong resistance to removal. An interesting case is abstract
function call from constructor, which shows higher surviv-
ability in terms of time (days), even if not as pronounced in
commit count.

RQ3 Summary. Among the smells that are eventually
removed, most types are typically resolved within
100 commits from their introduction. However, de-
sign smells tend to have a higher survival probability
than implementation smells across both commit and
time-based survival analysis. Our results also indicate
that certain smells remain more resistant to removal,
emphasizing the importance of targeted refactoring
strategies to address more persistent smells.

IV. RELATED WORK
A. Smell and refactoring detection

Several studies examine code smell occurrences and appli-
cable refactorings. Shahidi er al. [33] proposed an automated
approach to identify and refactor long-method smells using
the extract method refactoring for Java code. They used
cohesion metrics and advanced graph analysis techniques to
identify extract method opportunities. De Stefano et al.
developed an IntelliJ IDEA plugin for automated detection and
refactoring of common types of code smells.

There have been studies that focus on the intersection
of code smells and refactorings. For example, Lacerda et
al. conducted a tertiary systematic review on code smells
and refactoring, highlighting their relationship with software
quality attributes such as maintainability and testability [7].
They identified key research items including smell detection
techniques, refactoring approaches, and empirical studies on
smell impact and trends. Also, Yoshida et al. revisited the
relationship between code smells and refactoring [[11[]. Their
study investigated whether developers apply appropriate refac-
toring patterns to fix code smells in three open-source software
systems. This work bridges the gap between Fowler’s catalog
of refactoring patterns and empirical observations, providing
insights into the practical application of refactoring to address
code smells.

B. Code smell evolution

Analyzing temporal dimension reveal insightful observa-
tions related to characteristics of code smells and their res-
olution. Tufano et al. conducted a study on when and why
code starts to smell bad [10]. They analyzed the evolution
of bad smells in 200 open-source projects, finding that most
bad smells are introduced when files are created and not
necessarily due to decay. Their work provides insights into
the lifecycle of code smells and the factors contributing to
their introduction. Similarly, Chatzigeorgiou and Manakos
investigated the evolution of code smells in object-oriented
systems [35]. Their study on open-source projects revealed
that the majority of code smells persist throughout the project’s
lifetime, and very few smells are removed from a system after
their introduction. They also found that changes that introduce
smell often have a structural nature, such as the addition of
methods or classes.

At a high abstraction level, Gnoyke et al. analyzed architec-
ture smell in 14 open source systems in 485 versions, exploring
their role in system degradation [36]. The study identifies that
architecture smells remain stable relative to code size, with
certain types, such as cyclic dependencies, having a more
significant impact on degradation. These insights help prac-
titioners address system degeneration and guide researchers
in managing architecture smells and technical debt. Similarly,
Sas et al. investigated the relationship between architectural
smells and changes in source code [37]]. They found that
certain types of code changes are more likely to introduce
or remove architectural smells. Kim conducted an empirical
study specifically on the evolution of test smells [38]. The
study analyzed how test smells are introduced and evolve over
time in open-source projects. The results showed that certain
test smell types tend to persist longer than others.

However, there is a lack of detailed and thorough studies
considering a comprehensive set of smells and refactoring
carefully examining the relationship between refactorings and
smells. Such relationship mapping between code smells and
refactoring requires significant human expertise that are not
by default embedded in automated tools. We fill this research
gap by first setting a detailed approach to identify and map

smells and refactorings by using automated tools and scripts
but also analyzing the identified mappings manually to reason
with and validate the identified relationships. Such approach
provides a deeper understanding of how refactorings influence
the persistence of smells.

V. THREATS TO VALIDITY

External validity: This study focuses on software projects
written in Java, primarily because of the extensive research
literature available on Java code quality and the robust tools
for analyzing Java codebases. To enhance the generalizability
of our findings, we initially selected 183 popular open-source
Java repositories based on criteria ensuring their maturity and
quality. However, due to the computational demands and time
constraints of analyzing every commit, we limited the final
selection to 87 repositories included in this study.

Internal validity: A potential threat to internal validity
arises from the manual human analysis used to validate smell-
refactoring pairs. To mitigate this, we employed LLM-based
validation through prompt engineering. Additionally, a third
researcher resolved any conflicting cases.

Construct validity: Construct validity concerns whether the
tools and metrics used truly represent the phenomena being
studied. Our study relies on two external tools: DESIGNITE-
JAvA for detecting code smells and REFACTORINGMINER for
identifying refactorings. Incorrect detection from either tool
poses a risk to the accuracy of our results. Though these tools
show some limitations, they are still the best available tools
for the smell and refactoring detections tasks, respectively.
To minimize the issues originating from tools, we manually
reviewed issues and discuss the limitations in the paper to
open the door for fixing those issues in the tools in the future.

VI. CONCLUSIONS AND FUTURE WORK

This study explored design and implementation smells
with mapped refactorings by leveraging experimental evi-
dence gathered via a large-scale empirical study on 87 Java
repositories. Specifically, the study analyzed whether certain
refactorings are more commonly applied to remove specific
types of code smells (RQ1). Our manual analysis ensured
the correctness of the identified mappings between smells
and refactorings. We also analyzed the unmapped smells and
unmapped refactorings to explore possible reasons for the lack
of mapping (RQ2). Additionally, our survivability analysis
revealed which smells persist longer during repository devel-
opment. The findings show that design smells tend to survive
longer than implementation smells. In particular, unexploited
encapsulation and missing hierarchy exhibited long survival
times, whereas missing default had the shortest survival time
(RQ3).

In the future, we would like to address the remaining
complexities and corner cases in improving the mapping
between smells and refactoring. We also would like to explore
other kinds of smells such as test and architecture smells and
impact of refactorings on them.

[1]

[2]
[3]

[4]
[5]

[6]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

B. P. Lientz, E. B. Swanson, and G. E. Tompkins, “Characteristics
of application software maintenance,” Communications of the ACM,
vol. 21, no. 6, pp. 466471, 1978.

M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
software design smells: managing technical debt. Morgan Kaufmann,
2014.

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” leee software, vol. 29, no. 6, pp. 18-21, 2012.
W. F. Opdyke, “Refactoring: A program restructuring aid in designing
object-oriented application frameworks,” Ph.D. dissertation, University
of Illinois at Urbana-Champaign, 1992.

T. Mens and T. Tourwe, “A survey of software refactoring,” IEEE
Transactions on Software Engineering, vol. 30, no. 2, pp. 126-139, 2004.
G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. Guéhéneuc, “Code
smells and refactoring: A tertiary systematic review of challenges and
observations,” Journal of Systems and Software, vol. 167, p. 110610,
2020.

T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158 — 173, 2018.

J. A. M. Santos, J. B. Rocha-Junior, L. C. L. Prates, R. S.
do Nascimento, M. F. Freitas, and M. G. de Mendonga, “A
systematic review on the code smell effect,” Journal of Systems
and Software, vol. 144, pp. 450-477, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121218301444
M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1. 1EEE, 2015, pp. 403-414.

N. Yoshida, T. Saika, E. Choi, A. Ouni, and K. Inoue, “Revisiting the
relationship between code smells and refactoring,” in 2016 IEEE 24th
International Conference on Program Comprehension (ICPC), 2016, pp.
1-4.

G. Shetty and T. Sharma, “Code Smell Evolution.” [Online]. Available:
https://github.com/SMART-Dal/code_smell_evolution

——, “Dataset for empirical study: Code smells and refactorings,” Apr.
2025. [Online]. Available: https://doi.org/10.5281/zenodo.15285379

0. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github for
MSR studies,” in 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021. 1EEE, 2021, pp. 560-564.

T. Sharma, “Multi-faceted code smell detection at scale using
designitejava 2.0,” in 2Ist IEEE/ACM International Conference on
Mining Software Repositories, MSR 2024, Lisbon, Portugal, April
15-16, 2024. ACM, 2024, pp. 284-288. [Online]. Available:
https://doi.org/10.1145/3643991.3644881

W. Oizumi, L. Sousa, A. Oliveira, L. Carvalho, A. Garcia, T. Colanzi,
and R. Oliveira, “On the density and diversity of degradation symptoms
in refactored classes: A multi-case study,” in 2019 IEEE 30th Interna-
tional Symposium on Software Reliability Engineering (ISSRE), 2019,
pp. 346-357.

T. Sharma, P. Singh, and D. Spinellis, “An empirical investigation on the
relationship between design and architecture smells,” Empirical Software
Engineering, vol. 25, pp. 4020-4068, 2020.

A. Eposhi, W. Oizumi, A. Garcia, L. Sousa, R. Oliveira, and A. Oliveira,
“Removal of design problems through refactorings: Are we looking at
the right symptoms?” in 2019 IEEE/ACM 27th International Conference
on Program Comprehension (ICPC), 2019, pp. 148-153.

A. Uchoa, C. Barbosa, W. Oizumi, P. Blenilio, R. Lima, A. Garcia,
and C. Bezerra, “How does modern code review impact software design

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

degradation? an in-depth empirical study,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2020, pp.
511-522.

M. Alenezi and M. Zarour, “An empirical study of bad smells during
software evolution using designite tool,” i-Manager’s Journal on Soft-
ware Engineering, vol. 12, no. 4, p. 12, 2018.

N. Tsantalis, A. Ketkar, and D. Dig, “Refactoringminer 2.0,” [EEE
Transactions on Software Engineering, vol. 48, no. 3, pp. 930-950, 2022.
M. Zakeri-Nasrabadi, S. Parsa, E. Esmaili, and F. Palomba, “A sys-
tematic literature review on the code smells datasets and validation

mechanisms,” ACM Computing Surveys, vol. 55, no. 13s, pp. 1-48, 2023.
M. T. Hasan, N. Tsantalis, and P. Alikhanifard, “Refactoring-aware

block tracking in commit history,” IEEE Transactions on Software
Engineering, vol. 50, no. 12, pp. 3330-3350, 2024.

T. Sharma, M. Kechagia, S. Georgiou, R. Tiwari, I. Vats, H. Moazen,
and F. Sarro, “A survey on machine learning techniques for source code
analysis,” arXiv preprint arXiv:2110.09610, 2021.

P. Alikhanifard and N. Tsantalis, “A novel refactoring and semantic
aware abstract syntax tree differencing tool and a benchmark for
evaluating the accuracy of diff tools,” ACM Transactions on Software
Engineering and Methodology, vol. 34, no. 2, pp. 1-63, 2025.

Lombok, “added package-infos to lots...”
https://github.com/projectlombok/lombok/commit/
09ea02e4£5752e615be2{f5177be1fb328702a5b, 2014.

YunaiV, “Simplify errorlog and accesslog mod-
ules v0,” https://github.com/yunaiv/yudao-cloud/commit/

930cdce7a0e0af87e1621150a32fdb431ala49b2, 2023.

OpenAl [Online]. Available: https://platform.openai.com/docs/guides/
text?api-mode=responses

AsyncHttpClient, “Propagate most headers on redirect, close
#3824, https://github.com/asynchttpclient/async- http-client/commit/
f46ed2fb5674778c9836fc8a3e965cbaa7b07cael 2015.

Java-Native-Access, “Consolidate structure ffi type

info...” https://github.com/java-native-access/jna/commit/
1ae7d8373{9fcaf403897a33d6ea8536602b59fa, 2017.

Cryptomator, “refactored launcher, deleted uilaunchermod-
ule,” https://github.com/cryptomator/cryptomator/commit/

€9073604193b18b59ae3122c489a7tba8e1e0452, 2022.

W. N. Dudley, R. Wickham, and N. Coombs, “An introduction to survival
statistics: Kaplan-meier analysis,” Journal of the advanced practitioner
in oncology, vol. 7, no. 1, p. 91, 2016.

M. Shahidi, M. Ashtiani, and M. Zakeri-Nasrabadi, “An automated
extract method refactoring approach to correct the long method code
smell,” Journal of Systems and Software, vol. 187, p. 111221, 2022.
M. De Stefano, M. S. Gambardella, F. Pecorelli, F. Palomba, and
A. De Lucia, “casper: A plug-in for automated code smell detection
and refactoring,” in Proceedings of the International Conference on
Advanced Visual Interfaces, 2020, pp. 1-3.

A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of code
smells in object-oriented systems,” Innovations in Systems and Software
Engineering, vol. 10, pp. 3-18, 2014.

P. Gnoyke, S. Schulze, and J. Kriiger, “An evolutionary analysis of
software-architecture smells,” in 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME). 1EEE, 2021, pp.
413-424.

D. Sas, P. Avgeriou, 1. Pigazzini, and F. Arcelli Fontana, “On the
relation between architectural smells and source code changes,” Journal
of Software: Evolution and Process, vol. 34, no. 1, p. €2398, 2022.

D. J. Kim, “An empirical study on the evolution of test smell,” in Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Companion Proceedings, 2020, pp. 149-151.

https://www.sciencedirect.com/science/article/pii/S0164121218301444
https://github.com/SMART-Dal/code_smell_evolution
https://doi.org/10.5281/zenodo.15285379
https://doi.org/10.1145/3643991.3644881
https://github.com/projectlombok/lombok/commit/09ea02e4f5752e615be2ff5177be1fb328702a5b
https://github.com/projectlombok/lombok/commit/09ea02e4f5752e615be2ff5177be1fb328702a5b
https://github.com/yunaiv/yudao-cloud/commit/930cdce7a0e0af87e1621150a32fdb431a1a49b2
https://github.com/yunaiv/yudao-cloud/commit/930cdce7a0e0af87e1621150a32fdb431a1a49b2
https://platform.openai.com/docs/guides/text?api-mode=responses
https://platform.openai.com/docs/guides/text?api-mode=responses
https://github.com/asynchttpclient/async-http-client/commit/f46ed2fb5674778c9836fc8a3e965cbaa7b07cae
https://github.com/asynchttpclient/async-http-client/commit/f46ed2fb5674778c9836fc8a3e965cbaa7b07cae
https://github.com/java-native-access/jna/commit/1ae7d8373f9fcaf403897a33d6ea8536602b59fa
https://github.com/java-native-access/jna/commit/1ae7d8373f9fcaf403897a33d6ea8536602b59fa
https://github.com/cryptomator/cryptomator/commit/e9073604193b18b59ae3122c489a7fba8e1e0452
https://github.com/cryptomator/cryptomator/commit/e9073604193b18b59ae3122c489a7fba8e1e0452

	Introduction
	Methods
	Overview
	Repositories selection
	Data preparation
	Data analysis
	Smell and refactoring mapping
	Smells lifespan calculation

	Postprocessing
	Manual analysis

	Results
	RQ1: Smell and refactoring mapping and understanding their relationship
	RQ2: Unmapped smells and refactorings
	RQ3: Smells lifespan analysis

	Related Work
	Smell and refactoring detection
	Code smell evolution

	Threats to validity
	Conclusions and future work
	References

