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Abstract—Code smells violate best practices in software de-
velopment that make code difficult to understand and maintain.
Code smell detection tools help practitioners detect maintainabil-
ity issues and enable researchers to conduct repository mining
and empirical research involving code smells. Though significant
efforts have been made to effectively detect smells in code,
majority of the available tools target programming languages
such as Java. Despite the most popular language, a code smell
detection tool that can identify not only implementation-level
code smells but also support detection of smells at the design
granularity is lacking. This paper presents DPy, a code smell
detection tool for Python. The tool currently supports eight design
smells, eleven implementation smells, and various code quality
metrics for Python code. Our replication package includes the
tool, instructions to use it, all the validation data and scripts [1]

Index Terms—Code smells, Python, Repository mining.

I. INTRODUCTION

Code smells violate established design principles and best
practices, typically affecting maintainability negatively [2],
[3]. Research has shown that they not only significantly reduce
developers’ ability to comprehend the source code [4], but
also increase the change-proneness and fault-proneness of
affected source code entities [5]–[7]. Researchers in the field
have explored various characteristics of smells, including their
causes, impacts, and detection methods [3].

Code smells can be broadly classified into three main cate-
gories based on their scope and granularity—implementation,
design, and architecture smells [8], [9]. Detecting these smells
is not only important for software developers but also for
researchers, as the produced code quality information is instru-
mental in empirical and mining studies within the software en-
gineering domain. Given their importance, researchers and tool
vendors have developed many smell detection tools supporting
a wide variety of smells. These tools can be divided into
five categories [3]—metric-based [10], [11], rule/Heuristic-
based [12], [13], history-based [14], [15], optimization-
based [16], [17], and machine learning-based [18], [19].

Python has emerged as a prominent programming language
in recent years [20]–[22]. According to the well-known TIOBE
index [20], Python is the most prominent programming lan-
guage currently. Its versatility makes it a favorite among
programmers for many different tasks, from creating websites
and building software to working on artificial intelligence and
data science research. Despite the popularity and relevance, the
majority of academic attempts to offer a code smell detection
tool support Java as their targeted programming language [3].
There have been some attempts to fill the gap; however, the

current set of tools for Python focuses only on low-level
syntactic issues, different quality attributes such as security, or
artifacts such as tests. Specifically, Pylint [23], Pyflakes [24],
and SonarQube [25] target linting and syntactic issues and
do not focus on design issues arising at higher granularity.
Similarly, tools such as Clone Digger [26] identify code clones
and PyNose [27] detect test smells in Python code. Therefore,
the community lacks a comprehensive code smell detection
tool for Python that not only supports implementation-level
maintainability issues but also helps developers find design
issues in their code.

In this paper, we introduce DPy (pronounced as /di:pai/ ),
a code smell detection tool for Python. The tool supports
detection of eight design smells, four of which apply to both
class and module (i.e., a file) in Python, an area that has
received limited attention from existing tools so far. Also,
the tool identifies eleven kinds of implementation smells.
Furthermore, traditional code quality metrics at the function
(or method), module, and class level are provided by the tool.
The results of the analysis i.e., detected code smells and code
quality metrics are exported in CSV or JSON formats, allowing
further consumption of the results.

We provide a comprehensive replication package [1] that
includes the tool, detailed instructions to use and configure
the tool, as well as data and results of manual validation.

II. RELATED WORK

In this section, we first elaborate on the code smell detection
tools for programming languages other than Python. Later, we
focus on the existing tools specifically for Python.

A. Smell detection tools

There are numerous code smell detection tools offered
by researchers and tool vendors [28], [29]. Among the
five categories of smell detection tools, metric-based and
rule/heuristic-based tools are most prominent and available [3].
For example, Mashiach et al. [30] focused on detecting
35 different code smells including design smells in C++
programs and introduced a tool called CLEAN++. Sharma
et al. [31], [32] developed Designite and DesigniteJava to
support detection of implementation, design, architecture, test,
and testability smells in C# and Java codebases. Almashfi et
al. [33] proposed TAJSlint to detect code smells in JavaScript
programs. Peruma et al. [34] introduced tsDetect to find test
smells in Java programs. Fontana et al. [35] proposed Arcan
to detect architecture smells in Java applications. Virgı́nio et
al. offered JNose to cover test smells in Java codes.



Similarly, several tools are offered by tool vendors. JAr-
chitect [36] measures code quality metrics in Java projects
and proposes suggestions to improve code quality. CppDe-
pend [37] aims at finding and analyzing different code qual-
ity issues in C++ applications. NDepend [38] focuses on
.NET programs and gives a comprehensive analysis about
code quality, security issues and some other useful features
such as code legacy and code reviews. SonarQube [25] is a
widely adopted tool investigating different quality aspects of
code bases in different programming languages such as C#,
JavaScript, TypeScript, php.

B. Code smell detection tools for Python

Chen et al. [39] investigated Python code smells and pro-
posed a code smell detection tool named Pysmell. The tool
identifies eleven code smells, five of which are general code
smells and six of them are specific to Python. Vavrová et
al. [40] analyzed and compared nine design defects in approx-
imately 32 million lines of code in different Python projects
and scrutinized their corresponding thresholds and detection
strategies. Wang et al. [27] focused on Python test smells
and introduced a new tool called PyNose to detect test smells
in Python code sources. Test smells are test-specific code
smells [41]. Gupta et al. [42] analyzed the severity level of five
implementation code smells in twenty Python projects with
SonarQube [25]. Vatanapakorn et al. [43] leveraged machine
learning models to predict five code smells in Python code
bases. Rope [44] assists programmers in efficiently improving
their code quality. While the tool’s primary focus is not on
code smell detection, it applies refactoring mainly associated
with implementation practices. Furthermore, Pyright [45] is a
type checker tool which focuses solely on static type checking
in Python code bases. Pylance [46] is a Python extension
in VS Code IDE that helps programmers to improve their
productivity. This tool also recognizes issues such as type
issues and undefined variables.

Some of the tools mentioned above are unavailable or
not actively maintained. For example, Pysmell is no longer
available publicly. The majority of the tools for Python
identify syntactic issues or low-level implementation issues,
completely neglecting design issues from their analysis. This
effort fills the gap by supporting implementation smells and
identifying design smells.

III. DPY

A. Tool architecture

Figure 1 presents the architecture of the tool. DPy parses
the input source code into Abstract Syntax Tree (AST) with
the help of a Python library ast1. The source model layer
contains a hierarchical source code model for each source
code entity including project, package, module, class, function
and down to statement. Each source model entity contains the
relevant information for that entity; for example, a module
entity holds information about a Python module including the

1https://docs.python.org/3/library/ast.html

functions, classes, and statements contained in that module.
This layer collects information presents in AST and resolves
symbols (i.e., infer type and caller-callee information). Type
information for user-defined types is missing in Python since
it is a dynamic language. To address the challenge, we imple-
mented a scope-based type inference system that attempts to
identify the types, modules, and functions utilizing available
information (such as import statements). The top layer of the
tool contains the smell detection and code quality metrics
computation logic. The layer accesses the source model, iden-
tifies smells and computes metrics, and outputs the generated
information in either CSV or JSON files. The behavior of the
tool can be configured using a configuration file that can be
specified with other arguments while invoking the tool.

Fig. 1. Architecture of DPy tool.

B. Code smells selection

We inherit the majority of code smells to support in our tool
from DesigniteJava [31], which in turn, inherit the supported
code smells from known taxonomies and catalogs, such as
one proposed by Fowler et al. [2] and Suryanarayana et al.
[9]. We also added two implementation smells long message
chains and long lambda functions that are supported by other
code smell detection tools for Python such as Pysmell [49].

We face a rather peculiar issue in selecting design smells
due to the inherently different programming paradigm fol-
lowed by Python from traditional object-oriented languages
such as Java. Specifically, a general belief is that Python
programs rarely use object-oriented features, particularly in-
heritance hierarchy. If it is indeed true, then we do not need to
include hierarchy smells (such as deep hierarchy, or rebellious
hierarchy) to DPy. To confirm the assumption, we analyzed
ten most used and recognized, based on the number of
stars, Python repositories. These repositories include Numpy,
Pandas, nltk, PyTorch, and Django. The complete list
of the repositories and computed metrics, including number of
modules and classes, and DIT can be found in our replication
package. The selected repositories have an average of 1, 411
modules (i.e., Python files) and 3, 835 classes. Among the
classes, we found 42% classes on average with DIT >= 1
(i.e., at least one super class) and 17% with DIT >= 2. These
values suggest that hierarchy is an important aspect of Python
programs that we cannot discard. Therefore, we include the
support for hierarchy smell detection in DPy.
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TABLE I
DESIGN SMELLS SUPPORTED BY DPY

Design smell Scope Description Detection rule

Multifaceted abstraction [8],
[9]

Class,
module

An abstraction has more than one responsibility as-
signed to it.

We detect this smell when a non-trivial abstraction (NOM> 3)
shows low degree of cohesion (LCOM>= 0.8) [8], [31], [38]

Insufficient modularization
[8], [9]

Class,
module

An abstraction is not been completely decomposed,
and a further decomposition could reduce its size,
implementation complexity, or both.

When an abstraction is large in terms of implemented methods
(NOPM > 20 or NOM> 30), or overly complex (WMC> 100)
[8], [31], [47]

Hub-like modularization [8],
[9]

Class,
module

An abstraction has both incoming and outgoing depen-
dencies with a large number of other abstractions

When an abstraction has excessive incoming (FAN-IN> 7) and
outgoing (FAN-OUT> 7) [48] dependencies

Broken modularization [8],
[9]

Class,
module

Data and/or methods that ideally should have been
localized into a single abstraction are separated and
spread across multiple abstractions

When an abstraction defines data members (NOF> 4) but do
not implement any methods that use the data members (NOM=
0) [31].

Deep hierarchy [8], [9] Class An inheritance hierarchy is excessively deep When depth of inheritance is large (DIT > 6) [31]
Broken hierarchy [8], [9] Class A supertype and its subtype conceptually do not share

an “IS-A” relationship
We detect this smell when both the types do not share any method
names and the supertype do not declare any abstract method
overridden by its subclasses

Rebellious hierarchy [8], [9] Class A subtype rejects the methods provided by its super-
type(s)

This smell gets detected when an overridden method in a subtype
rejects the method implementation i.e., contains only pass,
return, or raise statement [31]

Wide hierarchy [8], [9] Class An inheritance hierarchy is too wide When a class has too many sub-classes (NC > 5) [31]

C. Smell detection strategies

DPy supports detection of eleven implementation smells and
eight design smells. We summarize the supported smells and
corresponding detection mechanism in Table I and Table II.
Verbosity conversion: We inherit commonly used metric
thresholds as used in literature for most of the cases. However,
it is unsound to use the same size-related thresholds for Python
code from literature that are prescribed for Java or C++. We
cannot adopt those thresholds in our tool because Python’s
inherently concise syntax leads to significantly different code
verbosity compared to other programming languages. For
instance, while a method length threshold of 100 lines works
for Java, this same metric threshold cannot be directly applied
to Python due to its more concise programming style. We need
a suitable approach that accounts for Python’s inherently less
verbose nature.

To find the verbosity factor, we analyzed the RosettaCode
repository [50]. This repository contains many programming
problems and corresponding solutions in different program-
ming languages. We identified all programming problems
where both Python and Java solutions were present in the
repository. We counted the lines of code of all the selected
problems in both Java and Python. We excluded comments
and blank lines of the code files. We analyzed 1, 226 problems
and obtained the rounded LOC averages of 47 and 31 for Java
and Python code respectively. Based on the analysis, we derive
0.67 as the verbosity factor. Therefore, a metric threshold in
Java set to 100 can be set to 67 for the Python code.

D. Code quality metrics

DPy computes common code quality metrics and exports
them in CSV and JSON formats. These metrics not only used
by the tool to detect various smells but also aid developers
understand their program better and enhance their code quality.
At class and module level the supported metrics are: Lines of
Code (LOC), Weighted Methods per Class (WMC), Number
of (Public) Methods (NOM, and NOPM), Number of (Public)
Fields (NOF and NOPF), Lack of Cohesion among Methods

(LCOM), Number of incoming and outgoing dependencies
(FAN-IN and FAN-OUT), and Depth of Inheritance (DIT,
applicable to only classes). The tool computes the following
method-level metrics: Lines of Code (LOC), Cyclomatic Com-
plexity (CC), and Parameter Count (PC).

E. Usage

DPy is a console application that can be run on Windows,
Linux, and Mac operating systems. A project located at
/path/to/project can be analyzed using the following
command.

1 ./DPy analyze −i /path/to/project −o /path/to/out/folder

The command analyze the Python project and generates the
smells and metrics output in the default (JSON) format in the
specified output folder.

F. Tool validation

This section elaborates the human evaluation process and
results for DPy. We defined the following selection criteria to
identify the subject systems: number of commits more than
5, 000, different domains (security, utility and AI), number
of contributors more than 20, and lines of code more than
5, 000 but less than ten thousand to keep manual analysis
manageable. We used SEART GITHUB search [53] to find the
repositories. After applying the selection criteria, we identified
Codespell [54], Mava [55], and Maltrail [56]. We found that
Python programmers tend to implement their logic using func-
tions that typically follow a non-object-oriented programming
style, leading to fewer class-level design smells. To cover more
design smells in our evaluation, we added another project
Elevant [57] by manually checking the presence of object-
oriented code in the projects one-by-one selected by applying
our initial selection criteria.

Two evaluators manually examined the source code of the
selected subject systems and documented the supported code
smells that they found. Both evaluators are graduate students
and familiar with code smells and design principles. They
were allowed to use IDE features (such as “find” and “find
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TABLE II
IMPLEMENTATION SMELLS SUPPORTED BY DPY

Implementation smell Description Detection rule

Long statement An overly long statement When a statement has more than 80 characters
Long parameter list [39] A function with too many input arguments When a function takes more than four parameters
Long method [39] A long method When the size of a function is more than 67 lines
Long identifier A long identifier (i.e., function, class, and field, or local

variable name)
When the length of an identifier is more than 20 characters

Empty catch block A try-catch block with empty except block When an except block contains only pass or a return statement
Complex method An overly complex function When the McCabe’s Cyclomatic Complexity [51] of a function is more than

7 [52]
Complex conditional [2] A conditional statement with too many logical opera-

tors
When the number of logical operators (and and or) is more than 2 in a single
conditional statement

Missing default A match-case statement with no default case When there is not a default case (i.e., case _ block) in Python match-case
statement

Long lambda function [39] An excessively long lambda function When the length of a lambda function is more than 80 characters [39]
Long message chain [39] A long series of method calls are chained together When more than two methods are chained together [39]
Magic number Any undefined number When there is a numerical literal, except commonly used 0, -1, and 1, without

any definition for that

usage” (of a variable)) and external tools to collect code quality
metrics to help them narrow their search space. Both evaluators
carried out their analyses independently. After completing
their manual analysis, they matched their findings to spot any
differences. We used Cohen’s Kappa to measure the inter-
rater agreement between the evaluators. The obtained result,
κ = 0.87 on average among all the smells, shows a strong
agreement between the evaluators. The evaluators discussed
the rest of their findings and resolved the conflicts.

We used our tool on the subject systems and identified code
smells. We manually matched the ground truth prepared by the
evaluators and tool’s results. We classified each smell instance
as true positive (TP), false positive (FP), and false negative
(FN). We obtained precision=0.96 and recall=0.93. Table III
presents summary of the results of the manual evaluation for
the supported smells. The detailed smell-specific results can
be found in our replication package [1].

TABLE III
RESULTS OF MANUAL VALIDATION; MVI STANDS FOR MANUALLY

VERIFIED INSTANCES

Code Smells MVI TP FP FN

Implementation smells 899 838 33 61
Design smells 30 30 0 0

Total 929 868 33 61

As Table III shows, though the tool performed well in
general, we observed some false positives and false negatives
in identifying implementation smells. This is primarily due
to two factors. First, DPy does not support nested entities,
leading to the omission of certain smells embedded within
them. Second, implementation smells often involve numerous
edge cases that require additional handling. For example, when
a statement is split into multiple lines, we need to consider all
the fragments of the statement to determine whether the entire
length of the statement is crossing the threshold. We plan to
address these issues in future releases. In contrast, we did not
observe any inaccuracies with design smells.

IV. THREATS TO VALIDITY

Construct validity measures the degree to which tools and
metrics actually measure the properties that they are supposed
to measure. In dynamic languages such as Python, type infor-
mation is missing and that may influence the accuracy of the
tool. To mitigate this concern, first, we implemented a scope-
based type inference system that attempts to identify the types,
modules, and functions utilizing available information (such as
import statements). We also employed a comprehensive set of
tests for DPy to rule out obvious deficiencies. Additionally, we
found the results of tool’s manual validation very satisfactory.

It is common for smell detection tools, including DPy to use
various metric thresholds to detect smells. It is a known and
accepted fact that there is no one globally accepted threshold
set for various metrics [58]. We chose the thresholds that
are commonly used by the software engineering community.
To account the conciseness of the language, we conducted
an experiment to compute the verbosity factor. Moreover, we
made the thresholds customizable within the tool to let users
choose a set of appropriate thresholds.

V. CONCLUSIONS

We propose a new tool DPy to detect code smells at
implementation and design granularity. The tool, in addition
to eight design and eleven implementation smells, provides
commonly used code quality metrics for a comprehensive code
quality analysis.

Limitations: Currently, the tool does not support nested class
definitions. Also, the type and symbol resolution mechanism
that identifies the types and functions associated with symbols
statically is limited by our own implementation based on
incrementally increasing scope rules. Though it performs well,
we would like to extend its evaluation and improve its ability
to associate the correct types and functions with symbols.

Future work: In the future, apart from addressing the known
limitations, we would like to extend the scope of the tool. It in-
cludes widening the scope of supported smells to other design
and implementation smells as well as introducing support to
detect test and architecture smells. We also aim to integrate the
tool with build systems and continuous integration pipelines.
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