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Abstract—Is the quality of existing code correlated with the
quality of subsequent changes? According to the (controversial)
broken windows theory, which inspired this study, disorder sets
descriptive norms and signals behavior that further increases
it. From a large code corpus, we examine whether code history
does indeed affect the evolution of code quality. We examine C
code quality metrics and Java code smells in specific files, and see
whether subsequent commits by developers continue on that path.
We check whether developers tailor the quality of their commits
based on the quality of the file they commit to. Our results
show that history matters, that developers behave differently
depending on some aspects of the code quality they encounter,
and that programming style inconsistency is not necessarily
related to structural qualities. These findings have implications
for both software practice and research. Software practitioners
can emphasize current quality practices as these influence the
code that will be developed in the future. Researchers in the field
may replicate and extend the study to improve our understanding
of the theory and its practical implications on artifacts, processes,
and people.

Index Terms—code quality, software evolution, broken win-
dows, mining software repositories, software analytics, empirical
study, software smells

I. INTRODUCTION

In the late 1960s Stanford professor Philip Zimbardo and
his research team ran a fascinating field study demonstrating
the ecological effects of community and anonymity on vandal-
ism [1]. They removed the license plates from two used cars
and abandoned them on the street with the hood slightly raised:
one in leafy Palo Alto, California and one in New York City’s
gritty Bronx. Within two days they recorded 23 instances
where people tore apart or wrecked the Bronx car. In contrast,
in Palo Alto in a five day period the only person who touched
the car was a passerby who on a rainy day caringly closed the
hood to protect the motor. In his description of the experiment
Zimbardo argues that in environments where anonymity and
a lack of community sense are the rule, individuals resort to
vandalism and graffiti to gain personal recognition.

In 1982 George Kelling and James Wilson used a news
report of Zimbardo’s demonstration [2], together with an
evaluation of New Jersey’s police foot-patrol program and
their personal observations of Newark foot-patrol officers, to
discuss policies for maintaining safe communities. In a long,
influential, and somewhat controversial article, titled Broken
Windows [3], they argued that the maintenance of public order
can lead to safer communities.

The views of Kelling and Wilson, termed as the broken
windows theory, have been used to explain the variation of
crime among neighbourhoods [4], support theories linking dis-
order with crime [5, pp. 281–281], and set public policy, most
famously in the 1990s by William Bratton as Rudy Giuliani’s
New York City police commissioner [6, pp. 47–50]. There is
no agreement on the results of the corresponding policies [4],
[7], [6], [5], mainly because it is difficult to perform controlled
studies on the subject. A large carefully-controlled study of
Chicago neighbourhoods found that social cohesion among
neighbors and their willingness to intervene for the common
good is associated with reduced violence [8]. More recently,
six clever field experiments demonstrated that when people are
exposed to the violation of observed (descriptive) social norms
and rules, they are significantly more likely to break prescribed
(injunctive) norms and rules [9]. On the other hand, a study
published in the same decade [5] independently recreated and
examined Kelling and Wilson’s data and attributed the original
attributed New York’s crime reduction to mean reversion. The
same study also examined a randomized social experiment
that moved families to less disorderly neighbourhoods. The
study failed to find a corresponding reduction in those people’s
criminal behavior. Furthermore, a more recent meta-analysis
of 96 studies [10] failed to find consistent evidence that
disorder increases aggression or deteriorated attitudes toward
the neighborhood, while a meta-analysis of 198 studies by
the same authors [11] identified methodological weaknesses
that have inflated evidence for the broken windows theory and
identified an association from disorder to lower mental health,
but not to physical health or risky behavior.

Despite these mixed findings in social contexts, the concept
of broken windows theory has intrigued researchers in various
fields, including software development. The objective of this
study is to investigate the broken windows theory in the
context of software development, i.e., examine whether de-
velopers become more or less diligent regarding their coding,
depending on the internal quality of the code they operate
on. Internal quality comprises the aspects of software quality
that are experienced only by its developers rather than its
users. It includes the code’s formatting, structure, and identifier
naming. On the other hand, internal code quality does not
cover the software’s functionality, reliability, or performance;
the things that are often the topics of defect or bug reports. In
an analogy to the broken windows theory, we consider code of



high internal quality as “order” and changes that reduce it as
“crime”. There is also an analogy with the seriousness of the
crime: code style infractions [12] can be considered as petty
crime, whereas structural problems are more serious.

Though known and often anecdotally referenced, the broken
windows theory has not been explored adequately in our field.
A motivation for the study is to justify devoting effort to
maintaining specific attributes of internal code quality because
of their indirect, signalling, effects. The findings can have
implications regarding the software development process in
general and also specific aspects such as tooling, refactoring,
code reviews, and continuous integration.

This work, based on the statistical analysis of metrics
derived from two million code commits in 118 constantly
evolving projects for long time, comprising 5.5 million lines of
code (LOC) contributes two types of findings. First, history’s
weight on the evolution of internal code quality: it seems that
a body’s existing code quality is related to the quality of its
subsequent evolution. Second, the relationship between the
commits’ code quality in areas covered by injunctive norms
and some of the corresponding code’s descriptive norms:
adherence to coding guidelines is related to the look of the
existing code. Both findings provide (qualified) support for
the application of the broken windows theory to software
development.

We contribute the following to the state of the art. First, we
present a method to systematically explore the applicability of
the broken window theory on code quality. Next, we outline
a theoretical model concerning code quality and the broken
window theory, contributing towards the understanding of their
potential connection. Finally, we make publicly available a
replication package comprising time-series code quality data
(metrics and smells) from 118 open-source projects as well as
corresponding analysis scripts.1

II. THEORETICAL MODEL

The impact of norms on human behavior can be produc-
tively studied by distinguishing two norm types. Injunctive
norms encompass what others approve or disapprove, in a
formal way (through rules) or informally (through social pres-
sure). Descriptive norms illustrate what others actually do [13],
and are established when a subject observes the environment.
Both norms provide information, what is the expected and the
common behavior, and in a particular situation they can be
in agreement or in conflict. In the context of programming,
an injunctive norm would be the disapproval of using the
goto statement [14], while a (conflicting) injunctive norm
would be its common use to jump to a function’s error exit
routine [15], [16, pp. 43–44]. In the physical world, it has
been found that injunctive norms are observed more when
they are in agreement with descriptive norms, associated with
the corresponding or even another type of behavior [17], [9].
Persons take into account these norms in order to accurately

1https://doi.org/10.5281/zenodo.10060518

model reality and their reactions, to have meaningful social
relationships, and to maintain their self-concept [17].

For the purposes of our study we have devised a model
that describes our understanding of the factors affecting the
evolution of a module’s internal quality from a time point TN

to a later time point TN+1. First, there are factors external to
our study that affect the quality at both time points, without
however establishing a causal correlation via the code. These
may include the developer ability, the development process
(which can set diverse injunctive norms through rules, guide-
lines, processes, and tools), the application domain, the global
distribution of developers, and many others; see Section VI.
All these can affect the code quality at both time points, and
thereby result in a correlation. There are also factors that may
establish a direct causal correlation between the code at the
two time points, i.e., the code quality at TN directly affecting
the code quality at TN+1. The most important factor is clearly
the legacy of inherited code: at time point TN+1 the majority
of the code, and therefore its quality, will consist of code from
TN with some changes.

There are also other more interesting ways in which the
code quality at TN affects the code quality at TN+1. First,
come the interfaces that the code has to use, either to interface
with the rest of the system or to use third party components. If
their design is substandard, they can be detrimental to the code
quality [18], [19], [20], because they can impose naming con-
vention violations or, worse, an ineffective module structure.
Then, comes the module’s design structure. If this imposes bad
traits, such as lack of appropriate layering or encapsulation,
subsequent code additions that build upon that design will
naturally add to the problem. Also consider identifier naming.
Badly named identifiers (overly short, long, inaccurate, or
violating coding conventions) existing at TN have to be used
at TN+1, thus perpetuating the problem. Finally, any of the
preceding aspects of the internal code quality may act as a
descriptive norm, signalling to its developers a lack of care
regarding its quality, contributing to the commission of further
sins in the future. This last point is the essence of the broken
windows theory applied to software development.

Although our examples showed how bad code can lead to
worse, note that all the factors associated with the code can
also improve the code quality: a sound design, suitably-named
identifiers, high-quality third party components, and a code
state that signals love and care can make subsequent additions
maintain or improve the code’s quality. Also note that, al-
though the module structure, the naming conventions, and the
used interfaces at TN+1 are bound by those used at point TN ,
this binding can be broken through refactoring [21]. However,
in practice, refactoring tools, which can aid these tasks, are
underused [22], and it is doubtful whether refactoring actually
improves code quality metrics [23], [24], [25].

In common with the real world, the signalling effect associ-
ated with the broken windows theory in software development
is about communicating expectations regarding community
standards. These can be associated with injunctive and de-
scriptive norms (this is how we write code around here),



incentives (rewarding or reprimanding developers based on
the quality of their code), and processes that flag or correct
quality problems (code reviews, commit hooks, and continuous
integration checks).
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Fig. 1. Factors affecting the evolution of internal code quality.

The code quality evolution model we use in our study is
illustrated as a UML diagram in Figure 1. Note that UML,
confusingly for some, has dependency arrows point from the
dependent (client) entity to the independent (supplier) one. So
in the figure the internal quality of the changes TN → TN+1

may depend on the signalling effect of the module’s internal
quality at TN ; the internal quality is derived from the module
structure, naming, and formatting; the external factors affect
the internal quality; and the structure naming and interfaces at
TN+1 are bound by the choices at TN .

III. METHODS

A. Overview

The goal of this study is to examine the applicability of the
broken windows theory to source code quality. Specifically,
we investigate whether the adherence to code quality practices
within a source code project impacts its internal quality. In
other words, we explore whether the historical internal quality
of the code influences developers’ adherence to code quality
practices. To achieve this goal, we formulate the following two
research questions.

RQ1. Does future code quality relate to past code quality?
In this research question, we investigate whether the code
quality at time TN correlates to the code quality at time TN+1.

RQ2. How does existing code quality relate to developers’
behavior and practices concerning it?

With this research question, we check whether a developer
behaves better or worse on source code that starts with better
or worse quality characteristics. Exploring these research
questions will help us establish the applicability (or, non-
applicability) of the broken window theory on code quality.

To investigate the research questions, we conduct an em-
pirical analysis. First, we identify a set of repositories written
mainly in C and Java. We then collect the required code quality
metrics and code smells indicating the code quality of the
repositories. We apply statistical analysis to the collected code
quality data to investigate the addressed research questions.
The rest of the section describes each of the steps in detail.

B. Data Collection and Processing

We studied the possible correlation between the quality of
an existing code body and additions or changes made to it
as follows. After selecting two popular languages exhibiting
different aspects of code quality characteristics (C and Java),
we employed stratified sampling to obtain a random represen-
tative sample of open source code repositories to study. We
selected various metrics and smells covering size, structure,
code style, documentation, and adherence to design principles.
These metrics and smells are commonly used in code quality
analysis studies and fairly represent the state of software code
quality. We chose two tools that can reliably produce quality
measures for diverse projects written in these languages,
namely cmcalc [26] for C and DESIGNITEJAVA [27] for Java.
Based on the capabilities of these tools, we then collected
data regarding the evolution of C code quality metrics and
Java design, implementation, and testability smells for more
than two million file revisions. Finally, we analyzed the
obtained data using statistical autocorrelation techniques. We
have made publicly available on the Zenodo repository a 260
MB replication package with the code used for extracting and
analyzing the data as well as the obtained results.1

1) Project Sampling: Following proposed guidelines for
the systematic mining of software repositories [28], [29]
we established the following inclusion criteria for selecting
repositories.

1) More than 10 stars or forks, to select projects relevant to
the software engineering community, and avoid personal
projects and student exercises. These two metrics are
considered to be the most useful GitHub project popu-
larity metrics [30].

2) Code in the C or the Java programming language.
These two languages cover the imperative and object-
oriented programming paradigms, and are among the
most popular languages according to the TIOBE index.2

3) At least ten years of history with at least one commit
on every half-year interval, in order to examine long-
evolving software, where code quality may act as a
repository of tacit norms.

For repository selection we employed random sampling,
aiming for a sample size N in the range 50–100, which is what
we could process with the computational and storage resources
at our disposal. To aid the generalizability of our findings, we
selected a random stratified sample of the N projects based on
community interest and third-party involvement. Specifically,

2https://www.tiobe.com/tiobe-index/



TABLE I
EXAMINED REPOSITORY METRICS

Total Min Median Avg Max s

Created 2008-07 2011-12 2011-10 2013-08 16
Commits 1 979 092 227 3 902 21 748 872 689 92 520
Committers 13 144 550 24 960 2 614
Stars 25 5 495 12 066 159 725 20 627
Forks 20 1 219 3 362 50 841 6 848
Files 304 743 53 961 3 349 65 697 7 768
Lines 89 426 359 5 755 208 555 982 707 27 533 925 3 012 417
C files 56 389 3 183 842 27 626 3 373
C lines 35 306 678 6 475 92 137 526 965 18 904 362 2 302 884
C file revisions 2 195 510 38 3 884 32 769 1 148 732 140 756
C analysis time (s) 145 644 1 38 2 174 132 335 16 148
Java files 28 393 46 722 1 183 4 069 1 310
Java lines 3 361 394 3 747 74 753 140 058 459 952 148 277
Java file revisions 310 333 506 4 208 12 931 51 120 15 128
Java analysis time (s) 862 747 834 7 169 35 948 280 502 63 836

we defined our sampling method to reflect the fact that it is
more likely for developers to interact with popular projects.

In common with most studies, we sampled projects from
GitHub, which contains millions of open source repositories,
including mirrors of popular projects hosted elsewhere. We
used GitHub stars as a proxy for community interest [30]
and GitHub forks as a proxy for personal involvement. We
defined five strata on an exponential progression of star or
fork engagement ranges: 11–100, 101–1 000, 1 001–10 000,
10 001–100 000, 100 001–1 000 000. (Through experiments we
determined that this stratification yields same order of magni-
tude number of projects in the first four strata. We also found
that there are no projects with more than 1 000 000 stars or
forks that satisfied our other criteria.) For each stratum we
obtained with a GitHub API query the number of projects in
it that were written in one of the languages we studied, and
had at least ten years of history, including a change in a six-
month period in the period’s middle. In each stratum i for the
number of obtained projects Pi in it, we estimated the total
engagements (forks or stars) Ti in the range 10i to 10i+1 as

Ti = Pi
10i + 10i+1

2

Based on it, we calculated a random selection probability to
obtain one of the N projects if it had a single engagement as

S =
N∑
Ti

Finally, we obtained the number of projects Ni to select in
each stratum i as Ni = STi. For example, in the Java projects
stratum with 10 001–100 000 stars there are 51 projects, shar-
ing an estimated total of 2.8 million stars, which results in
the requirement to select 30 projects from it. We then selected
projects at random from each stratum i, checked whether they
satisfied the outlined criteria, and kept those that did, until we
reached the required number of projects Ni. Doing this for
both stars and forks and taking into account overlaps yielded
a number of projects in the desired range 50–100: 93 for Java
and 83 for C.

We obtained all data using GitHub API queries, utilizing
features such as range selection, sorting, and the conjunction
of multiple selection criteria in a single query to obtain the
required results in the most efficient manner. This required
36 queries for obtaining the strata metrics (6 strata × 2
engagement metrics × 3 languages — we also provide C#
projects in the dataset to facilitate future work) and more than
6 000 for deriving the projects sample (18 queried commit
intervals for 304 accepted projects in all three languages, plus
average of 9 intervals for 139 rejected projects). As a last step
we we examined the list of randomly selected repositories
for potential issues and removed two repositories that were
clones of the (also selected) Linux kernel (Xilinx/linux-xlnx
and raspberrypi/linux) and one that contained mostly patches
rather than code (freebsd/pkg). Indicative descriptive statistics
of the examined project repositories are listed in Table I. The
file and line metrics refer to the contents of each repository at
the head of its default branch.

2) C Quality Metrics Collection: Calculating quality met-
rics on large C code bodies is tricky for technical and opera-
tional reasons [31], [32]. On the technical side, dependencies
of code associated with its compilation environment, as well
as code portability issues, make it difficult to establish the
context required to parse and semantically analyze the code.
This is especially true for programs written in C, where
the compilation depends on compile-time flags and macro
definitions passed through the build process, system header
files, the search paths for these files, and macros internally
defined by the compiler [33], [34], [35]. Then comes the
required throughput: with build times for large projects taking
minutes, analyzing thousands of revisions of hundreds of
projects with a full-fledged compile can take an impractically
long time.

We addressed both problems choosing to use, in common
with other studies [36], [37], [38], [39], cmcalc, an open
source tool that efficiently calculates C code quality metrics,
without requiring full access to the compilation environment’s
parameters [26]. The cmcalc tool operates as a filter, receiving



TABLE II
C CODE SIZE AND QUALITY METRICS PER FILE

Metric and initials Mean 25% 50% 75%
Begin End Begin End Begin End Begin End

Number of statements 119.8 168.4 11 14 49 65 133 181
Number of characters 13079 18568 2488 2783 5748 7245 13085 17749
Number of comment characters 2551 3382 435 409 1101 1159 2469 2823
Number of comments 30.76 39.72 2 3 8 11 25 33
Comment density % CD 67.46 57.85 6.383 7.692 14.68 15.44 29.89 30.49
Comment size CS 191.2 154.4 60.47 53.88 107.4 88.8 208 157
Number of functions FN 10.48 14.27 1 2 5 6 12 16
Function size FS 12.59 13.05 6 6.333 9.75 10.06 14.71 15.09
Goto density % GD 1.689 1.863 0 0 0 0 1.695 2.128
Mean unique identifier length IL 10.2 10.71 8.374 8.915 10.04 10.6 11.75 12.31
Mean line length LL 27.24 26.73 22.67 22.98 25.39 25.57 29.04 29.3
Number of lines LN 445.5 619 90 101 212 266 474 635
Questionable word density % QD 0.1162 0.08946 0 0 0 0 0 0
Style inconsistency % SI 2.075 1.767 0.09494 0.1293 0.9804 0.8386 2.708 2.254
Mean statement nesting SN 0.5738 0.5916 0.2727 0.3023 0.4945 0.5188 0.7679 0.781

on its standard input C source code, and printing on its
standard output a line of metrics associated with that code. As
such it can be efficiently tied to the output of a git show
command, so that successive versions of a file can be analyzed
without the performance degradation of code touching the
secondary storage. The tool’s operation is based on a state
machine logic lexical analyzer for a superset of C code. The
analyser combines the functionality of the C preprocessor and
C language-proper lexical analysis with rudimentary parsing,
so as to recognize C preprocessor directives, functions, state-
ment nesting, indentation, other spacing, comments, identi-
fiers, keywords, and operators. The provided metrics do not
require semantic analysis of the code, allowing cmcalc to
sidestep its cost; thus cmcalc dodges the complexity of C’s
pointer aliasing. By treating the C preprocessor’s function-
like (those defining entities that can be called like a function)
and object-like (e.g. those defining constants) macros as C-
proper functions and objects, cmcalc will produce reasonably
accurate results without requiring access to header files and
the compilation environment. As an example, cmcalc will not
stop processing with an error due to missing include files,
declarations, or definitions.

The cmcalc tool calculates size, structural, quality, and code
style metrics; see references [40], [41, pp. 326–333] for more
details. A representative selection of metrics, along with the
quartile points calculated on the first version and last version
of each file in our data set, are listed in Table II. In our
study we provided cmcalc with successive versions of each C
file, and obtained from its output the corresponding metrics:
one set of metrics for each version of each C file. Most
metrics are self explanatory; here are details for the rest.
The comment density (CD) is the ratio between the number
of comments and statements in a file. The comment size
(CS) is the ratio between the number of comment characters
and the number of comments. The function size (FS) is the
ratio between the number of statements and the number of
functions. The goto density (GD) is the ratio between the

number of goto statements and the number of statements. The
questionable word density (QD) is the number of words that
may indicate problems in the code as well as swearwords
divided by the file’s number of lines. The following whole
words were searched for in a case-insensitive manner: bugbug,
buggy, bullshit, crap, crash, damn, damned, doom, doomed,
fixme, fuck, fucker, fucking, hack, hacked, hackery, hacks,
hell, kludge, kludges, lame, lameness, poop, screwed, screws,
shit, shits, suck, sucks, todo, xxx. Finally, the mean statement
nesting (SN) is measured as the sum of the nesting of all lines
within code blocks (e.g., 1 after a while statement and 2 after
an if statement nested within the while one) divided by the
number of those lines.

The cmcalc tool calculates code style infractions from
commonly agreed formatting guidelines. As there are a number
of different approaches for formatting C code, cmcalc allows
us to measure the consistency of their application, rather than
adherence to a specific formatting style. Specifically, for each
way to format a particular construct (for example putting a
space after the while keyword) cmcalc measures the times a
the rule is applied in the one way (e.g., putting a space) and
the times b the rule is applied in the other way (omitting the
space).

Each metric represents the number of occurrences of the
corresponding phenomenon in a file.

• A space, a (or a lack of it, b) before or after the following
symbols: binary operator, closing brace, comma, key-
word, opening brace, opening square bracket, semicolon,
struct operator. (4× 8 = 32 metrics.)

• A space, a (or a lack of it, b): before a closing bracket,
after a unary operator, before a closing square bracket.
(3+3 = 6 metrics.) Note that the rules regarding spacing
on the opposite side of the preceding three symbols are
context-specific, and therefore they were not checked.

• A space, a at end of a line. (One metric; no style
convention puts a space at the end of a line, therefore
b = 0 in this case.)



The file’s style inconsistency for n style rules (20 in our
case) as a percentage of possible cases is defined as follows.

SI =

n∑
i=1

min(ai, bi)

n∑
i=1

ai + bi

× 100 (1)

Thus, through cmcalc and the preceding definition we identify
the prevalent coding style used in each file (e.g. putting spaces
around a binary operator), and obtain a metric of inconsistency
regarding the coding style found within the file. We obtained
the rules from the Google,3 FreeBSD,4 GNU,5 and the updated
Indian Hill6 style guidelines.

From the metrics we gathered five are associated with code
style quality: commenting (CD, CS), naming (IL), and layout
(SI, LL). Another six are proxies for code structure quality:
modularity at the file level (FN, SN, LN) and the function
level (FS), code complexity (SN, GD), and questionable coding
practices (QD).

Metrics calculation was performed through a series of
nested loops, expressed as bash [42] shell scripts that run
cmcalc for each revision, of each file, of each repository. The
revisions were obtained through the git log command, run
with a custom output format to obtain the revision’s hash code,
committer email, and machine-readable time stamp. Then git
show was invoked on the filename and hash code associated
with each revision to pipe to cmcalc the source code to
be analyzed. Thus a single 96-field line was produced for
each file’s revision (410 million values in total), which other
programs could use to analyze the results.

The metrics calculation of all revisions of all files (35
million lines) took more than 40 hours to run. Caching and
checkpointing were used to allow the efficient execution of
incremental runs while the processing code was debugged.
A considerable speedup was achieved by parallelising the
analysis of each file using GNU parallel [43]. This gave the
calculation a throughput of 25 thousand lines per second on
an 8-core computer.

3) Java Code Smells Collection: We extended the code
quality analysis by detecting and analyzing commonly used
code smells [44], [45] on repositories mainly written in Java.
For a comprehensive coverage of code quality, we required
a tool that supports code smells detection at different gran-
ularities such as implementation, design, and testability. We
chose DESIGNITEJAVA [27], which detects a variety of code
smells and computes common code quality metrics. The tool
has been validated by its authors [46], [47] and has been used
in diverse studies [48], [46], [49], [50], [51].

We included in our analysis three types of smells listed in
Table III: design smells (DS) [52], implementation smells
(IS) [44], and testability smells (TS) [47]. The latter, tak-
ing into account that testability is the degree to which the

3http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
4http://www.freebsd.org/cgi/man.cgi?query=style&sektion=9
5https://www.gnu.org/prep/standards/html node/Formatting.html
6http://www.cs.arizona.edu/\%7Emccann/cstyle.html

TABLE III
JAVA CODE SIZE AND SMELL INSTANCES

Type Name Begin End
Lines of code 5 872 257 6 321 769
Number of classes 143 850 147 279

DS Broken hierarchy 10 935 11 183
DS Broken modularization 3 721 4 111
DS Deep hierarchy 13 14
DS Deficient encapsulation 12 719 13 706
DS Feature envy 5 504 5 994
DS Hublike modularization 97 153
DS Insufficient modularization 6 840 8 092
DS Missing hierarchy 245 311
DS Multifaceted abstraction 181 214
DS Multipath hierarchy 185 201
DS Wide hierarchy 314 371
IS Complex conditional 6 788 8 450
IS Complex method 11 869 14 188
IS Empty catch clause 14 841 16 345
IS Long method 1 261 1 575
IS Long parameter list 14 506 17 419
IS Long statement 118 374 138 959
IS Magic number 301 830 334 784
IS Missing default 3 644 4 110
TS Excessive dependency 7 479 8 773
TS Global state 12 310 13 753
TS Hard-wired dependency 204 234
TS Law of Demeter violation 437 628

development of test cases can be facilitated by the software
design choices, are the practices that impact the testability of
a software system. We selected the listed commonly occurring
smells for our analysis because, given their scope and charac-
teristics they may get influenced by other existing smells.

In terms of its architectural design, DESIGNITEJAVA is
organized into three layers. Eclipse Java Development Toolkit
(JDT) forms the bottom layer. The tool utilizes JDT to parse the
source code, prepare ASTs, and resolve symbols i.e., associate
type information with variable declarations. The middle layer,
source model, maintains a source code model created from
the extracted information from an AST with the help of JDT.
The business logic i.e., the smell detection and code quality
metrics computation logic resides in the top layer. The layer
accesses the source model, identifies smells and computes
metrics, and outputs the inferred information in either .CSV or
.XML files. As its user, we utilized the tool for each repository
selected for analysis in multi-commit analysis mode.7 In this
mode the tool takes the path of a Git repository as input,
switches the repository to a commit, analyzes the code, and
produces a set of .CSV files containing smells and metrics data
for the commit. This produces CSV files with smell details
for each file at each commit. We subsequently filtered these
to create timeline series specific to changed files. The total
number of smells detected at the beginning and at the end
of all time series is listed in Table III. (The total number
of lines in Table III is larger than the one shown for Java
files in Table I, because a file can appear in many time series
as it moves around the repository.) Our processing excludes

7DesigniteJava documentation—https://www.designite-tools.com/docs/
commands.html
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Fig. 2. Percentage of files with autocorrelation > 0.5 at each lag for code
style metrics.

a few Java projects with faulty repositories (apache/camel)
or with processing requirements that exceeded our computing
resources (e.g. checkstyle/checkstyle, which run out of heap
space despite getting allocated 40 GB of RAM).

IV. RESULTS

We present our observations corresponding to both research
questions exploring the broken windows theory in software
using our corpus.

A. RQ1: Relationship of quality of existing code on code
quality evolution

To set the scene we inquired into the way code quality
evolves over time; in particular, the way existing code quality
relates to future quality. After all, if existing quality does not
relate to future quality in a significant way, it does not make
much sense to check the effect of existing code in developers’
coding practices.

We started our analysis by looking at the autocorrelation
of C code style metrics and C code structure metrics. We
calculated the autocorrelation for files that have more than
50 commits and a non-constant value of the metric (because
otherwise the autocorrelation is undefined). From 55,523 files,
that left us with 10,530 files with autocorrelations calculated
for at least one of the code style metrics and 10,404 files for
code structure metrics. We took into account up to 50 lags and
judged as important autocorrelations greater than 0.5 that were
found to be statistically significant, having p-value < 0.05 for
the Ljung-Box test. The results can be seen in Figure 2 and
Figure 3.

For both classes of metrics, we see that a very high
percentage of files have significant autocorrelations for small
lags. Moving forward in time, we see that for all metrics about
40% of the files have significant autocorrelations for lags up
to 10. Overall, history does relate to the evolution of code
style and structure metrics, as the value of a metric at
a particular commit exerts a considerable effect to more
than 80% of files for all metrics in the commits that follow.
Moreover, in a significant portion of the files the relationship
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Fig. 3. Percentage of files with autocorrelation > 0.5 at each lag for code
structure metrics.
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Fig. 4. Percentage of files with autocorrelation > 0.5 at each lag for smells.

goes deep, to many commits and not just the one that comes
next.

A general pattern that we can discern from Figures 2 and 3
is that metrics that correspond to advice given frequently in
software engineering matter a lot in history. Comments, both
in what regards their density and their size, make a mark in
the history of many files. Rules on identifier length and line
length are also found in many style guides, and they are sticky
in that previous values to a large extent relate to future values.
The same goes for style inconsistency, which aggregates
different kinds of inconsistencies. Advice on function size and
number of functions in a file is frequently drilled to software
developers; so is advice against too much nesting and the use
of gotos. It seems that it is not just history, but what we might
call tradition, in the form of old, time-honoured programming
tenets, that manifests itself along the evolution of software.

We can discern a similar pattern in Figure 4, which shows
the autocorrelation of Java smell metrics over different time
lags. Out of 114,519 files, we found 832 with more than 50
commits and a non-constant metric value. The autocorrelations
show again that about 40% of the files we examined
exhibit significant autocorrelations for lags up to ten. We
have highlighted the top five and bottom three of the smells,



in terms of the average percentage. Three of the top five,
i.e., multipath hierarchy, hub-like modularization, and Law
of Demeter violation, seem to follow distinctive paths, as do
the bottom three metrics, i.e., multi-faceted abstraction, hard-
wired dependency, and wide hierarchy. This may be because
for all the highlighted metrics, the number of files where the
autocorrelation could be calculated with statistical significance
was small: the median number of files, for the different lags,
for which we could calculate autocorrelation > 0.5 with p-
value < 0.05 was less than 10.

Our analysis indicates that history does relate to the
evolution of code quality, for code style and structure
metrics and for code smells.

B. RQ2: Developers’ behavior and historical code quality

It is easy to spot a real broken window, but as there is no
a priori indication of what is a good or a bad file, we used
quantiles for ascribing categories to files. For each project,
we identified the first commit and the corresponding metric
for each of the code style and the code structure metrics. We
computed the 25% and the 75% quantiles for those metrics
and we grouped the files at the top quantile as top files and
the files at the bottom quantile as bottom files. Note that top
and bottom are not equivalent to good and bad, as in some
metrics higher values are better whereas in other metrics the
opposite is true. In total we formed 11 groups containing top
and bottom files, one for each selected metric.

To see whether developers behave differently in top files
than they do in bottom files, we investigated whether their
commits in top files are quantitatively different, in terms of
our metrics, than their commits in bottom files. In effect, we
looked whether developers tailor the quality of their commits
based on the quality of the file they commit to. We measured
the quality of a particular commit as the difference of the
selected metric for the commit from the value of the metric
in the previous commit.

To work out the numbers, we grouped each project’s data by
developer and for each group we selected the commits made
in top files and the commits made in bottom files. To see if
the developers perform different kinds of commits depend-
ing on the file’s quality (top or bottom), we calculated the
Kolmogorov-Smirnov two samples test for those developers
that had at least 10 commits in top files and 10 commits in
bottom files. We have 11 metrics, so in total we have 121 cases.
As these are multiple tests, we used a Family-Wise Error Rate
of 0.05 to adjust the p-values using the Benjamini-Hochberg
prodecure [53].

The results for C code are shown as a heat map in Figure 5.
The y-axis of the heat map represents the different groupings;
the x-axis represents the metric we are using for the statistical
test. For example, the bottom left square corresponds to files
being grouped to top and bottom quartiles depending on mean
line length (y-axis), and the percentage of developers that
display different commit behaviour in what regards mean line
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Fig. 5. Percentage of developers with different behaviour in top vs bottom
C files.

length (x-axis). The square at the intersection of SI on the
x-axis and CD on the y-axis corresponds to the percentage
of developers that display different commit behaviour in
what regards style inconsistency measured in files grouped
according to the classification of the file as top or bottom
based on the code density. In other words, what is the
percentage of developers whose commits exhibit a different
style inconsistency on files coming out top in comment density
against files coming out at the bottom in comment density?

Looking the at columns of Figure 5, CD, GD, and IL stand
out. Developers appear to behave very differently in what
regards comment density, goto density, and to long or short
identifier lengths, along files grouped in the top or bottom
with respect to a variety of different metrics. The laggards
are LL, LN, and FN; it seems that developers do not behave
with respect to line lengths and high or low line and function
counts on files with different top or bottom metric counts.

Going row-wise, one way to interpret each row is as the
context the file provides regarding the value of a metric in the
file. So, LN, SN, CS, CD, and LL seem to provide particularly
strong contexts and, taking the whole picture, stronger
than others. That is reasonable. Developers do different kinds
of commits depending on the file they are into, but not every
single characteristic of the file influences every single commit
metric to the same extent. The row for GD illustrates that
the heatmap is not symmetric: even though developers behave
differently in terms of goto density on files grouped to the top
or bottom on many different metrics, files that come top or
bottom in goto density seem to be have high percentage of
different goto density behavior on the part of the developers.

We repeated the same analysis for the Java smells; we
omit the resulting heatmap, as it is bright yellow nearly all
over. That means that we were not able to detect a statistical
significance in the Java smells metrics of developers’ commits
in files rated top and bottom with regards to those smells.
That does not entail that, in contrast to C code and structure,
developers do not show a difference in their behavior regarding



design smells, implementation smells, and testability smells;
it may be that developers adhere to norms regarding these
smells independently of the context. We plan to investigate
this further in the future.

Our results indicate that some historical code char-
acteristics (such as comment density and identifier
length) strongly relate to the developers’ behavior.
However, code smells do not show a similar statis-
tically significant relationship.

V. THREATS TO VALIDITY

In terms of external validity, it is clear that we have
limited ourselves to projects using the C and Java program-
ming languages. Although these languages still enjoy rude
health, programmers have a wealth of other languages at their
disposal, and it does not automatically follow that our findings
transfer to them. In our defense, the syntax and overall style
of C and Java have influenced many other newer programming
languages, so there is no a priori reason to indicate our results
would not carry over to other languages, at least those with
a similar structure. However, it may be difficult to replicate
our findings in environments, such as Visual Basic, that by
default perform many formatting tasks automatically. At the
same time, programs written in dynamic languages may rely
more on a consistent code style to make up for the lack of a
compiler that can catch trivial errors.

The metrics we have used are internal quality ones we
could efficiently measure through the two tools we employed.
More sophisticated measures, such as the actual defect density,
may yield different results. Looking at external quality metrics,
like those measuring reliability, accuracy, and performance,
may also differentiate the resulting picture.

In projects code style may not be a developer’s choice, but
may be imposed through tools and processes. We manually
searched the developer documentation of 25 popular projects
(Blender, CPython, ffmpeg, FreeBSD, gcc, gdb, gecko-dev, Git,
illumos, ImageMagick, KDE, Linux, MySQL server, Nagios,
OpenCV, Perl, PHP, PostgreSQL, VLC, WINE, as well as the
Apache, freedesktop.org, GNOME, GNU Git, and Sourceware
projects) looking for style guidelines and how these are
enforced. We found that 7 out of 25 projects (28%) are
using automated methods (mandatory and voluntary) to ensure
code style conformance. Linux, gcc, CPython, and illumos-
gate instruct committers to check their source code for style
inconsistencies before each commit, whereas other projects
suggest the use of automatic style checks, such as adapt-
ing the configuration of source code editors and IDEs, and
executing third-party scripts. We also found that 17 out of
25 projects (68%) prescribe specific mandatory or voluntary
coding guidelines. Projects with mandatory checks, such as
FreeBSD, Blender, Perl, and PHP, have extensive guidelines,
and encourage committers to conform to them in order to have
their commits accepted by reviewers. Projects with voluntary

checks, such as PostgreSQL, VLC, and KDE, provide shorter
guidelines, and do not impose strict code style checks.

Our choice of projects may also be a limiting factor. Our
random stratified sampling resulted in the inclusion of some
big, successful projects, where quality standards may be above
and beyond those entertained by other projects. It is possible
that our findings may apply less to such other projects. On
the other hand, it is likelier that quality in such projects
will show increased variation, and that developers will enjoy
greater freedom in their coding. Both factors would amplify
the quality’s signalling effects.

Note also that we only examine the changes that show up in
the main development branch. Development also takes place
in other branches as well [54]; changes on other branches may
be merged with the current branch, so these will show in the
data we examine, but their own history will be lost, as we do
not examine the history of the separate branches. This may
hide from our analysis quality problems that were identified
and fixed through a code review.

Moving on to internal validity, we have been careful not to
propose any causal relationships in the analysis of our results,
which is a key criticism leveled against the broken windows
theory [11]. We report results of statistical relations, or point
out the absence of relations, but we do not attribute cause
and effect. That would require a more detailed examination of
the model we proposed in Section II, and, possibly, putting
forward a concrete mathematical formulation encompassing
dependent and independent variables of software quality in
relation to the existing quality context. This can be the subject
of further research.

VI. RELATED WORK

Broken windows theory in software engineering: To the best
of our knowledge there is limited work that uses the broken
windows theory to explain factors that affect software quality.
In particular, Deissenboeck and Pizka have referred to the bro-
ken windows theory when examining the inconsistent naming
of identifiers in software projects [55]. The same authors in
another study [56] have also called for studying psychological
effects, such as those associated with the broken windows the-
ory. Brunet et al. refer to the theory when suggesting that the
gap between code and architecture is tractable provided that
violations are checked and solved in a short time period [57].
The preceding studies referred to the broken windows theory in
order to explain or justify software development phenomena.
However, none of the studies attempted to use empirical
evidence in order to validate or disprove the broken windows
theory in the context of software development. A related theory
concerns contagious technical debt, which has so far been
studied mainly qualitatively [58], [59]. In the similar vein, the
human inclination to imitate behavior of others is known as the
Bandwagon effect. Such cognitive biases have been explored
in the software engineering context [60], [61], [62], [63].

Factors affecting software quality: On the other hand, there
is a considerable body of work on the factors that affect



software quality. These studies can be categorized into the
areas of management, the software development process, the
developers’ characteristics, and product properties. A survey
on factors that affect software quality [64] examined organiza-
tional, technical, and individual factors. In the following para-
graphs we will briefly describe some representative findings
from each area.

In the field of management a number of studies found that
clear source code ownership results in fewer failures [65]
and defects [66], that unfocused teams working on central
modules can increase post-release failures [67], that well-
coordinated teams can reduce software failures [68], that
organizationally (rather than geographically) distributed teams
lead to an increase of software failures [69], and that low
staff morale and excessive turnover can decrease software
quality [70].

Regarding the software development process, major factors
that have been reported to affect software quality include the
software’s architecture and design [70], [71], the quality of
the requirements [72], [70], tool use (in some cases) [72],
[70], test-driven development [73], [74], code reviews [75],
[76], scheduling [70], (maybe) refactoring [24], [23], and the
existence of software processes in general [72], [70].

On the developer front, studies have found that the capabil-
ities and experience of the personnel can ensure the software’s
conformance quality [72], while their absence can lead to
software decay [70].

Finally, the properties of the developed product can also
affect its quality. Factors that have been identified include
the product’s size [72], [77], [70], the age of the source
code [70], [68], code porting and reuse [70], [78], the chosen
programming language [79], and the application domain [80].

VII. DISCUSSION AND IMPLICATIONS

In experimented boundary, factors, and context, we have
shown the following in the preceding sections.

• The quality of an existing, initial, code body and its
subsequent evolution are related. Code quality carries its
history with it, and its current state is strongly dependent
on that history. The exact nature of the dependence varies
on how we define history. It appears that traditional
software engineering advice has a particularly strong
effect on history.

• The developers’ behavior associated with a variety of
code style and structure metrics is significantly related
to a file’s commenting (comment size and density—CS,
CD), size (number of lines and statements—LN, SN), and,
rather unexpectedly, length of lines (LL), as seen by
studying Figure 5 row-wise.

• The developers’ behavior associated with identifier length
(IL), comment density (CD), and style inconsistency (SI)
is related with a number of file characteristics, as seen
by studying Figure 5 column-wise.

In effect, we have seen evidence that some descriptive norms
that apply to software (how the software is actually written)
are associated with variations in developer behavior in areas

that are often covered by injunctive norms (guidelines and best
practices). In the context of the broken windows theory, we
did not find as high a significant relationship between public
order (style consistency) and more serious crimes (increased
statement indentation, fewer comments, shorter identifiers, or
more goto statements). Consequently, our results are nearer
to Zimbardo’s original demonstration [2] — a community’s
effect on descriptive norms – than to Kelling and Wilson’s in-
terpretation [3] — the escalation of violations from descriptive
to injunctive norms.

Surprisingly, we saw that a file’s style consistency which
is a ubiquitous indicator of order in a file and thereby forms
a strong descriptive norm, is associated with the developers’
behavior at a lesser extent; certainly not as strongly as we
would have expected when we started this study.

The apparent lack of a strong behavioral link between style
inconsistency and other measures of software quality surprised
us at first; but then on closer inspection less so. The fact
that it does not appear to be correlated with other measures
suggests that it is an independent quality variable, and not one
that can be readily calculated from structural quality metrics.
Programming style is a distinct quality attribute, and our style
inconsistency density metric may be one way to measure it.

In the context of the broken windows theory in software
development, style inconsistency is special for a number
of reasons. First, style infractions can be easily determined
by inspection, and committed with the sure knowledge that
they will not affect the software’s external quality. Therefore,
stylistic infractions are both a more noticeable signal and
a more sensitive effect. This situation resembles the actual
broken windows in the real world.

Furthermore, code style is also a matter of personal taste
and opinion. Some developers hold these opinions with such
a conviction that it may give rise to so-called holy wars [81,
p. 35]. Therefore, it may be easy for developers lacking
self-discipline to commit stylistic infractions, especially when
editing a file where their “religion” appears to be tolerated.

Assuming that the effect of code on code is indeed casual,
it has important implications for software developers and their
managers. The basic message that should be carried away
is that keeping basic code hygiene can not only help the
software’s maintainability, but also improve the quality of
subsequent code additions. Developer behavior regarding the
code quality measures we examined can be improved by a few,
rather unglamorous, actions: keeping modules (files in the case
of C code) short and focused, writing plenty of descriptive
comments, and avoiding long code lines.

Furthermore, given that a file’s number of functions (FN)
and their size (FS) seem to be strongly related with developers’
behavior regarding the file’s size, it seems important to invest
effort in designing the appropriate decomposition of the code
into modules (files and functions in the case of C code), for
once this structure is set in code it is apparently difficult to
escape from it.



VIII. FURTHER WORK

The study of social influence in the context of software
development can be expanded in two fronts: those of the
empirical data and the mechanisms at work.

The empirical basis can be extended by studying more
and smaller projects where external quality-setting factors
are less prevalent. This can be done by using data sets
that contain metadata from many such repositories, such as
the RepoReapers Data Set [82], or GitHub Search [29], in
conjunction with actual commit data from the corresponding
repositories. The work can also be easily extended to cover
more programming languages, especially given the fact that
the analysis performed by cmcalc is mostly programming
language agnostic. In particular, it would be interesting to
study object-oriented metrics [83], resource leaks, code du-
plication, and security vulnerabilities. It would also be par-
ticularly interesting to check the effect of style infractions in
languages where these often lead to errors in programming
logic; for example, one could examine the role of the optional
semicolons in JavaScript.

Studying the mechanisms through which social influence
theory applies to software development as well as the effects
of these mechanisms on software quality and process is more
challenging. Some topics worthy of further examination are
the following.

• Are the signals communicated and acted upon subcon-
sciously, or are developers making conscious rational
choices on the quality of their work based on a file’s
perceived quality?

• Are developers using the signals to optimize where they
will direct their efforts?

• How does this optimization affect external code quality?
• How should the software development process be ad-

justed to take into account these factors?
• What are the reasons and the import in the differences of

the results between code and structure metrics on the one
hand, and design, implementation, and testability smells
on the other?

These are clearly questions whose answers can change the way
we view software development.
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