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Abstract—Infrastructure as Code (IaC) automates the cre-
ation, configuration, management, and monitoring of computing
infrastructure through code. One of the key principles that
IaC promises is repeatability and reproducibility. However, cer-
tain programming practices in IaC platforms, especially those
that allow imperative configuration, such as Ansible, hinder
reproducibility in IaC scripts. This study, first, identifies such
programming practices that we refer to as reproducibility smells
by conducting a comprehensive multi-vocal literature review
and propose a first-ever validated catalog of reproducibility
smells for IaC scripts. We implement a tool viz. REDUSE to
identify reproducibility smells in Ansible scripts. Furthermore,
we conduct an empirical study to reveal the proliferation
of reproducibility smells in open-source projects and explore
correlation and fine-grained co-occurrence relationships among
them. We observe that broken dependency chain smell occurs
the most in approximately 71% tasks that we analyzed. Our
analysis uncovers significant positive correlations between specific
reproducibility smells, implying that repositories with one such
smell tend to exhibit others. Moreover, the co-occurrence analysis
reveals smell pairs that show a high tendency of co-occurrence at
the task granularity. With the developed tool REDUSE, DevOps
engineers can identify and rectify reproducibility issues before
becoming part of the production system. Software engineering
researchers can use the smells catalog proposed first in this study
and can utilize REDUSE in empirical studies exploring various
facets of reproducibility.

Index Terms—Infrastructure as Code, Ansible, Reproducibil-
ity, Reproducibility smells.

I. INTRODUCTION

Infrastructure as Code (IaC) automates the creation, con-
figuration, management, and monitoring of computing infras-
tructure through code, typically in the form of declarative
configuration files [1], [2]. IaC offers many advantages over
manual deployments, including faster, repeatable, and con-
sistent deployment, improved scalability, enhanced reliability,
and reduced operational costs [1].

Reproducibility is crucial in both scientific research and
practical applications; it ensures the validity and reliability of
findings and the feasibility of practices. Specifically, several
attempts have been made to emphasize the importance of
reproducibility in software engineering (SE) by revealing the
deficiencies in current scientific practices [3]–[5]. In this
paper, we focus on reproducibility in the context of IaC
as it ensures the consistent and reliable provisioning and
management of computing resources. Reproducibility in IaC

refers to the ability to recreate an identical infrastructure
environment using the same code and configuration files [6],
[7]. The importance of reproducibility in IaC lies in its
ability to guarantee consistency across different environments,
such as development, testing, and production. By achieving
reproducibility, organizations reduce the time to maintain
computing infrastructure, improve productivity, and eliminate
configuration drift [7], where inconsistencies and discrepancies
arise between environments over time due to manual changes.

The quality of IaC scripts has been assessed in several
studies. For example, Gonzalo et al. [5] provide recom-
mendations for effective coding practices, including main-
taining a consistent style, avoiding assumptions, organizing
code predictably, and implementing error defense measures.
Similarly, Kumara et al. [7], [8] emphasize the significance of
reproducibility in IaC, particularly in maintaining consistent
and easily reproducible environments. Rahman et al. [9]
summarize approaches to identify defects in IaC scripts. While
the research community has extensively examined practices
impacting quality attributes such as security and maintainabil-
ity in IaC [8]–[11], best practices for achieving reproducibility
within IaC scripts and associated challenges remain largely
unexplored in academic literature.

This paper addresses the research gap by first exploring
existing knowledge about practices that affect reproducibility
in IaC scripts in the existing literature in the form of a
multi-vocal literature review. In this exploration, we choose to
keep our focus on Ansible scripts (also known as playbooks)
because, first, Ansible is one of the most commonly used
IaC frameworks used for resource orchestration and config-
uration [8]. Also, the imperative nature of Ansible code, on
the one hand, gives the flexibility to users to specify tasks
utilizing known operating system commands but, on the other
hand, poses a risk of leading to difficult-to-reproduce scripts
(for example, due to violation of idempotency principle [8]).
Our exploration led us to a set of practices hindering the
reproducibility of Ansible scripts that we gleaned from aca-
demic articles and grey literature resources. We apply the
open-coding method to analyze and synthesize a catalog of
reproducibility smells, that we define as programming practice
or specification that hinders the reproducibility of an IaC
script, from the collection of practices. Then, we develop a tool
REDUSE (REproDUcibility SmEll detector) to analyze Ansible



playbooks and detect reproducibility smells. Furthermore, we
conduct an empirical study to understand the proliferation of
reproducibility smells and the degree of correlation and co-
occurrence among them in open-source Ansible repositories.
This paper makes following contributions to the field.

• The study introduces a comprehensive reproducibility
smell catalog aggregating the existing knowledge from
academic as well as grey literature for Ansible scripts.
The catalog serves as a valuable resource for practitioners
and researchers seeking to identify and mitigate repro-
ducibility issues in Ansible scripts.

• The paper offers a tool REDUSE that we developed
to detect reproducibility smells. Practitioners can use
the tool to improve the reproducibility aspects of their
Ansible scripts. Researchers in the field may use the
tool to conduct studies to explore further ways to ensure
reproducibility and investigate their causes and effects.

• Our empirical study explores properties of the repro-
ducibility smells and their relationship with each other.
Observations derived from the study improve our under-
standing of Ansible scripts, reproducibility smells, and
their characteristics.

• We make our replication package, including the source
code of the developed tool REDUSE, scripts we use to
generate and analyze data, and results obtained from an-
alyzing each open-source repository available online [12]
for replication and extension.

II. RELATED WORK

A. Assuring IaC scripts quality

We divide the section into sub-categories of related work to
ensure IaC script quality.
Best practices in IaC: We find studies investigating tools and
techniques to ensure various quality aspects, including security
and maintainability. Kumara et al. [7] reviewed the best
practices of popular IaC languages, including implementation,
design, and violations of IaC principles (e.g., idempotence
and separation of configuration code) useful to improve IaC
development practices. Rahman et al. [9] curated approaches
to identify defects in IaC scripts. Finally, Hummer et al. [13]
focused on effective and efficient IaC configuration manage-
ment by emphasizing automated configuration management
and standardized workflows.
Code smells in IaC scripts: Several studies focus on evalu-
ating the quality of IaC scripts and identifying code smells.
Dallapalma et al. [10] propose a catalog of metrics to evaluate
the quality of Ansible scripts and other IaC languages. Their
work enables engineers to assess infrastructure code quality
and support incremental refactoring efforts. Schwarz et al. [11]
introduce 17 new code smells for Chef. The study compares
the quality of IaC across different IaC frameworks. Sharma et
al. [2] propose a catalog of implementation and design con-
figuration smells for Puppet. Additionally, Rahman et al. [14]
propose AnsibleCheck, a framework for automated detection
of code smells in Ansible playbooks. Their work contributes

to detecting and refactoring code smells, further enhancing
the quality of Ansible scripts. These studies collectively con-
tribute to evaluating and improving IaC script quality, helping
practitioners identify and address code smells.
Security smells in IaC scripts: Several studies propose tech-
niques for detecting security smells in IaC scripts. Dai et
al. [15] developed SecureCode, an analysis framework that
identifies risky patterns in infrastructure scripts and assesses
their impact on business vulnerabilities, focusing on security
issues. Opdebeeck et al. [16] develop a code smells detector
for variables-related smells in Ansible scripts, highlighting
the hazards related to variable reuse and overrides. Along
similar lines, Opdebeeck et al. [17] propose an approach
that leverages Program Dependence Graphs (PDG) to identify
security smells in Ansible code. Bhuiyan et al. [18] focus on
Insecure Coding Patterns (ICPs) in IaC scripts and propose a
method to prioritize code review efforts, aiding practitioners
in mitigating ICPs.

B. Reproducibility practices in software engineering

The reproducibility of scientific experiments is an overar-
ching concern addressed in multiple studies. Some studies
discuss general coding practices and toolkits that promote
reproducibility in software development. For example, Gon-
zalo et al. [5] emphasize the importance of good coding
practices, consistent coding style, documentation, and error
handling. Their suggestions include utilizing version control,
documenting code dependencies, simplifying execution, and
utilizing containerization technologies like Docker. Feitelson
et al. [19] propose approaches like comprehensive project
documentation to improve the reproducibility of scientific
experiments.

C. Comparison with the state of the art

While previous research in the IaC domain has focused
on examining security and maintainability aspects within IaC
scripts, our work focuses on the often-neglected yet vital con-
cept of reproducibility. Incorporating reproducibility principles
into IaC enhances the dependability and consistency of deploy-
ments. Our work first creates a comprehensive catalog of re-
producibility smells by aggregating relevant information from
multi-vocal resources. We develop a reproducibility smell de-
tector for Ansible scripts. Using the developed tool REDUSE,
we conduct an empirical study to explore the proliferation
of reproducibility smells in open-source repositories and the
relationship among smells to better understand reproducibility
in the IaC domain.

III. STUDY DESIGN

The main objective of this research is to understand the
difficulties involved in reproducing computing infrastructure in
the context of IaC. We aim to gather challenges faced while
reproducing IaC scripts and identify programming practices
that lead to these challenges related to reproducibility. We
refer the collection of such practices as reproducibility smells.
Additionally, we aim to detect these reproducibility issues



automatically to investigate the proliferation of such practices
in open-source Ansible projects and understand them better
by inferring relationships among the smells. We answer the
following research questions (RQs) to achieve the above-stated
goals.

RQ1. What kind of programming practices impact reproducibil-
ity in IaC scripts?

Identifying practices that impede reproducibility would guide
developers to create scripts that consistently produce desired
infrastructure setups across environments. With this research
question, we want to consolidate the scattered knowledge
about reproducibility in the IaC domain.

RQ2. Which reproducibility smells are more prominent in open-
source repositories?

The research question aims to determine if certain repro-
ducibility smells are more common than others in the analyzed
open-source software repositories. The answer to this question
can help developers be more cautious of reproducibility smells
that are expected to occur more frequently and encourage them
to take appropriate measures to address them.

RQ3. Do reproducibility smells co-occur?

A strong correlation between different types of smells can
provide valuable insights into their occurrence patterns and
inter-dependencies. Detecting how these smells cluster uncov-
ers hidden complexities in IaC scripts, aiding developers in
adopting holistic approaches to enhance script quality.

Fig. 1: Overview of the study.

We design our study consisting of multiple steps to answer
the above research questions. Figure 1 provides an overview
of the study. We carry out a multi-vocal literature review to
search, filter, and consolidate programming practices affecting
reproducibility to answer RQ1. The review helps in determin-
ing a catalog of reproducibility smells in IaC domain. Then,
we implement a tool REDUSE to detect reproducibility smells
in Ansible scripts. To investigate and address RQ2 and RQ3,
we identify a set of top open-source Ansible repositories from
the Ansible Galaxy platform [20]. We use REDUSE to detect
reproducibility smells in the identified Ansible repositories
and discuss our observations based on the analysis. We also
conduct a qualitative analysis to observe the impact of repro-
ducibility smells in production IaC scripts.

IV. REPRODUCIBILITY SMELLS CATALOG

This section elaborates our approach to create a catalog of
reproducibility smells and describes them using a template.

A. Catalog Creation

Given the practical nature of the problem space, we carry
out a Multi-vocal Literature Review (MLR) [21]. An MLR
combines information in academic research papers with grey
literature sources, including blog posts, articles, programming
discussion forums, and official documentation provided by
framework or library developers. A wide range of resources
helps us gain insights into the diverse range of efforts related
to good and bad IaC practices. Through our extensive literature
search and systematic cataloging effort, we contribute to the
state of the art by thoroughly searching the academic and grey
literature for reproducibility issues, systematically pruning and
grouping these issues into distinct, actionable smells, and
clearly defining and cataloging each smell. We elaborate on
the adopted process in the rest of the section.

1) Resource gathering and searching: We follow practices
employed in multi-vocal literature review [21]–[24] to search,
filter, and identify resources for the review. Specifically, we
use the Google search engine to search the grey literature,
focusing on text-based sources such as reports, blog posts,
white-papers, and official documentation related to IaC plat-
forms. In the case of academic literature, we consider Google
Scholar as well as IEEE and ACM digital libraries for literature
search. We formulate the following search queries, inspired
by similar studies [8], [25], [26], considering the scope of our
search: ‘Infrastructure as code’ + smells + reproducibility,
‘Infrastructure as code’ + anti-patterns + reproducibility,
‘Infrastructure as code’ + bugs + reproducibility, ‘Ansible
best practices’ + reproducibility, ‘Ansible bad practices’ +
reproducibility, and ‘Ansible anti-patterns’ + reproducibility.

We carefully examine the search results corresponding to
each search string and document the relevant resources (by
reading the title of the resources) until we do not find new
resources. In total we found 163 resources from grey sources
after applying inclusion and exclusion criteria. Our replication
package [12] includes the metadata of the resources (such as
URL and title) along with the number of resources collected
from individual search queries.

2) Inclusion and exclusion criteria: The inclusion criteria
are as follows. First, the article must be written in English
and have accessible full text. Also, the article should align
with the focus of this study i.e., covering practices to follow
or avoid, discussing bugs, defects, smells, or anti-patterns,
or describing challenges related to reproducibility in IaC, in
general, or Ansible as a specific IaC automation framework.

We exclude resources that are duplicate or short. We also
exclude articles that do not discuss reproducibility aspects,
irrespective of whether IaC or not. Finally, articles that do
not provide an adequate scope, rationale, consequences, or
examples of recommended practices or practices to avoid such
as bugs, defects, smells, and anti-patterns are also excluded.



We obtain a list of six academic and 110 grey literature
resources after applying inclusion and exclusion criteria.

3) Snowballing: We employ both backward and forward
recursive snowballing by carefully reviewing all the references
and citations of our primary academic articles to identify
relevant resources. For each potentially relevant article that
we identify through snowballing, we then apply our inclusion
and exclusion criteria. We add 26 articles from this exercise.

4) Quality assessment of grey literature: The nature of
grey literature necessitates a careful evaluation to ensure the
credibility and relevance of these sources. To this end, We
follow the quality assessment best practices suggested in the
literature [8], [26], [27].

We evaluate each grey resource on a scale of 20 points,
covering reputation of the publishing venue, author’s exper-
tise, clarity of its purpose, and publishing date. Given that
existing literature do not provide a systematic guidelines to
evaluate and assign a score to grey resources beyond the
above-mentioned evaluation criteria, we apply the following
mechanism to thoroughly examine each resource.

• To assess venue reputation, a weighted approach consid-
ers affiliations (i.e., institutional ties and collaborations),
endorsements (i.e., organizational support), publication
history (including publication frequency and citation im-
pact) of the venue, and reviews (in the form of user
feedback). All of these parameters had the same weight.

• In evaluating author expertise, we consider academic
credentials (i.e., author’s educational and professional
background as well as specialization), publication track
record, research affiliations, and professional experience.

• The evaluation of content clarity includes factors such as
relevance, clarity, thorough analysis, novel insights, and
illustrative examples.

• Publication date is used as a metric of recentness.
Recently released resource scores higher than a relatively
old resource.

The quality assessment process involves a thorough eval-
uation by two reviewers; both are graduate students with
four years of experience in software development. One of
the reviewers possesses expertise in the IaC field, whereas
the second has a general acquaintance. Each reviewer in-
dependently examined the resources and assigned a score
corresponding to each of the criterion mentioned above with
five being the highest score and one is the lowest. All four
aspects have the same weight in calculating the final score.
After completing the exercise independently, we consolidate
the scores. We obtain a high inter-rater agreement (κ = 0.94).
If their individual scores for a specific aspect have a minor
disagreement (i.e., ±1), the consolidated score is calculated by
taking an average. However, when their individual scores have
a substantial disparity, both reviewers engage in a discussion
to understand the rationale for the provided scores and reach
a consensus on the final score.

After evaluating all the resources, we discard resources with
a score of less than ten in the quality assessment exercise. We
also discard resources with a score less than three (out of

five) in the Relevance and clarity of content aspect to keep
the selected resources very relevant to our study, resulting in
a total of 78 remaining resources. The marking guideline, the
assessment document of each reviewer, and the detailed eval-
uation scores corresponding to each grey resource, including a
summary, and the resource link, can be found in our replication
package [12].

5) Data extraction and analysis: We combine resources
obtained from both the academic and grey literature selection
and filtering processes. We thoroughly study the combined list
of resources and document their summary, key learning, and
relevant metadata (e.g., BibTex entry). We use the information
summarized from the selected studies and resources to create
a catalog of reproducibility smells.

We employed open coding [28], a qualitative method for
analyzing and organizing concepts, to systematically catego-
rize information from summaries of research papers and code
examples. The lead author, with prior experience in qualitative
research, conducted the initial coding phase. This involved
thoroughly reviewing the collected information, breaking it
down into smaller segments for detailed examination, and
identifying relationships, similarities, and differences. Each
segment received a descriptive label reflecting the main ideas
or practices related to reproducibility. To ensure consistency
and capture emerging themes, an iterative refinement approach
was adopted. The lead author revisited segments and codes
multiple times, and after each round of coding, other authors
reviewed the codes and participated in further rounds of cod-
ing. This collaborative process continued until a consensus was
reached on a final coding scheme that effectively captured the
data. Employing emergent coding throughout, we ultimately
identified and categorized six key concepts, which we then
classified as reproducibility smells.

B. Results of RQ1—Reproducibility Smells Catalog

A reproducibility smell is a practice to specify, configure,
or program IaC scripts that hinder the reproducibility of the
script. Each smell represents a specific practice that violates
the IaC principle of reproducibility and deviates from best
practices, thereby compromising reproducibility. Considering
that code smells inherently signal a potential issue rather than
an actual problem [29], reproducibility smells similarly point
to a violation of guidelines and a potential issue necessitating
additional validation within the given context.

We describe each smell in our catalog using a name,
description, example, and potential fixes, followed by rules to
detection the smell automatically. To keep the paper succinct,
we keep the code snippets for the discussed examples in
our replication package [12]. Similarly, we include the most
important references for each proposed reproducibility smell;
an interested reader may find the full list of references in our
replication package.

1) Broken dependency chain: A broken dependency chain
occurs when a dependency or a required component, such
as a package, cannot be installed or configured, preventing
subsequent tasks of the script from executing successfully [7],



[13], [30], [31]. This disrupts system reproducibility by caus-
ing inconsistent environments across deployments.

Example: In an Ansible playbook [32] belonging
to ansible-jupyterhub-hpc repository, a task
‘install CHP proxy auth token’, gets tokens
from a source file, then uses these tokens to perform several
operations. However, the task does not check the existence
of the source file nor the correctness of the extracted tokens,
which can lead to a broken dependency chain.

Potential fix: In this example, adding Ansible constructs stat
and when that check the existence of the file and the correct-
ness of the tokens can mitigate the issue [33].

Detection rule: We detect this smell in an Ansible task when
the task installs a package using hard-coded keys or tokens,
installs a package or library directly from an invalid URL,
or uses a set of files without any checks to ensure the file’s
existence [30], [31], [34]. We do not detect the smell when
the task use at least one of the checking constructs to ensure
the correct task execution: package-facts, debug, when,
set-fact, assert, with-items and set-facts. Hav-
ing these checks ensures that prerequisites are verified before
executing dependent tasks, preventing failures due to unmet
dependencies.

2) Outdated dependency: This smell occurs when an Ansi-
ble script specifies an outdated version of a software library or
package for installation [31], [34]–[38]. Outdated dependen-
cies in Ansible scripts can expose the infrastructure to hidden
bugs, regressions, and security vulnerabilities, ultimately hin-
dering script reproducibility.

Example: An Ansible playbook [39] in repository
ansible-role-virtualenv has a task named
‘install virtualenv post packages’. It installs
the packages that are specified in a default list specified
within the virtual environment package manager which could
become outdated because no update policy is mentioned in
the script and the version in the package manager is fixed.

Potential fix: Creating a requirement file with compatible
versions is standard practice. Similarly, creating Docker im-
ages with all the necessary packages and libraries is also
a typical practice. However, updating the dependencies and
their corresponding stable versions is strongly recommended
to avoid this smell. In the above example, we add a state
Ansible property that only installs the missing packages with
their latest stable and compatible version.

Detection rule: We detect this smell in an Ansible task when
the task uses the package module to install a package, but it
doesn’t explicitly specify the update attribute with values
such as upgrade or upgrade-cache. This omission may
lead to the installation of outdated packages [37], [40]. We
also detect this smell when the task does not perform any
checks to verify if a newer version of the package is available
i.e., the task is missing package_facts or check_mode
attributes.

3) Incompatible version dependency: This smell occurs
when an Ansible playbook or role specifies a package or
library version that is either no longer available in the target
system’s repositories, or, incompatible with other components
in the configuration [31], [34], [35], [41]. Incompatible version
dependencies in Ansible scripts can lead to missing pack-
ages, cascading dependency conflicts, and version resolution
problems leading to challenges in reproducible computing
environments.
Example: An Ansible playbook in repository
ansible-for-devops [42] has a task namely
‘Install Apache, MySQL, PHP, and other
dependencies’. The task installs a specific version
of PHP extensions without verifying the absence of other
versions in the environment. This oversight can lead to
conflicts if another PHP version is already present. Specifying
fixed package versions in this task can cause dependency
conflicts, playbook failures due to unavailable versions, and
cascading dependency issues.
Potential fix: Maintaining a compatible dependency matrix and
setting the versions according to it may help avoid the smell.
Often developers set latest to the state property to ensure
the latest version of the package installation. While setting
the state to latest might seem tempting, it can disrupt
compatibility. A better approach might be to leverage tools
such as pipdeptree to analyze existing dependencies and
identify potential conflicts before introducing new versions. In
addition, when installing any new dependencies using package
managers, upgrade_cache should be used to ensure any
previous version of the dependencies are removed from the
environment.
Detection rule: We identify this code smell in Ansible tasks
when the package module is used with a specific version num-
ber in the version attribute. We also detect this smell when
the package module uses state: latest. This ensures up-
to-date packages but may introduce unexpected changes and
compatibility issues [40], [43].

4) Assumptions about environment: This smell arises when
scripts rely on unverified assumptions about the environment,
like the version or the type of the target machine’s operating
system or the availability of certain packages or libraries.
General assumptions about the environment pose significant
challenges in reproducing IaC scripts as they may not be
accurate or applicable in all situations and environments [3],
[5], [44], [45].
Example: In an Ansible playbook [46] in repository
chocolatey-ansible, a task with the name ‘checking
if the bootstrap file has been created’ is
using Windows-specific component without verifying the
operating system of the environment.
Potential fix: Refactor scripts with parameters and conditions
to adapt to different operating system versions and distribu-
tions using Ansible facts [33]. In the above example, we may
use the when property to specify the required operating system
as a condition to execute this task [33].



Detection rule: We detect execution environment-related as-
sumptions and dependencies in Ansible, using various mech-
anisms, e.g., checking for operating system-specific variables
in a task, identifying commands tailored to a specific operat-
ing system, reviewing networking configurations (such DNS,
firewall, and SSH), assessing assumptions about services and
package repositories, examining path variables, and recogniz-
ing software-specific commands [44], [45], [47].

5) Hardware specific command: This smell occurs when
scripts include commands or configurations that are tightly
coupled to specific hardware components, such as particular
CPU architectures or GPU models [37], [48]–[50]. Hardware-
specific commands in Ansible scripts limit script portability
and introduce hidden assumptions about the target hardware
hindering script reproducibility across different hardware en-
vironments.
Example: A task ‘Install AMD GPU drivers’ in
repository A:Platform64 [51] configures and installs AMD
GPU drivers without checking the existence of this GPU in the
machine.
Potential fix: Checking cross-device configuration compati-
bility by substituting hardware-specific commands with gen-
eral tasks and using Ansible variables to abstract hardware-
dependent values reduce the chances of failure and improves
reproducibility. For the example presented above, we may add
properties such as when, debug, gather_facts to the
task to handle the situations when the expected GPU is not
present in the target machine using the information gathered
with variables in the task [33].
Detection rule: We detect hardware specific command smell
when a hardware-specific command related to disk manage-
ment, system management, security management, performance
and GPU settings, I/O management components (such as
lspci, lshw, lsblk, fdisk, and parted) is used in a
task without confirming the presence of the hardware or an
error handling code [48]–[50].

6) Unguarded operation: This smell occurs when Ansible
tasks employ non-idempotent commands, particularly direct
operating system commands, without appropriate state checks
or safeguards. Such practices can lead to unintended system
state changes and compromise the repeatability of Ansible
playbooks [7], [34], [52], [53].
Example: A task ’Apply machine config’ in reposi-
tory openshift-ansible [54] uses a command to per-
form an unguarded operating system-level operation without
properly checking the status of the system.
Potential fix: Prioritizing idempotency in task design by
using error handling constructs, such as failed-when,
changed-when, and rigorously validating inputs and con-
ditions before executing critical operations may avoid this
smell. For the task in the example above, we may add a
changed-when statement to ensure appropriate function-
ality. We can also use when to ensure the existence of the
required configuration files and check if the configuration is
not already applied.

Detection rule: To detect this smell, we identify tasks that
execute unguarded operating system commands through An-
sible that are not idempotent [13], [52], [53], [55], which in-
clude using package installers without checking the existence
of the package state or version, manipulating files without
idempotency checks and creating/updating users, groups, or
files without idempotency considerations [30], [43], [56].

C. Smell catalog and detection rules validation

We identified eleven active IaC researchers and contacted
them for feedback on the draft smell catalog and detection
mechanism. Each question in the survey presented a repro-
ducibility smell and corresponding detection mechanism. We
asked the participants to rate the detection mechanism on a
Likert scale ranging from one to five (the value five represents
the detection mechanism is the most appropriate way to detect
the smell). The survey was anonymous and open for ten days.
One may find the survey questionnaire online [57].

We obtained a total of six responses. On average, the partici-
pants rated 3.33 for broken dependency chain, 2.5 for outdated
dependency, 3.8 for incompatible version dependency, 4.0
for assumptions about environment, 4.0 for hardware specific
command, and 3.8 for unguarded operation. These ratings
show researchers’ reasonable confidence in the proposed cata-
log and detection mechanism. Outdated dependency received
the lowest confidence from the researchers. In fact, two of the
researchers mentioned that the smell could not be considered
as a reproducibility smell. Due to the overall low rating and the
above comment, we decided to drop the outdated dependency
smell from our catalog and the developed tool. In the rest of
the paper, we will not include outdated dependency in our
discussion.

Summary: After validating the catalog and detection rules
obtained from our extensive multi-vocal literature review,
we obtain a consolidated set of five reproducibility smells.

V. A REPRODUCIBILITY SMELL DETECTION TOOL

We developed REDUSE (REproDUcibility SmEll
detector)—a tool to detect reproducibility smells in Ansible
scripts. Figure 2 shows the architecture of the tool.

Fig. 2: Architecture of the smell detection tool.

We provide a path to the individual yaml file or a directory
containing these files to invoke REDUSE. It goes over each
of the Ansible scripts individually and parses them using
PyYAML [58] library. PyYAML parses the script and generates



a nested list of key-value pairs containing identified Ansible
constructs and their attributes in a structured manner.

Then, the Task Model Creator module uses the parsed script
and generates key-value pairs to populate our custom source
code model. It is a collection of Task instances; each Task
instance represents an Ansible task and contains various task
properties, including task name, target hosts, and Ansible-
specific properties (e.g., remote-user and gather-facts). These
properties hold essential information for the tool to detect
reproducibility smells.

The Reproducibility Smell Detector module takes the task
model instance for the Ansible script under analysis and
detects reproducibility smells using the defined rules. Each
smell detection rule requires checking specific properties of the
specified Ansible tasks; if a rule is satisfied for a given task,
we detect the smell in the task. Finally, the Result Exporter
module emits the identified smells in a CSV file with details
such as task name, file path, smell type, and a brief description,
aiding developers in addressing potential issues.

A. Tool validation

We implement the smell detection rules discussed in the
Section IV-B in our tool REDUSE. To assess the effectiveness
of the developed tool, we conducted a manual validation that
we elaborate on the next.

1) Data gathering: We first explore the search options
in GitHub to identify Ansible repositories as our subject
systems for validation; however, GitHub does not support
searching repositories specific to frameworks. Moreover, given
that yaml files can be used with other frameworks, such as
Docker, a file-extension-based search approach also could not
be used. To overcome the challenge, we decide to use Ansible
Galaxy, as used by other studies in the domain [16], [25],
[59]. First, we obtain the most downloaded repositories on the
platform and then select repositories satisfying our selection
criteria (i.e., must have more than ten scripts, 1, 000 stars,
and 300 commits) to avoid selecting small or low-quality
repositories. We choose ceph_ansible, openshift_ansible, an-
sible_for_devops from this criteria. These repositories has 174
scripts and a total of 6, 722 Ansible tasks. We manually
checked each repository to ensure that the repositories contain
actual Ansible scripts. In addition, we also include the oci-
ansible-collection [60] dataset, which has been used in testing
GLITCH tool [25] and creating the Andromeda dataset [59].
This dataset contains 33 sub projects with a total 84 different
Ansible scripts, containing 1, 309 individual Ansible tasks.

2) Evaluation approach: Two non-author evaluators, par-
ticipated in the evaluation process. The evaluators possess
knowledge of IaC concepts and Ansible; they are graduate stu-
dents with approximately four years of software development
experience. To minimize potential bias, we ensure to provide
the evaluators with the definition, examples, and potential
fixes of reproducibility smells without exposing them to the
implementation of our tool. Both the evaluators independently
assessed Ansible scripts and identified reproducibility smells.
After the individual assessment was over, we matched findings

from both evaluators and created a consolidated set of smells.
The inter-rater agreement was high (κ = 0.86). In the case of
different opinions, they discussed and resolved the differences.
Once the ground-truth from the evaluators were established,
we used our tool REDUSE to identify reproducibility smells
in the selected repositories. The results from manual analysis
and REDUSE are available in our online replication package.

TABLE I: Performance of REDUSE against manually anno-
tated ground-truth

Smell TP FP TN FN Precision Recall MCC F1-score
Broken dependency chain 2,990 320 3,370 42 0.90 0.98 0.87 0.94
Incompatible version dependency 13 0 6,704 5 1.00 0.72 0.77 0.85
Assumptions about environment 2,092 780 3,710 140 0.73 0.94 0.65 0.82
Hardware specific command 10 0 6,712 0 1.00 1.00 1.00 1.00
Unguarded operation 2,780 298 2,340 10 0.93 0.96 0.89 0.94

Total 7,885 1,398 9,426 197 0.849 0.976 0.837 0.908

3) Evaluation: We compared the tool-generated results
with manually curated ground-truth. Table I presents the
results of the evaluation using typical metrics precision, recall,
F1-score, and Matthews Correlation Coefficient (MCC). The
tool performs well with F1-score = 0.908 and MCC = 0.837.

The high F1-score and MCC values indicate that the tool
identifies reproducibility smells with a reasonable accuracy.
The tool emits a few instances of false-positive for three
smells. The tool, for example, incorrectly identifies broken
dependency chain because it checks whether a task ensures
its correct execution via specific Ansible attributes (e.g., set-
facts, package-facts, and assert) within the task. However,
there can be discrepancies when an Ansible script performs
such checks in a different task. Since the tool currently does
not support analysis across tasks, it reports false positive
instances. Similarly, the tool could not identify a few instances
of three smells. These false negative instances appear due to
vast variations possible in Ansible specifications. For example,
the tool implements a reasonable set of heuristics to check
assumptions about the environment; however, there can be
many other ways in which assumptions can be specified
that the tool currently does not support. We aim to continue
expanding the heuristics to benefit future developments in this
field through our open-source repository.

VI. EMPIRICAL STUDY

A. Data collection

As we discuss in Section V-A, GitHub does not offer a
convenient means to select a subset of Ansible repositories.
We rely on Ansible Galaxy [20]—a hub for hosting, searching,
and sharing Ansible projects for identifying our subject sys-
tems. Ansible Galaxy divides the hosted repositories into nine
categories (i.e., System, Networking, Database, Packaging, Se-
curity, Development, Cloud, Monitoring, and Web). We apply
selection criteria to identify the repositories for our empirical
analysis. First, we select 100 most downloaded repositories
from each category. The Ansible Galaxy platform does not
provide a developer-friendly mechanism (e.g., platform APIs
similar to GitHub APIs) to extract the required information
(in our case, a GitHub repository link as part of the metadata



of the search Galaxy’s result). To overcome the challenge,
we developed a Python script to extract GitHub repository
links from the web search results on Ansible Galaxy. We also
use GitHub repository metadata to filter out low-quality and
unmaintained repositories among the initial 900 repositories.
Specifically, we select repositories with a minimum of 50
commits, at least five stars, and the last commit not older than a
year. With these criteria in place, we obtained 290 repositories.
We manually checked all these repositories looking for any
repository that is example, test, or tutorial repository; we
excluded such repositories. Our final dataset comprises 258
repositories; these repositories contain 4, 100 Ansible scripts
and 19, 412 distinct Ansible tasks.

B. Results of RQ2

RQ2 aims to understand the proliferation of reproducibility
smells in open-source repositories.

1) Approach: To answer this research question, we use
REDUSE to identify the presence of reproducibility smells in
all selected repositories. The tool identifies smells and stores
the identified instances with relevant metadata (i.e., repository
name, script path, task name, the identified smells, and a brief
description) for each analyzed Ansible script. We aggregate
all the smell instances across all the analyzed repositories to
calculate smell frequency across all Ansible tasks.

2) Results: Table II shows the total number of reproducibil-
ity smell instances detected in all the analyzed Ansible tasks.
Broken dependency chain is the most frequently occurring
smell. A high frequency of this smell indicates that software
developers do not ensure the existence of required artifacts
or dependencies in their infrastructure specifications. Simi-
larly, assumptions about environment and unguarded operation
smells show a high frequency, indicating that infrastructure
specifications are written without concerning the portability
of the instructions across various execution environments and
without ensuring the idempotency properties of the specified
operations. On the other hand, incompatible version depen-
dency is the least occurring reproducibility smell (with only
15 instances), indicating that Ansible scripts typically do not
mix package update policy for packages in a task. Finally,
hardware specific command, with mere 42 smell instances,
also rarely occur in Ansible scripts.

TABLE II: Frequency of detected reproducibility smells.

Reproducibility smell Detected instances

Broken dependency chain 13,869
Incompatible version dependency 15
Assumptions about environment 5,511
Hardware specific command 42
Unguarded operation 5,295

Broken dependency chain exhibits the highest number of
occurrences, approximately in 71% of Ansible tasks, among all
the smells. The rationale of the high frequency can be traced
back to the followed best practices and recommendations;
according to them, the tool expects a defensive programming

construct, such as assert, when, stat, or debug in each
Ansible task. However, the majority of the Ansible tasks do not
perform such a check and hence the tool reports a significantly
high number of smell instances.

The identification of prevalent reproducibility issues in
Ansible scripts offer crucial insights and actionable lessons.
It underscores the necessity for meticulous dependency man-
agement, for script reliability. Additionally, it highlights the
importance of script portability, urging developers to create
robust, cross-platform scripts. The findings also signal a need
for increased awareness and education about reproducibility
best practices within the developer community, emphasizing
the value of tooling and automation for proactive issue detec-
tion and resolution.

Summary: The prevalent broken dependency chain smell
highlights a common oversight in ensuring necessary de-
pendencies in Ansible scripts. Frequent occurrences of
assumptions about environment and unguarded operation
indicate problems with script portability and operating
system-specific operations.

C. Results of RQ3

This research question investigates the relationships among
reproducibility smells, specifically pair-wise correlation and
co-occurrence. Analyzing how reproducibility smells co-occur
in Ansible scripts may reveal underlying patterns and root
causes, leading to a better understanding of these issues.

1) Approach: The process starts with a list of identified
smells using REDUSE over all Ansible scripts. Then, we
consolidate these smell instances at the repository granularity
i.e., each row represents the total number of smells per smell
type for a repository. We use Spearman correlation analysis
on each pair of smells to find correlation between all pairs of
reproducibility smells.

To find out whether two reproducibility smells occur to-
gether in a task, we carry out a fine-grained analysis at the
Ansible task granularity. We create a contingency matrix [61]
for each pair of smells and compute ϕ co-efficient [62]. The ϕ
coefficient provides a measure of co-occurrence, sensitive to
both the presence and absence of reproducibility smells within
individual tasks.

2) Results: First, we use Shapiro-Wilk test [63] to check
the normality of the data distribution. We perform the test on
each of the detected smells in all of the scripts; we obtain
w in the range of 0.01–0.61 with the p-value < 0.05 for all
the observations. This entails that the data is not following
normal distribution. Therefore, we use Spearman correlation
to measure the correlation between two reproducibility smells.
Figure 3a presents the correlation coefficients between pairs
of reproducibility smells; all the observations are statistically
significant with p-values < 0.05.

We observe a high positive correlation between unguarded
operation and assumptions about environment smells. The
unguarded operation and assumptions about environment also
exhibit high to moderate correlation with broken dependency



(a) Spearman correlation coefficients with
absolute smell count.

(b) Spearman correlation coefficients with
normalized smell count.

(c) Smell co-occurrence at the Ansible task
granularity.

Fig. 3: Correlation and co-occurrence analysis. BDC refers to broken dependency chain, IVD to incompatible version
dependency, AAE to assumptions about environment, HSC to hardware specific command, and UGO refers to unguarded
operation.

chain smell. These high to moderate correlations among
unguarded operation, assumptions about environment, and
broken dependency chain suggest that if a repository has a
large number of one kind of smell among these three,
it is likely to find other kinds of smells that show high
correlation in the repository.

The number of detected smell instances plays a role in the
correlation analysis. Specifically, smells unguarded operation,
assumptions about environment, and broken dependency chain
show a high correlation with other types of smells as they
are frequently detected. On the other hand, hardware specific
command and incompatible version dependency smells that are
the least frequently detected naturally show a low correlation
with other smells. The size of the repository i.e., the number of
tasks in a repository may confound the analysis. To remove the
factor of size from the analysis, we compute the normalized
number of smells by dividing the total number of smells by
the total number of Ansible tasks in a repository. We obtain
a new set of correlation coefficients for the normalized smell
count that we show in Figure 3b. The analysis shows an in-
teresting observation. The erstwhile high correlation between,
for example, unguarded operation and assumptions about
environment smells is no longer visible. It implies that the high
correlation was only due to the size of the repositories. With
the normalized smell count, smell pair unguarded operation
and broken dependency chain shows the highest correlation.

Furthermore, we investigate the co-occurrence relationship
between pairs of reproducibility smells at the fine-grained
task granularity. The co-occurrence relationship show whether
two smells occur together at the task granularity whereas
correlation capture tendency and proportion of smells to be
detected for all the tasks in a repository. Figure 3c shows
the calculated ϕ coefficient for each smell pair. The co-
occurrence relationship is directional, unlike correlation, i.e.,
co-occurrence between (a,b) is not equivalent to (b,a).

We observe that the unguarded operation smell shows a
high co-occurrence with incompatible version dependency.
These smells usually occur when using package installers
in an inappropriate way of specifying the package’s version.

Similarly, assumptions about environment smell exhibits a
moderate degree of co-occurrence with incompatible version
dependency. One potential reason for this relationship is that
a script that assumes an execution environment may specify
hard-coded versions for the required packages. The hardware
specific command smell does not co-occur with other smells.

Summary: Our correlation analysis uncovers signifi-
cant positive correlations between specific reproducibility
smells, implying that repositories with one such smell tend
to exhibit others. The co-occurrence analysis reveals the
high to moderate co-occurrence tendency between specific
smell pairs.

VII. IMPLICATIONS

A. Qualitative analysis

To further extend our exploration, we carry out a qualitative
analysis. The goal of the analysis is to observe the manifesta-
tion of reproducibility smells in production IaC code belonging
to open-source projects.

First, we identify the top 20 most downloaded Ansible
repositories on Ansible Galaxy. We choose a subset of these
repositories with at least 100 commits and at least ten reported
issues on GitHub. We check each of the filtered project man-
ually to ensure that these projects are real-world production-
grade projects maintained by organizations such as Cisco or
Redhat. Next, we conduct a thorough manual review of all
the issues, closed and open, raised in the final set of eight
repositories. In this review, we identify issues that originated
during Ansible playbook execution mainly due to any of the
reproducibility aspects discussed in this paper. During this
analysis, upon finding such an issue, we also identify the
potential reproducibility smells, capturing the reason for the
issue. In other words, if the development team of the repository
identified reproducibility smells, analyzed them, and refactored
them early on, that would not have led to the issue.

In this exercise, we review 152 issues belonging to eight
selected repositories. Among them, we identify 28 issues
caused directly due to reproducibility aspects discussed in this



paper. Such a large proportion of issues arising due to
reproducibility aspects clearly highlights the importance
of analyzing Ansible scripts to find and refactor such
issues early. An interested reader may find the reviewed issues
and corresponding mapping of reproducibility smells in our
replication package [12].

For example, cisco nxos [64] repository manages and
automates the NX-OS network appliances. We find two issues
[65], [66] which are stemming from not using appropriate
Ansible components when making changes in the files and not
properly checking the state of the file after each change that
led to idempotency violations which is detected as unguarded
operation smell. Similarly, in another issue [67], the unguarded
use of the command attribute without implementing status
change measures resulted in a failure. This issue is captured
by unguarded operation.
Cisco asa repository reports an issue [68] where a

new version of a module was not compatible with another
dependent module resulting in unexpected output in execution.
It indicates incompatible version dependency smell that is
caused by specifying a fixed version for a module without
checking their compatibility. Another issue from the same
repository [69] highlights a problem with an Ansible task that
failed to verify its proper execution using appropriate Ansible
components such as assert. This oversight led to errors in
playbook execution, resulting in incorrect configuration of the
environment based on the configuration file. Such issues can
be captured using the broken dependency chain smell.

B. Implications

This study underscores the importance of adherence to
the best practices in Ansible playbook development from
reproducibility perspective. The study offers implications and
actionable insights to software developers and DevOps engi-
neers maintaining computing resources, researchers working in
IaC domain, and tool vendors developing code analysis tools.

DevOps engineers can proactively identify and rectify repro-
ducibility issues before they become integrated into production
systems. Section VII-A highlights examples of reported issues
that could have been prevented by early detection and correc-
tion of reproducibility smells. The study underscores the need
for increased awareness and education within the developer
community for proactive issue detection and resolution using
automated tool support. Software engineering researchers can
utilize and extend the smells catalog proposed in this study.
They may also replicate and expand upon our empirical
exploration using the provided tool, REDUSE. The discovery of
correlated and co-occurring reproducibility smells presents an
opportunity for holistic issue resolution, enabling developers
and tool vendors to more effectively target interconnected
issues. Furthermore, these correlations highlight the need
for sophisticated tools capable of identifying and addressing
interrelated problems. This insight can guide the enhancement
of existing frameworks and methodologies in the field.

VIII. THREATS TO VALIDITY

Construct validity ensures the validity of constructs and
abstractions used in a study. Reproducibility issues in Ansible
playbooks are complex in nature, and our tool uses heuristics
to identify the smells. Though the heuristics are grounded into
semantics of IaC principles and guidelines, one may consider
them as a threat to validity. We mitigated this threat by
first validating the smells and corresponding rules by inviting
elevan active researchers working in the field. Furthermore,
we conducted tool validation by recruiting two evaluators with
adequate knowledge of Ansible to validate the implementation.
We have made the tool available online to promote critical
review, replication, and extension [12].

A threat to external validity is that we only focused on
Ansible as our target IaC framework; thus, it does not support
other frameworks such as Puppet or Chef. However, our
catalog of reproducibility smells is framework-agnostic and,
thus, can be used with any imperative IaC framework.

Generalizability of literature and the risk of omitting rele-
vant resources may threaten the external validity. We mitigate
the risk by including a wider set of related terms that are not
specific to Ansible but are applicable in general in the IaC
context. We have also used incognito mode for our google
search to avoid getting any biased results.

Internal validity ensures sufficient evidence to support
the study’s results and claims. We mitigate the threat by
conducting a comprehensive literature search following the
recommended practices for academic and grey literature. For
the empirical study, we selected a set of repositories by spec-
ifying concrete quality criteria and identified 258 repositories
belonging to diverse domains.

IX. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

By identifying and categorizing the issues that negatively
affect reproducibility that we refer to as reproducibility smells,
our research contributes to a systematic approach in modern
computing infrastructure management. We introduce REDUSE
that enables practitioners to detect these smells preemptively,
mitigating potential impacts on production systems. Our em-
pirical study targeted to explore prevalence of the repro-
ducibility smells and relationships. To ensure transparency and
facilitate further research, we have made all our code, scripts,
and results publicly available [12].

Limitations: Code smells are, by definition, indicators of an
issue (rather than an issue) [29], [70]. Reproducibility smells
that we discuss in this paper are a type of code smell and
hence share the same characteristics. Due to this, some of the
identified smell instances can be false positives. The identified
smells by REDUSE, or any smell detection tool based on
heuristics and rules, need to be vetted considering the context.
Furthermore, currently the granularity of analysis for the tool
is an Ansible task. In the follow-up work, we intend to analyze
multiple tasks simultaneously to capture any dependencies
among them and produce a more accurate analysis.

Future work: Our future work involves exploring additional
reproducibility smells in diverse project domains such as con-



figuration projects for IoT devices. Furthermore, our detection
tool can be refined by extracting and implementing additional
rules considering developers’ perspectives. We also aim to
expand the scope of the study to other IaC tools and platforms
such as Terraform, Chef, and Puppet.
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