Multi-faceted Code Smell Detection at Scale using DesigniteJava 2.0

Tushar Sharma
tushar@dal.ca
Dalhousie University, Canada

ABSTRACT

Code smell detection tools not only help practitioners and researchers detect maintainability issues but also enable repository mining and empirical research involving code smells. However, current tools for detecting code smells exhibit notable shortcomings, such as limited coverage for a diverse range of smells at varying granularities, lack of maintenance, and inadequate support for large-scale mining studies. To address the limitations, the first major version of DesigniteJava supported code smells detection at architecture, design, and implementation smells along with commonly used code quality metrics. This paper presents DesigniteJava 2.0 that adds testability and test smell detection support. Also, the tool offers new analysis modes, including an optimized multi-commit analysis mode, to support large-scale multi-commit analysis. We show that the optimized multi-commit mode reduces analysis time by up to 46% without compromising the analysis efficacy. The tool is available online. Replication package including all the validation data and scripts can be found online [27]. Demonstration video can be found on YouTube.

CCS CONCEPTS

• Software and its engineering → Maintaining software, Software maintenance tools.

KEYWORDS

Code smell detection tool, repository mining.

ACM Reference Format:

1 INTRODUCTION

Code smells indicate the presence of quality issues, typically affecting maintainability negatively [8, 32]. High smell density in a software reduces the code quality and hampers the system’s evolution. Given the importance and proliferation of code smells, researchers in the field have explored various aspects of the metaphor, including their causes, impacts, and detection methods [32].

Code smell detection tools are the heart of the majority of exploratory and empirical studies involving code smells. Researchers, as well as industrial vendors, have developed a variety of code smell detection tools [31, 32]. These tools can be divided into five categories [32]—metric-based [15, 38], rule/Heuristic-based [17, 30], history-based [9, 21], and optimization-based [20, 25] smell detection methods. Despite these efforts, the smell detection tools exhibit considerable deficiencies. First, existing code smells detection tools support detecting a limited number of smells [22, 24]. Specifically, a handful of tools (specifically, 13%—six out of 45) investigated in a study [32] detect ten or more smells. Lack of support for a wide range of code smells poses a challenge to empirical studies on smells; identifying a very small subset of smells and using the data to correlate other software engineering aspects (such as the number of bugs) makes such studies incomplete or even incorrect.

Second, Code smells may arise at different granularities (e.g., architecture, design, and implementation) and different artifacts (e.g., production, infrastructure, and test code). Though there have been some attempts to detect, for example, architecture smells [7] and test smells [23], a comprehensive tool supporting smell detection at different granularities and artifacts is missing. Next, the majority of research prototypes are either not available online or not maintained. For example, out of six tools that support the detection of ten or more smells, only two (JSpIRIT [37]) are available online at the time of writing this text. Furthermore, both the available tools are not updated in years; JSpIRIT were last updated ten and five years ago, respectively. Finally, for any large-scale mining study, researchers need to analyze many repositories, often all the commits. However, the available tools typically do not provide native support for carrying out such large-scale mining analysis.

To address the gap, we first introduced DesigniteJava 2.0—an improved code smells detection tool that supports testability and test smells, in addition to previously supported code smells. Furthermore, the new version introduces not only native support to analyze all or a customized set of commits of a repository but also implements an optimization to improve the analysis time of large repositories. These significant improvements may further facilitate repository mining studies and empirical studies involving code smells in the field.

1https://www.designite-tools.com/acad-lic-request/
2 DESIGNITEJAVA 2.0

In this section, we elaborate on the tool’s architecture and the newly added support for testability and test smells. Additionally, we elaborate on the optimized support to analyze multiple commits for a repository.

2.1 Tool architecture

Figure 1 shows the architecture of the tool. DESIGNITEJAVA utilizes Eclipse Java Development Toolkit (jdt) to parse the source code, prepare ASTs, and resolve symbols. The source model is the middle layer. The model invokes jdt and maintains a source code model from the information extracted from an AST with the help of jdt. The top layer of the tool contains the business logic i.e., the smell detection and code quality metrics computation logic. The layer accesses the source model, identifies smells and computes metrics, and outputs the generated information in either CSV or XML files. The new version of the tool adds support to detect testability and test smells. To enable the support, we extend the existing smell detection module. We also modify the source model layer to extract additional information required for our purpose. Furthermore, the tool adds two more analyze modes—multi-commit analysis and optimized multi-commit analysis, in addition to analysis modes supported in the previous version (analysis and analysis in CI modes). These modes are specified by using command line arguments as shown in Figure 2.

![Figure 1: Architecture of DesigniteJava tool; the colored boxes represents new components for DesigniteJava2.0](image)

2.2 Testability smells detection

Testability is defined as the degree to which the development of test cases can be facilitated by the software design choices [3, 4]. Testability smells are the programming practices that reduce the testability of a software system. The new version of DESIGNITEJAVA supports four testability smells that we summarize below.

Hard-wired dependency: This smell occurs when a concrete class is instantiated and used in a class resulting in a hard-wired dependency [4, 11]. A hard-wired dependency creates tight-coupling between concrete classes and reduces the ease of writing tests for the class [4]. To detect the smell, we first detect all the objects created using the new operator in a class. Then, if the functionality of the newly created object is used (i.e., at least one method is called) in the same class, we detect this smell.

Global state: Global variables introduce unpredictability and hence make tests difficult to write by developers. If a class or a field in a class is declared with public static modifiers, we detect this smell.

Excessive dependency: This smell occurs when the class under test has excessive outgoing dependencies. Dependencies make testing harder; a large number of dependencies makes it difficult to write tests for the class under test in isolation [33, 40]. We compute fan-out (i.e., total number of outgoing dependencies) of a class. If the fan-out of the class is more than a pre-defined threshold (customizable, by default set to 7), we detect the smell.

Law of Demeter violation: This smell arises when the class under test violates the law of Demeter i.e., the class is interacting with objects that are neither class members nor method parameters [34]. Violations of the law of Demeter create additional dependencies that a test has to take care of. We detect all the method invocation chains of the form aField.get-Object().aMethod(). We detect this smell when method calls are made on objects that are not directly associated with the current class.

2.3 Test smells detection

The tool uses the test smells definition and their detection strategies from existing studies [23, 39]. Below, we present a summary of supported test smells and the detection strategies.

Assertion roulette: We detect this smell when a test method contains more than one assertion statement without giving an explanation as a parameter in the assertion method.

Conditional test logic: We detect this smell when there is an assertion statement within a control statement block (e.g., if condition).

Constructor initialization: We detect this smell when a constructor of a test class initializes at least one instance variable.

Eager test: We detect this smell when a test method calls multiple production methods.

Empty test: We detect this smell when a test method does not contain any executable statement within its body.
Exception handling: We detect this smell when a test method asserts within a catch block or throws an exception, instead of using `Assert . Throws()`.

Ignored test: We detect this smell when a test method is ignored using the `Ignore` annotation.

Unknown test: We detect this smell when a test method does not contain any assert call or expected exception.

2.3.1 Validation for testability and test smells. We curated a ground truth of smells in a Java project to manually validate the tool, as explained below.

Subject system selection: We used the RepoReapers dataset [18] to select a subject system. We selected Java repositories of moderate size (between 10K and 15K), with unit-test as well as documentation ratio > 0.0, and with at least two developers. We applied the criteria and sorted the list by the number of stars. We obtained `j256/ormlite-jdbc`, `paul-hammant/paranamer`, and `forcedotcom/wsc` as the top three projects satisfying our criteria. The majority of the source code belonging to `j256/ormlite-jdbc` and `paul-hammant/paranamer` was in test cases. Hence, we selected `j256/ormlite-jdbc`, as our subject system for test smells validation. However, such repositories were unsuitable for validating testability smells since we detect testability smells in non-test code. Hence, we selected `forcedotcom/wsc`, a project that offers a high-performance web service stack for clients, as our subject system for the manual validation of testability smells.

Validation protocol: Two evaluators manually examined the source code of the selected subject systems and documented the testability and test smells that they found. Both evaluators hold a PhD in computer science and have over five years of software development experience. Before the evaluation, they were introduced to testability and test smells. They were allowed to use IDE features (such as “find”, “find usage” (of a variable) and “find definition” (of a class) and external tools to collect code quality metrics to help them narrow their search space. Both evaluators carried out their analyses independently. It took approximately three full workdays to complete the manual analysis. After completing their manual analysis, they matched their findings to spot any differences. We used Cohen’s Kappa [2] to measure the inter-rater agreement between the evaluators. The obtained result, 89% and 93% respectively, for testability and test smells shows a strong agreement between the evaluators. The evaluators discussed the rest of their findings and resolved the conflicts.

Validation results: We used our tool on the subject systems and identified testability and test smells. We manually matched the ground truth prepared by the evaluators and tool’s results. We classified each smell instance as true positive (TP), false positive (FP), and false negative (FN). We computed precision and recall metrics using the collected data.

Table 1 presents the results of the manual evaluation for testability smells. The tool identified 161 instances of testability smells out of 172 manually verified smell instances. The tool produced two false positive instances and eleven false negative instances. The false positive instances were detected mainly because the tool identified the hard-wired dependency even when an object was instantiated in a method call statement. Similarly, the tool reported false negatives due to an improper resolution of enumeration types; we traced back the inconsistent behavior to the JDT parser library.

Table 1: Results of manual validation for testability smells; MVI stands for Manually Verified Instances

<table>
<thead>
<tr>
<th>Testability Smells</th>
<th>MVI</th>
<th>TP</th>
<th>FP</th>
<th>FN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard-wired dependencies</td>
<td>64</td>
<td>63</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Global state</td>
<td>22</td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Excessive dependencies</td>
<td>20</td>
<td>19</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Law of Demeter violation</td>
<td>66</td>
<td>57</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>172</td>
<td>161</td>
<td>2</td>
<td>11</td>
</tr>
</tbody>
</table>

The precision and recall of the tool for testability smells based on the analysis is $161/(161 + 2) = 0.99$ and $161/(161 + 11) = 0.94$, respectively. Similarly, Table 2 shows the results of the manual evaluation carried out for test smells. Out of 301 test smells in 428 test methods, the tool correctly detected 298 smells. The cause of three instances of false negatives is traced back to the inconsistent behavior of the parser library. The precision and recall of the tool for test smells based on the analysis are $298/(298 + 0) = 1.0$ and $298/(298 + 3) = 0.99$, respectively.

Table 2: Results of manual validation for test smells; MVI stands for Manually Verified Instances

<table>
<thead>
<tr>
<th>Testability Smells</th>
<th>MVI</th>
<th>TP</th>
<th>FP</th>
<th>FN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assertion roulette</td>
<td>214</td>
<td>212</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Conditional test logic</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Constructor initialization</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eager test</td>
<td>13</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Empty test</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Exception handling</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ignored tests</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown test</td>
<td>58</td>
<td>58</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>301</td>
<td>298</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

2.4 Optimized support for mining repositories

Often software engineering researchers need to analyze all commits of a repository, for example, to analyze code quality trends.
Researchers write programs to check out all commits individually for a repository and analyze the code using tools such as DesigniteJava. To reduce the effort, the new version of DesigniteJava introduces a new analysis mode referred to as multi-commit analysis to analyze multiple commits in a branch by specifying option -ac. For example, the command `java -jar DesigniteJava.jar -i ./myProject -o ./myProject análise -ac "main" will analyze all the commits in the main branch of myProject repository. Furthermore, we may specify a range of commits to analyze using -fr (from-commit) and -to (to-commit) options. Details about various command options for the tool can also be found online.2

However, each commit typically only changes for a small fraction of files. Despite that DesigniteJava, using the option described above i.e., -ac, and other similar tools, analyze each commit from scratch. Hence, the tools incur significantly more computing resources as well as time by not utilizing the significant similarity in the source code from commit to commit. The new version of the tool introduces another analysis mode viz. optimized multi-commit analysis to overcome this limitation by utilizing the source code information from the previous commit. This mode can be invoked using the option -aco. The optimized mode differs from the multi-commit analysis mode in one significant way—the optimized version reuses abstract syntax tree as well as source code model and computed metrics information from the previous commit. The tool uses git utility methods to determine the changed and deleted files in a commit. The tool finds the associated source code entities for this modified file set and marks them for updation. Each class depends on other classes; the dependencies among classes must be taken into account for accurate analysis. The new version of the tool determines an impact set for each modified class; this impact set includes the direct dependencies, incoming and outgoing, for the class. Figure 3 presents an example. The figure shows a dependency graph among the classes of a project. If class P is modified, then classes B, Y, Q, R are considered as the impact set. The tool discards the source code information inherited from the previous commit related to the modified classes and their associated impact set and rebuilds the source code model for them. In this way, the tool attempts to optimize the code analysis without compromising the accuracy of the tool.

Evaluation: We evaluate the accuracy of the new optimized analysis mode by comparing the produced output with and without optimization. We use a script that we developed (available in the replication package) to compare the outcome of both the analysis modes. We also measure analysis time in both cases. For this evaluation, we search Java repositories within the Apache organization with minimum 10,000 commits, minimum 100 issues, minimum 200 contributors, and a minimum 10,000 stars. The criteria gave us three open-source repositories—Druid, Pulsar, and ShardingSphere. We analyze first 1,000 commits in both the modes. Table 3 presents the evaluation results. Comparing the results for both the modes for the selected repositories show identical results. However, we observe that the optimized multi-commit analysis mode achieves the same results by consuming up to 46% less time than the multi-commit analysis mode. With this optimization the tool saves significant research time and computing resources.

Table 3: Analysis time (in seconds) for the selected commits using ac (multi-commit) mode compared to aco (optimized multi-commit) mode

<table>
<thead>
<tr>
<th>Repository</th>
<th>Analysis time (ac mode)</th>
<th>Analysis time (aco mode)</th>
<th>Efficiency gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Druid</td>
<td>14,722</td>
<td>7,922</td>
<td>46.2%</td>
</tr>
<tr>
<td>Pulsar</td>
<td>52,789</td>
<td>28,124</td>
<td>46.7%</td>
</tr>
<tr>
<td>ShardingSphere</td>
<td>10,580</td>
<td>6,300</td>
<td>40.5%</td>
</tr>
</tbody>
</table>

3 RELATED WORK
Software engineering research contains a large body of work related to code smell detection. Smell detection approaches can be divided into five categories [32]. Metric-based smell detection methods [15, 38] compute a set of source code metrics and detect smells by applying appropriate thresholds [15]. Rule/Heuristic-based smell detection methods [17, 35] define rules/heuristics to detect code smells. History-based smell detection approaches observe the evolutionary properties in source code [9, 21] to infer smells in the code. Optimization-based smell detection approaches [20, 25] use optimization algorithms typically on code quality metrics to detect smells in a given source code. In recent times, machine-learning (ML) techniques have been applied extensively to detect code smells. The ML-based smell detection methods, typically identify a set of features (such as code quality metrics) and use them to train a model. Early approaches used traditional ML, such as Bayesian and support vector machine, and a fixed set of code quality metrics as features to classify smelly code snippets from benign ones [1, 12, 14]. Several studies use deep learning techniques to identify code smells [10, 13, 28].

There have been a few tools to detect test smells. JNose [39] detects 21 test smells and analyzes the quality evolution of a software project. Similarly, TsDetect [23] supports detecting 19 test smells. However, first, existing test smell detection tools are not integrated with traditional code smells increasing the number of tools required for code quality analysis for a software development team. Also, the existing tools are not suitable for large-scale empirical analysis. For example, analyzing code using TsDetect involves a manual step requiring mapping test files and corresponding production files. The proposed tool addresses both limitations and provides a comprehensive code smell detection tool for Java.

4 CONCLUSIONS
DesigniteJava has served the software engineering community for the last seven years. The tool supports the detection of a large number of architecture smells, design smells, and implementation smells, along with various code quality metrics. We presented a new, improved version of the tool that adds support for testability and test smells detection. Another significant addition to the tool is supporting optimized multi-commit analysis of a repository. These significant improvements will provide additional automated tool support to software developers and further facilitate repository mining and empirical studies related to code smells.