
Enhancing Identifier Naming Through Multi-Mask
Fine-tuning of Language Models of Code

Sanidhya Vijayvargiya∗, Mootez Saad‡, Tushar Sharma‡
BITS Pilani∗, Dalhousie University‡

Hyderabad, India∗, Halifax, Canada†‡

f20202056@hyderabad.bits-pilani.ac.in∗, mootez@dal.ca†, tushar@dal.ca‡

Abstract—Code readability strongly influences code compre-
hension and, to some degree, code quality. Unreadable code
makes software maintenance more challenging and is prone to
more bugs. To improve the readability, using good identifier
names is crucial. Existing studies on automatic identifier re-
naming have not considered aspects such as the code context.
Additionally, prior research has done little to address the typical
challenges inherent in the identifier renaming task. In this paper,
we propose a new approach for renaming identifiers in source
code by fine-tuning a transformer model. Through the use of
perplexity as an evaluation metric, our results demonstrate a
significant decrease in the perplexity values for the fine-tuned
approach compared to the baseline, reducing them from 363 to
36. To further validate our method, we conduct a developers’
survey to gauge the suitability of the generated identifiers,
comparing original identifiers with identifiers generated with our
approach as well as two state-of-the-art large language models,
GPT-4 Turbo and Gemini Pro. Our approach generates better
identifier names than the original names and exhibits competitive
performance with state-of-the-art commercial large language
models. The proposed method carries significant implications
for software developers, tool vendors, and researchers. Software
developers may use our proposed approach to generate better
variable names, increasing the clarity and readability of the
software. Researchers in the field may use and build upon the
proposed approach for variable renaming.

I. INTRODUCTION

High code readability significantly improves code com-
prehension, reducing effort and time to complete software
development tasks [1]. It also reduces the risk of bugs due
to improved understanding of the code. Code readability
depends significantly upon the quality of identifier names [2].
According to Jiang et al. [3], identifiers account for up to 70%
of a typical software project in terms of number of characters.
Well-crafted identifiers clearly communicate their purpose,
which is necessary for cognitively demanding tasks such as
software development, documentation, and code review [4].

Despite the importance of good identifiers, many program-
mers choose bad identifiers such as using single characters
or abbreviations as reported by Beniamini et al. [5]. They
analyzed five open-source Java systems totaling 1.4 million
lines of code to assess identifier naming practices. They found
that 36% of all Java identifiers used abbreviations omitting
vowels and consonants. Additionally, 10% of Java identifiers
were single characters. Analyses of projects in other languages
revealed similar trends. In Python projects, 28% of identi-
fiers used abbreviations, and 6% of identifiers were single

characters [5]. Therefore, suggesting appropriate identifiers
to developers are essential to keep a software system highly
readable and maintainable.

Though there have been some efforts, especially towards
exploring the characteristics that make identifiers suitable [6],
[7], proposing a better alternative than the original name is
challenging. The primary challenge in choosing identifiers lies
in capturing the relevant context, a critical factor in the naming
process. A suitable identifier (or, variable name) in a specific
context can be entirely out of place if used in another context.
This characteristic has constrained potential solutions to the
identifier renaming problem.

Another limitation in current solutions is the absence of
a well-established and large dataset of good variable names.
Lack of such datasets limit machine learning-based solutions
for suggesting a new identifier. However, creating such a
dataset is challenging due to the innate problem of what
defines a suitable or good variable name [8]. Even for humans,
this problem can be subjective due to personal preferences
and experience. However, there is a consensus that a suitable
variable name must convey the function of the variable while
adhering to the naming conventions of the programming
language in question. These conventions outline the rules that
dictate how a character string can be classified as a variable,
along with the practices unique to a given language, such
as camel-case in Java. While certain studies, such as those
by Wainakh et al. [9], have concentrated on assessing the
semantic relatedness between two identifier names and their
corresponding embeddings, they fall short in determining the
suitability of a variable name within a specific context.

Deep learning models, especially Transformers [10], can
help capture these nuances in context through their learned
representations of source code [11]. However, Transformer-
based architectures introduce challenges related to tokeniza-
tion. Transformers operate on tokens, which are the smallest
meaningful units of text. An identifier name can consist of one
or more subtokens, which are formed by splitting the identifier
based on a specific tokenization technique. For example, the
identifier getLength can be treated as one subtoken or split
into two subtokens, such as get and Length, depending
on the tokenizer used. A limitation of current research using
Transformers for identifier naming [12] is that when generating
a new identifier name, the model is constrained to generate the
same number of subtokens as the original identifier (i.e., the

reference identifier used in training), even if the original name
was suboptimal. To illustrate this, consider an array of objects
of type Book with an iterator variable named i. Previous works
would generate a new variable called iter, which has the same
number of subtokens as i. However, generating a more de-
scriptive name like bookIndex would require two subtokens
instead of one. Given that identifier renaming is primarily
applied to low-quality code, this assumption regarding the
number of tokens can harm performance. Low-quality code
typically tends to have shorter variable names, even single-
character names, resulting in fewer subtokens in each variable
name.

In this paper, we aim to address all of the problems men-
tioned with the variable renaming task. We start by curating a
dataset of high-quality variable names using a set of heuristics
based on the current literature. By selecting high-quality
repositories and by applying heuristics to remove poor-quality
identifiers lead to better identifier renaming where abbrevi-
ations and single-letter names are replaced with semantically
significant names. Leveraging this dataset, we propose a novel
fine-tuning approach that adapts a language model of code to
the identifier renaming task using a masked language modeling
technique. In addition to the fine-tuning approach, we propose
a different inference method that generates identifier names
with varying lengths by considering different numbers of
subtokens and selects the most suitable one based on perfor-
mance metrics. The study makes the following contributions:

• We propose an approach for identifier renaming by fine-
tuning a language model using an identifier-aware fine-
tuning method. This approach encompasses several im-
portant considerations, such as data curation and address-
ing lengthy sequences of code.

• The study proposes a mechanism to select the optimal
number of subtokens to suggest a new variable name,
overcoming the challenge of predicating the number of
subtokens correctly for a given identifier.

• The study also offers a well-curated dataset comprising
of 236, 745 high-quality identifiers, along with their code
context. Such a dataset will facilitate further exploration
and extension of the research in this domain.

Replication package: Code and data used for training and
evaluation of our model can be found online [13]. Furthermore,
we have deployed our fine-tuned model online1. Rather than
grappling with local installation and execution, potential users
(e.g., software developers, or researchers) can simply query the
API endpoint with input code to obtain model outputs. This
facilitates seamless usage of our approach in a wide array of
studies, powering future research directions, and ensures easy
and transparent replication of the study.

II. BACKGROUND

This section provides a brief overview about transformers,
masked language models and common metrics used with them.

1https://huggingface.co/spaces/scam2024/ReIdentify

A. Transformers in Software Engineering Applications

Research into applying natural language processing (NLP)
techniques to code [14] has led to models trained to generate
source code. Large language models for code attempt to
capture the syntactic and semantic properties of code are
pre-trained on a huge amount of data on the task of code
completion, but fine-tuning is crucial to ensuring the model can
understand the downstream task [15], [16]. The contribution of
transformers to the domain of software engineering is valuable
and they can help provide a significant improvement over the
state-of-the-art [17]. By pre-training on software engineering
domain-specific data, problems like software sentiment anal-
ysis and software defect prediction, among many others, have
achieved improved results [18] [19]. Better pre-training objec-
tives which are more adept at capturing specific characteristics
of code, such as flow of values between variables, is an area
of extensive research which has already produced reliable
results [16], [20].

B. Masked Language Modeling (MLM)

Masked language modeling (MLM) was originally used to
pre-train language models for NLP tasks [21]. This process
involves replacing specific words with a special mask token,
allowing the model to learn how to predict these masked
tokens. Such masked language models can be very useful in
the identifier renaming task where the model can be used to
predict a masked identifier given the rest of the code.

C. Pseudo Log-Likelihood and Pseudo Perplexity

Perplexity measures how well a language model predicts
ground truth text by quantifying the model’s uncertainty in its
predictions [22]. A lower perplexity value indicates that for a
given masked token, the model is more likely to output the
actual correct token. It is a metric used for the evaluation of
language models in NLP. The perplexity PP(W) of a set of
tokens W = w1, w2, ..., wM containing M words is defined
as:

PP (W) = M

√
1

P (W)
(1)

Where P (W) is the probability of the entire tokens set W
according to the model:

P (W) =

M∏
i=1

P (wi) (2)

While perplexity provides a measure of overall sentence
probability for autoregressive language models (i.e., models
that generate text token-by-token sequentially), an analogous
metric called pseudo log-likelihood (PLL) can be defined for
masked language models such as CODEBERT. Pseudo log-
likelihood aims to estimate the probability of each token by
masking it and predicting it based on the rest of the sentence
as context. The pseudo log-likelihood of a sentence is then
computed as the sum of the log probabilities of predicting each

2

https://huggingface.co/spaces/scam2024/ReIdentify

token [23]. Therefore, pseudo log-likelihood provides a way
to get comparable probability estimates and evaluation metrics
for bidirectional masked language models, paralleling the role
perplexity plays for left-to-right autoregressive models. The
formal definition of pseudo-likelihood is given as:

PLL(S) =
N∑
t=1

logPMLM(st | S\t) (3)

where PMLM is the masked language model used for scoring,
S represents a sequence of length N composed of a set of
tokens s and S\t is the context that represents all tokens that
precede and succeed the token s at index t. In other words,
S\t = (s1, . . . , st−1, st+1, . . . , sN).

However, Kauf and Ivanova [24] found that this approach
leads to inflated scores for out-of-vocabulary words, which are
split into multiple subword tokens by the tokenizer. Specif-
ically, when scoring each subword token, the original PLL
method allows the model to exploit the availability of future
word pieces, making the subtokens deceptively easy to predict.
To address this issue, they proposed an adjusted metric called
PLL-word-l2r. In this method, when scoring a subword
token from a particular word, they mask not only that target
token but also all subsequent subword tokens belonging to the
same word. For example, to compute the PLL for the word
“souvenir” which is tokenized into [so, ##uven ,##ir],
they would score “so” using “[MASK] [MASK] [MASK]”
as context instead of just “[##uven, ##ir]”. The model is
therefore unable to rely on future word pieces when scoring
each subtoken. They compute the overall PLL for the word
by summing the scores of each subtoken masked in this left-
to-right manner. This metric is defined below:

PLLl2r(S) =

|S|∑
w=1

|w|∑
t=1

logPMLM(swt | S\sw
t′≥t

) (4)

Pseudo-perplexity (PPPL) provides an estimate of how sur-
prising a sentence is to a bidirectional masked language
model. It is computed based on the pseudo-log-likelihood
(PLL) score. As previously discussed, the PLL-word-l2r
metric estimates the PLL of a sentence by masking and scoring
tokens in a left-to-right within-word manner. Once the PLL
score is computed using this method, a pseudo-perplexity score
is derived as follows:

PPPL(S) = exp (−PLL(S)) (5)

That is, the PPPL is calculated by taking the exponential of
negative PLL. A lower pseudo-perplexity score indicates the
sentence is more probable and less surprising to the model.

III. METHODS

In this section, we elaborate on the proposed method
for identifier renaming. We first elaborate on the extraction
process of identifier names. Then, we describe our method for
fine-tuning a language model of code on the task of identifier
renaming including the strategy used during inference. An
overview of the process is presented in Figure 1.

A. Dataset creation process

In steps 1 and 2 in Figure 1, we first create a corpus
consisting of 28, 349 Java classes collected from a list of 50
open-source projects on GitHub. We used a curated list by
IssueHunt, a Japanese bug bounty platform for open-source
projects. This list details repositories primarily from well-
known organizations and covers various domains. Addition-
ally, we verified the quality of the repositories in the list by en-
suring they had a minimum of 5, 000 stars, detailed README
files, a significant number of contributors and forks, and varied
domains. The list of the selected projects can be found in
our replication package (data/SelectedRepositories.csv) Given
their popularity and activity, these repositories are believed
to be well-maintained, adhering to software development best
practices and design principles. Hence, the identifier names
used in such code bases would naturally exhibit high quality
in terms of readability and expressiveness.

Using these classes, we create a dataset D of 236, 745
samples, where each sample is a pair (C, v). C is a Java class
and v is a variable from the set of variables VC defined in
C. We then choose 1, 000 samples randomly as our training
dataset for the fine-tuning approach, and another 100 samples,
sourced from different repositories than the training dataset,
for the test dataset.

D = (C, v) | C ∈ C, v ∈ VC

The rationale of using the full Java class, instead of solely
relying on methods as done in other works [12] is to allow
the incorporation of a larger context window that incorporates
additional information. With the same aim, we also keep com-
ments at different levels, i.e., line comments, block comments,
and class-level comments. To construct VC , we follow filtering
steps to ensure that low-quality names are not included into
the dataset.

Length-based filtering: Very short identifiers do not con-
tribute to code readability [6]. Therefore, we excluded identi-
fiers smaller than or equal to four characters. We specifically
found four as the threshold, as for five character words, more
than sixty percent of the variables were nouns present in the
NLTK English dictionary [25]. The presence in the English
dictionary can be linked to fewer abbreviations. Further, nouns
and noun phrases are encouraged in variable names as vari-
ables frequently refer to entities [26], and a higher ratio of
nouns could signify the names were more descriptive of their
true functions. This requirement filters out common instances
like single-letter variable names, which are often used in
the context of iterators. This helps prevent the model from
developing a bias towards shorter names during fine-tuning.

Uniqueness-based filtering: Variable names that end with
digits treating trailing numbers as a distinguisher are con-
sidered bad variable names [27]. This rule ensures that each
variable has a distinct name rather than relying on appending
numbers to similar variables. Unique names enable develop-
ers to differentiate variables based on their specific purpose

3

M
M

M

ID
ID

ID

Repository
selection

Corpus
creation

Dataset
curation

Identifier
masking

MLM-based
fine-tuning

Identifier
renaming

Developer
survey

Testing
data

Fine-tuned
model

Training
Testing

1 2 3 4 5 6

7 8 9

Fig. 1: Overview of the identifier renaming process. The first steps include open-source projects mining from GitHub and
dataset curation. Then we fine-tune a language model of code using a masked language modeling-based method to properly
capture context and generate higher-quality variable names. To further validate our approach, we conduct a developer study to
see the extent this method aligns with practitioners’ preferences.

instead of using numbers to distinguish otherwise identical
names.
Frequency-based filtering: We identify a list of the most
commonly used identifiers, such as “count”, “result”, “output”,
and “index”. Such identifiers are quite abstract and ambiguous
due to their unclear meaning and applicability in countless
places in code. For example, “index” can refer to an index for
authors or an index for books in a library management system.

The pruning strategies do not imply that variable names
exhibiting those particular traits are always low readability. We
want to bias the model away from certain naming behaviors,
like using numbers as distinguishers; thus, we do not include
those variable names in the training data. Figure 2 illustrates
the percentage of identifier names that are kept and those that
are discarded using the aforementioned criteria.

Fig. 2: Distribution of identifiers pruned using various pruning
strategies

TABLE I: Dataset specifications

Train Test Repos Avg. LoC Avg. tokens

1,000 100 50 616.32 11,112.2

Table I summarizes the dataset used in this study. We use
different sets of repositories to create training and testing

samples, following best practices for creating training and
testing datasets.

B. Fine-tuning using Masked Language Modeling

As a pre-processing step, for each sample in the dataset,
we start by tokenizing the class C and masking all of the
occurrences of the variable v in that sample. Moreover, given
that we are constrained by the language model’s maximum
context length L, we divide the tokenized class into blocks of
size less or equal to L. In the tokenization process, an identifier
can be split into multiple tokens given that these models
use frequency-based tokenization schemes such as Byte-Pair
Encoding. For example, a readableVariable, would be
split into readable and Variable as two separate tokens.
Hence, when we mentioned that we masked the occurrences
of each variable, we meant that we masked each token of that
variable in each of its occurrences as illustrated in Figure 3.

Fig. 3: Masking tokens related to a specific variable at each
occurrence of that variable.

Another important remark is that we only keep the blocks
that contain at least one occurrence of the variable that
encompasses all of its tokens. We do this to guarantee that
an variable occurrence is not split in-between blocks.

Algorithm 1 describes the steps followed to fine-tune
GRAPHCODEBERT on the variable renaming task. We run a
forward pass on each block and collect the logits of all masked
tokens as shown in L7. In L8-9, we gather all logits given by
the forward pass that corresponds to the ground token t of a
variable to be predicted. For example, if we have a variable

4

Algorithm 1 Fine-tuning of a Language Model for Identifier
Renaming
Require:
1: B: Set of blocks of a class C containing a masked variable v.
2: TGT : List of the ground truth values of the tokens of the variable v.
3: M : Pre-trained language model
4: procedure FINETUNELM(B, VGT ,M)
5: loss← 0

6: for block ∈ B do
7: logits←M(block) ▷ Get the logits of all masked tokens
8: for t ∈ TGT do
9: tlogits ← GATHER(t, logits)

10: tlogits ← MEAN(tlogits)

11: tprob ← SOFTMAX(tlogits)

12: tpred ← ARGMAX(tlogits)
13: loss← loss + CROSSENTROPYLOSS(tpred, t)

14: end for
15: end for
16: loss← loss

len(B)
17: ∇M ← BACKPROP(loss)
18: M ← UPDATEPARAMS(M,∇M)

19: return M

20: end procedure

named [set, value]2, we gather the logits of the masked
instances of set. In L10-12, we aggregate these logits by
taking their mean, and we transform them into a probability
distribution to obtain the predicted value of this token. Finally,
we accumulate the prediction loss. At the end, the model’s
parameters are updated with the respect to the average loss
per block.

C. Running inference

During inference, typically, we expect to receive a code
snippet, mask its identifiers and then predict (or rename) their
values. A major issue in following this approach is rooted in
the nature of the tokenizers used in language models. These
tokenizers are trained on a specific corpus and do not adhere to
rule-based tokenization that considers the naming conventions
of identifiers. Instead, the tokenization process is guided by the
learned properties of the training corpus. Hence, the tokenizer
may not always split identifiers according to their naming
conventions, such as camel case or snake case. For instance,
the identifier getValue may not be tokenized as get and
Value, which would align with the camel case convention.
Instead, it could be tokenized as getVal and ue, depending
on the frequency and co-occurrence of subword units in the
training corpus. This is an issue since the number of tokens
can lead the model to fail at generating proper names.

To avoid this issue, we introduce confidence based infer-
ence. We simply set a hyperparameter T that represents the
number of tokens that should be generated to form the new
variable and return the result with the highest confidence
(or lowest perplexity). We do this at inference only because
if we were to tokenize the identifiers according to their
naming conventions, it is not guaranteed that the resulting

2This is the tokenized version. Original variable name is setValue

tokens will be part of the corpus. Consequently, these out-
of-vocabulary tokens will be replaced with a special token3,
adding unnecessary noise and impeding the model from proper
learning.

IV. EXPERIMENTS

The study aims to leverage the capacity of language models
of code to capture the semantics of source code to suggest
effective identifiers. Toward this goal, we formulate these
research questions.

RQ1: To what extent does the proposed masked lan-
guage modeling-based method enhance the model’s
performance in identifier renaming tasks?

This research question aims to evaluate the impact of our
approach in enabling the model to accurately understand
the context surrounding variables, ultimately leading to the
generation of more appropriate and meaningful alternative
identifiers.

RQ2: What is the effect of using the proposed
confidence-based inference in generating identifier
names?

We aim to evaluate the impact of the proposed inference
method on the quality of generated identifier names, partic-
ularly in addressing the limitations of the tokenizer used by
the GRAPHCODEBERT. Specifically, the goal is to measure
the extent to which this confidence-based approach improve
the model’s performance during inference compared to relying
on a typical tokenization.

RQ3:How effective is the overall approach in gen-
erating high quality in practice?

To further validate the effectiveness of the proposed method,
we conduct a survey involving software practitioners to assess
the quality of the generated identifiers from their perspective.
This survey aims to provide a comprehensive evaluation by
comparing the identifiers generated by our approach with those
produced by state-of-the-art large language models, such as
Gemini [28] and GPT4 [29]. We seek to assess the practical
utility and acceptability of the generated identifiers within the
software development community.

A. Model and baseline selection

In this paper, we use GRAPHCODEBERT [20] as our
masked language model to process the code snippet and fine-
tune it to generate identifier names as it has been used in
many studies recently [30]–[32]. In addition, we opted for
this specific transformer model given that it was pre-trained
on different modalities of code, including data flow graphs that
capture the semantics between the variables of a code snippet,
making it a suitable candidate for the identifier renaming task.

As a baseline for comparison, we employ the GRAPHCODE-
BERT without any fine-tuning. This serves as a valid baseline
given that it has been pre-trained on a large corpus of code,
enabling it to capture the general patterns and semantics of

3Many language models use [UNK] to represent out-of-vocabulary tokens.

5

programming languages. By evaluating the performance of
GRAPHCODEBERT without our fine-tuning strategy, we can
assess the effectiveness of our proposed method in improving
the model’s ability to generate appropriate identifier names
beyond its initial pre-training.

Identifier renaming overcomes the challenge of ensuring
the new name is not only relevant, but also better than other
relevant names. This distinction separates this problem from
others in similar domains such as code completion and method
naming [33] [34]. Such domains are similar yet sufficiently
different than identifier renaming because, for example, code
completion methods generate all kinds of identifiers and are
not explicitly trained to suggest good variable names. Also,
for many tokens, code completion methods are expected to
generate only one correct result (for example, API calls).
Finally, code completion methods are trained to generate the
whole statement or even sometimes the block of code, which
is helpful but quite different from the specific application
to suggest alternative identifiers. Moreover, code completion
usually takes a single stream of tokens where the n-th token is
generated based on [0, n-1] tokens. In our case, we incorporate
multiple streams where each represents the context of the
occurrence of the variable in the code snippet to generate
multiple identifier names with varying lengths.

B. Experimental setup

We ran experiments on a machine equipped with AMD
Rome 7532 64-core CPU and 490 GB memory allocated
per job. The experiment code is implemented in Python 3.10
using the transformers and Pytorch libraries. The Javalang
library is used for parsing the Java code samples As for the
hyperparameters, we fine-tuned all models for three epochs
and used the AdamW optimizer with a learning rate of 2e−5.
In addition, all experiments were run on the same seed value
to account for randomness.

V. RESULTS AND ANALYSIS

In this section, we present the results of the experiments to
answer our research questions.

A. RQ1: Impact of the fine-tuning method

In Table II, we report the performance of GRAPHCODE-
BERT using our fine-tuning technique compared to the base-
line in terms of the negative pseudo-likelihood (PLL). The
overall negative PLL of a model is calculated by taking the
average of the negative PLL values of each training sample us-
ing Equation 4. Similarly, the pseudo-perplexity (PPPL) value
is computed in two steps. First, we sum up the unnormalized
pseudo log-likelihood (PLL) values for each predicted token,
obtaining the total PLL for all predictions. Then, we divide
this total PLL by the total number of predicted tokens. Finally,
taking the exponential of this resulting quotient gives us the
final pseudo-perplexity value. The number of tokens used to
generate variable name predictions for this experiment are the
same as the number of tokens in the original variable name.

TABLE II: Negative pseudo-likelihood (PLL) and pseudo-
perplexity (PPPL) for the fine-tuned and base model. The
lower metric values are better. The number of tokens used is
the same as the number of tokens generated by the language
model tokenizer.

PLL PPPL

Baseline model 5.572 363.209
Fine-tuned model 3.157 36.796

The results demonstrate a substantial reduction in both the
negative pseudo-likelihood and pseudo-perplexity for the fine-
tuned model compared to the base model. This considerable
decrease in values indicates that our fine-tuning method sig-
nificantly enhanced model performance in predicting identi-
fier names. Specifically, the lower negative PLL and pseudo-
perplexity values signify that the fine-tuned model was far
more likely to generate the ground truth identifier names than
the base model. In other words, our fine-tuning procedure
enabled more accurate predictions and a higher probability
of producing the correct variable names from the model.

Such a performance improvement can be attributed to a
multitude of reasons. First, despite the relatively limited size
of the training dataset, each example contained extensive code
as context coupled with high-quality variable names. Exposure
to these well-formed and expressive identifier names increased
the model’s proficiency in generating identifier names with
similar properties and reduces reliance on generic and less
expressive names. Additionally, differences in training objec-
tives contributed to the performance gap. The base model
approached the task as a generic code completion task rather
than being geared toward identifier prediction. This resulted
in a higher likelihood of predicting keywords over coherent
names, inflating perplexity values for the base model. In
contrast, the fine-tuned model is explicitly optimized for
producing complete variable names, making it suitable for the
intended task.

Summary: The proposed fine-tuning method for GRAPH-
CODEBERT led to a substantial improvement in predicting
identifier names compared to the base model and the
generations from the fine-tuned model integrate well with
the code base. This is evident from the much lower PLL
and PPPL values observed on the test set.

B. RQ2: Impact of confidence-based inference on performance

The confidence-based approach is a method introduced to
address the limitations of the tokenizer used by the GRAPH-
CODEBERT model, or any other language model. During
inference, we replace an identifier with a configurable number
of masks. In our experiments, we tested values that range from
one to six. The candidate with the highest confidence score
(i.e., lowest perplexity) is then selected as the final generated
identifier name. This approach helps to mitigate the issue of
the tokenizer splitting identifiers in a way that does not align
with common naming conventions.

6

TABLE III: Comparison of model outputs using different inference methods.

Code Snippet Normal inference Confidence-based inference

public void injectExceptionAndMessage(
Throwable throwable,
String [MASK]) {

exceptionsThrown.add(Pair.of([MASK] , throwable));
}

message errorMessage

Diff getDiff(
WalkableGraph [MASK] ,
Version fromVersion, Version toVersion);

graphGraph walkableGraph

final JButton [MASK]
= new JButton("Run Test");

list runTestButton

For example, consider the identifier getStudentName.
The tokenizer might split it into get, Stud, ent, and Name,
which is not semantically correct. As a result, it will steer
the model to generate values of four tokens, rather than three.
Another scenario is when an identifier is represented by only
one mask when using the language model’s tokenizer. This
limits the expressiveness of the generated name.

TABLE IV: Negative PLL and PPPL upon using the number
of tokens in the original variable name and upon using the
confidence-based approach for choosing the number of tokens.
The lower metric values are better.

PLL PPPL

Normal inference 3.157 36.796
Confidence-based approach 1.497 5.776

Table IV summarizes the performance between confidence-
based inference and normal inference. Our inference strat-
egy achieves significantly lower values for both negative
PLL (1.497) and PPPL (5.776), compared to the baseline
(PLL: 3.157, PPPL: 36.796). These results indicate that the
confidence-based approach generates more probable, coher-
ent, and meaningful identifier names by considering multiple
candidate names with a configurable number of masks and
selecting the most confident one.

In Table III, we illustrate some code examples to showcase
the difference between both methods during inference. In
the first code snippet, the normal inference method gener-
ates the identifier message for the masked variable, which
is a reasonable choice given the context. However, the
confidence-based inference method generates the identifier
errorMessage, which provides a more specific and descrip-
tive name for the variable. The term error suggests that the
message is associated with an exception or an error condition,
making the code more readable and self-explanatory. The
second example involves a method that retrieves the difference
between two objects of type WalkableGraph. The normal
inference method yields the name graphGraph for the
masked parameter, which is redundant and does not add any

meaningful information. In contrast, our technique generates
the identifier walkableGraph, which correctly matches
the type of the parameter. The final example showcases the
creation of a JButton with the label Run Test. Normal
inference renames the original to identifier list, which is
not semantically meaningful in this context. On the other hand,
the confidence-based inference method generates the identifier
runTestButton, which accurately describes the purpose
and functionality of this button. By incorporating the action
(run) and the object (test) along with the UI component type
(button), the generated identifier provides a clear and concise
name for the variable. This further highlights how confidence-
based generation increases the expressiveness of identifiers.

Choosing the number of tokens for identifier renaming
during inference is a key step for better generation. Although
it can be slower given that it requires multiple passes, it results
in superior performance. This is especially significant for
low-quality code, where single-character names are frequently
used. Depending solely on the original name lengths can
hinder performance by constraining token counts.

Summary: Confidence-based generation outperforms nor-
mal inference in producing meaningful and contextually
appropriate identifier names. By considering multiple can-
didate names and selecting the one with the highest
confidence score, this approach generates identifiers that
accurately reflect the intended meaning and functionality
of the variables. Moreover, experimenting with various
candidates allows for greater variety and adaptability to
different coding contexts. In contrast, normal inference
tends to generate more generic or less relevant identifiers,
which may hinder code comprehension and maintainability.

C. RQ3: Practical effectiveness of the proposed method

To evaluate the practical effectiveness of our approach, we
conducted an online developers’ survey.4 We invited recent
graduates working in software development organizations or
graduate (senior masters’ or PhD) students working mainly
on software engineering topics at the Faculty of Computer

4Survey link: https://forms.office.com/r/xrmcwzk44H

7

https://forms.office.com/r/xrmcwzk44H

Science of Dalhousie university. Eight developers accepted
the invite; the developers are knowledgeable in Java with an
average of four years of software development experience.
The response rate of GitHub developers, contributors of open-
source projects, or professional developers is typically very
low for such surveys. To overcome this challenge, we relied
on recent students whose backgrounds span various levels of
expertise in software development and open-source contribu-
tions, ensuring a diverse set of responses. Other studies in this
domain have used this choice of participants [35]–[38].

Our aim with the survey was to present the original iden-
tifier, along with the identifier generated from our approach,
as well as the identifiers generated from two state-of-the-art
large language models, GPT-4 Turbo and Gemini Pro.

As the first step, we took 100 Java classes from our test
dataset. Then, for each class, we randomly chose one identifier
and replaced all occurrences in the class with the mask token.
We created a form, using Microsoft Forms, with 100 questions;
each question presenting the required code to understand the
question and the context, as well as the four options (i.e., the
original identifier, the identifier generated by our approach,
and the identifiers generated from GPT-4 and Gemini Pro
models). In the form, we presented the relevant portion of
the code with context balancing between providing sufficient
information without overwhelming the participant with the
code of the entire Java class. In addition, we provided the
link to the entire Java class in case the participant would like
to refer to the code in its entirety. We presented the options
after shuffling to the participants without informing them of
their source. The participants were asked to rank the variable
names from most to least suitable.

We designed a prompt following best practices [39] to
generate the identifier names. We use the same prompt with
the two aforementioned language models with temperature set
to 0.2 for both models.

I have very long Java classes with all instances of
one variable in the code replaced with [MASK]. I
want you to predict what the ideal variable name
should be that replaces [MASK]. Output the variable
name and nothing else.

Given the high number of questions (i.e., 100), we left the
survey open for two weeks, and participants were allowed
to stop and resume later. In addition, they were not required
to answer all questions. Once the survey was concluded, we
picked the samples that at least two respondents answered.

Figure 4 illustrates the number of times an option was
chosen as the most suitable option by the participants. The
results show that GPT-4 Turbo generated the most preferred
names, receiving 52 votes, followed by our fine-tuned GRAPH-
CODEBERT model with 39 votes. The original variable names
were voted the most apt in 32 cases and Gemini Pro comes
the last with 24 votes. We also calculate a weighted average
score, where 1 is assigned to the highest-rated option and 4
to the lowest-rated option. We observe a similar trend, with
GPT Pro leading the chart with a 1.4 average score and our

Fig. 4: Comparing number of times a model generated the
most suitable identifier name for a code snippet; FT model
refers to our fine-tuned model.

fine-tuned model scoring 1.7. Original identifiers and Gemini
Pro obtained 1.8 and 2.0, respectively.

Despite having a smaller size than the commercial models,
our fine-tuned GRAPHCODEBERT model performed better
than the original variable names and the Gemini Pro. This
suggests that the proposed fine-tuning approach is effective in
generating high-quality identifiers that are acceptable to devel-
opers. However, it is important to note that it was outperformed
by GPT-4 Turbo. Naturally, this could be attributed to the
larger size and more advanced architecture of GPT-4 Turbo.
Further, since the training and testing datasets were open-
source, GPT-4 is likely to have had access to these samples
during its own training. The cost of using GPT-4 for this task
would not be justified in most use cases as the inputs are
very long. The open-source proposed model, which offers a
reasonable performance considering its smaller size, would be
more useful. Specifically, it would be more useful as it can
be used directly on consumer-grade hardware, which makes it
more accessible to developers. In addition, it would not require
transferring sensitive code data to external APIs.

Table V presents a few examples covering a variety of cases
where code identifiers are generated by the fine-tuned model
using our proposed method and those produced by other large
language models. The first code snippet showcases an instance
where the fine-tuned model generates a more contextually
relevant variable name, textWidth, compared to the GPT-
4 generation, width. This example suggests that the fine-
tuning approach has the potential to incorporate more de-
tailed information from the surrounding context. On the other
hand, the second code snippet highlights a situation where
the fine-tuned model generates an ambiguous abbreviation,
frameLayoutPar, likely due to insufficient fine-tuning. In
contrast, GPT-4 produces a more readable and self-explanatory
name, layoutParams.

The third code snippet presents an instance
where GPT-4 generates a refined variable name,
deobfuscationCheckBox, that effectively captures
the purpose of the variable. In comparison, the fine-tuned
model’s generation, deobfuscationOn, appears to be
more influenced by the surrounding context.

Code snippets four and five demonstrate instances where

8

TABLE V: Comparison of model outputs in the survey.

Code Snippet FT Model LLM
(GPT4 / Gemini) Highest Votes

float x = 100, y = 20; float [MASK];
[MASK] = 280;
font.draw(
spriteBatch, text, x,
viewHeight - y, [MASK], Align.right);

textWidth width FT Model

protected FrameLayout.LayoutParams
createLayoutParams(){

FrameLayout.LayoutParams [MASK]= new FrameLayout.
LayoutParams(
android.view.ViewGroup.LayoutParams.MATCH_PARENT,
android.view.ViewGroup.LayoutParams.MATCH_PARENT);
[MASK].gravity = Gravity.CENTER;
return [MASK]; }

frameLayoutPar layoutParams GPT4 / Gemini

private SettingsGroup makeDeobfuscationGroup() {
JCheckBox [MASK] = new JCheckBox();
[MASK].setSelected(settings.isDeobfuscationOn());
[MASK].addItemListener(e -> {
settings.setDeobfuscationOn(
e.getStateChange() == ItemEvent.SELECTED);
needReload(); });

deobfuscationOn deobfuscationCheckBox GPT4

float [MASK] = step / steps;
float x = bottomLeftX+graphSize*[MASK];
float y = bottomLeftY+graphSize*interpolation

.apply([MASK]);

percentOffset t FT Model

/**
Sets whether to round as circle. *
@param [MASK] whether or not to round as circle
@return modified instance */
public RoundingParams setRoundAsCircle

(boolean [MASK]){
mRoundAsCircle = [MASK];
return this; }

roundAsCircle borderWidth FT Model

the Gemini Pro model generates variable names that differ
significantly from the other approaches. While these exam-
ples showcase Gemini’s tendency to produce less predictable
names, such as t and borderWidth, it’s crucial to recognize
that this behavior may not be consistent across all cases.

While these instances provide insights, it is important to
note that they represent specific cases and may not necessarily
reflect the performance of each model across all scenarios.
Nonetheless, they still highlight the effectiveness of smaller
models when fine-tuned with proper modeling techniques.

Summary: The survey results highlight that the fine-tuned
model, despite its smaller size compared to commercial
models, generates high-quality identifiers that are accept-
able to the software development community. This finding
emphasizes the importance of properly modeling tasks
through fine-tuning procedures, as it allows for the creation
of smaller, more specialized models that can perform
on par with larger models. The practical utility of our
method and acceptability of the generated identifiers within
the software development community, further validate the
proposed approach.

VI. THREATS TO VALIDITY

Construct validity refers to the extent to which a study
accurately measures the concept it intends to assess. To
establish construct validity in evaluating the effectiveness of
our identifier generation approach, we employed both human
evaluation and automated metrics. For human evaluation, we
conducted a survey with experienced Java developers, pro-
viding them with sufficient context and randomly selecting
identifiers to replace with mask tokens. The participants ranked
the generated identifiers against relevant alternatives, including
the original names and those produced by commercial models,
using a structured ranking system. This approach aimed to
mitigate potential biases and ensure a comprehensive assess-
ment of identifier suitability. In addition to human evaluation,
we utilized perplexity and pseudo-perplexity as automated
metrics to evaluate the model’s performance. These metrics
provide an objective measure of the model’s ability to generate
appropriate and coherent identifiers.

Internal validity assesses potential confounding factors
influencing outcomes. We isolated the effect of our fine-tuning
techniques through controlled experiments compared to the
base model, and running the experiments multiple times with

9

different seeds.
External validity refers to the extent to which the findings

of a study can be generalized to other contexts. Although we
focused on evaluating our approach using Java code snippets,
our proposed method is not inherently programming language-
dependent. It does not rely on specific constructs or features
unique to Java. The underlying ideas of our approach, notably,
the use of masked language modeling and confidence-based
inference, can potentially be applied to other programming
languages as well. To enhance the external validity of our
research, future work could involve expanding the evaluation
to include a broader range of programming languages, incor-
porating more diverse training datasets, and fine-tuning other
language models for code. Additionally, conducting studies
with different participant populations, such as developers with
varying levels of expertise or from different domains, could
further strengthen the external validity of these findings.

VII. RELATED WORK

A. Effect of identifier names on code readability

Previous studies evaluating code readability have high-
lighted the importance of apt identifier names in improving
readability. Specifically, Hofmeister et al. [40] explored how
words, letters, and abbreviations as variable names lead to
differences in comprehension speed. Their results showed that
proper words lead to 19% faster code comprehension than
letters and abbreviations. Similarly, the impact of identifier
quality on code quality has been thoroughly covered in
multiple studies [41]–[43]. These studies establish a corre-
lation between readability, focused on variable names, and
the number of bugs in the code. For example, a study by
Stegeman et al. [44] used a readability metric to prove that
low identifier quality is associated with less readable, more
complex, and less maintainable code. Similar works on code
readability [45] highlighted the importance of identifier names
on overall readability. Peruma et al. [46] analyzed general
trends in identifier renaming and identified code elements
that are looked during naming identifiers. Arnaoudova et
al. [47] identified a subset of linguistic anti-patterns that were
unanimously agreed to decrease code readability.

B. Identifier Renaming

A survey of 334 developers [48] concluded that longer
identifier names that use more concepts should be encouraged
for better names. JSNice [49] and JSNaughty [50] were state-
of-the-art statistical renaming tools before machine-learning
approaches were used in this domain. Allamanis et al. [51]
proposed an approach to variable naming using a log-bilinear
neural language model for source code incorporating embed-
dings. Their model predicted subtokens, which helped generate
variable names outside the training corpus or neologisms.
Bavishi et al. [52] proposed Context2Name to capture context
while predicting variable names. The authors designed the tool
to recreate variable names from minified JavaScript code.

Many Integrated Development Environments (IDEs), such as
IntelliJ also include suggestions for variable names. Simpler

code completion methods are the basis of these features, and
the identifier names are suggested by using Abstract Syntax
Tree (AST) analysis with statistical modeling similar to that
adopted by JSNice.

Mastropaolo et al. [12] conducted an investigation into
the latest techniques for identifier renaming. They rigorously
tested and compared the effectiveness of existing code comple-
tion methods. The methods under scrutiny encompassed the n-
gram cached language model [53] as well as transformer-based
models [54] [55]. The evaluation involved training and testing
on method-level code snippets. The reference standard was
established by identifier names introduced or modified during
a code review process. The models’ performance on this task
was assessed using both complete token match and partial
token match metrics. The CugLM-based transformer [56]
achieved the highest accuracy of 63.46%.
Limitations: Previous studies are not able to achieve com-
parable performance to the CugLM transformer fine-tuned on
the code completion task. The limitation in using transformers
for identifier renaming arises from a scarcity of research on
fine-tuning transformer-based models specifically for this task.
Additionally, the inputs for this task are methods, which tend
to be shorter and capture less context compared to classes.
Mastropaolo et al. [12] underscore the issue by demonstrating
a significant drop in performance for the best model when
dealing with methods that are 400 tokens or longer, as opposed
to methods with lengths between 0 to 50 tokens. To fully
leverage the potential of transformers, training with longer
contexts is required. However, handling these longer sequences
presents its own set of challenges.

VIII. CONCLUSIONS

In this work, we presented a transformer-based approach for
automatic identifier renaming. We curated a dataset of 236,745
variable name and Java class pairs from top GitHub reposito-
ries to fine-tune GRAPHCODEBERT, employing techniques
to handle long code sequences. Our proposed fine-tuning
method significantly improved identifier prediction over the
non-finetuned base model. By incorporating the confidence-
based method to choose the ideal number of tokens for pre-
diction, our approach can generate names that are competitive
with state-of-the-art LLMs, despite having a much smaller
model size.

In the future, several areas could be explored to further
enhance the performance and usability of our approach. One
direction is to investigate training objectives that jointly predict
the number of tokens needed to rename an identifier and its
values. This could potentially improve the model’s ability to
generate identifiers more efficiently. To further enhance the
practicality of our approach, future work could explore the
integration of our identifier renaming model into integrated
development environments (IDEs) or code editors. This would
allow developers to receive real-time suggestions for identifier
names as they write code, improving the overall coding
experience and reducing the cognitive burden of coming up
with appropriate names.

10

REFERENCES

[1] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect of poor
source code lexicon and readability on developers’ cognitive load,” in
Proceedings of the 26th Conference on Program Comprehension, 2018,
pp. 286–296.

[2] P. Relf, “Tool assisted identifier naming for improved software readabil-
ity: an empirical study,” in 2005 International Symposium on Empirical
Software Engineering, 2005., 2005, pp. 10 pp.–.

[3] L. Jiang, H. Liu, and H. Jiang, “Machine learning based recommendation
of method names: How far are we,” in 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), 2019, pp.
602–614.

[4] T. Sedano, “Code readability testing, an empirical study,” in 2016 IEEE
29th International Conference on Software Engineering Education and
Training (CSEET), 2016, pp. 111–117.

[5] G. Beniamini, S. Gingichashvili, A. K. Orbach, and D. G. Feitelson,
“Meaningful identifier names: The case of single-letter variables,” in
2017 IEEE/ACM 25th International Conference on Program Compre-
hension (ICPC), 2017, pp. 45–54.

[6] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective identifier
names for comprehension and memory,” Innovations in Systems and
Software Engineering, vol. 3, pp. 303–318, 2007.

[7] C. Charitsis, C. Piech, and J. C. Mitchell, “Function names: Quantifying
the relationship between identifiers and their functionality to improve
them,” in Proceedings of the Ninth ACM Conference on Learning
@ Scale, ser. L@S ’22, 2022, p. 93–101. [Online]. Available:
https://doi.org/10.1145/3491140.3528269

[8] V. van der Werf, E. Aivaloglou, F. Hermans, and M. Specht,
“(how) should variables and their naming be taught in novice
programming education?” in Proceedings of the 2022 ACM Conference
on International Computing Education Research - Volume 2, ser.
ICER ’22, 2022, p. 53–54. [Online]. Available: https://doi.org/10.1145/
3501709.3544288

[9] Y. Wainakh, M. Rauf, and M. Pradel, “Idbench: Evaluating semantic
representations of identifier names in source code,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), 2021,
pp. 562–573.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.,
vol. 30, 2017. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[11] Z. Chen and M. Monperrus, “A literature study of embeddings on source
code,” arXiv preprint arXiv:1904.03061, 2019.

[12] A. Mastropaolo, E. Aghajani, L. Pascarella, and G. Bavota, “Automated
variable renaming: are we there yet?” Empirical Software Engineering,
vol. 28, no. 2, p. 45, 2023.

[13] S. Vijayvargiya, M. Saad, and T. Sharma, “Replication package of this
study,” https://github.com/SMART-Dal/identifier-renaming, Aug. 2024.

[14] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12, 2012, p. 837–847.

[15] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained
model for programming and natural languages,” in Findings of the
Association for Computational Linguistics: EMNLP 2020, T. Cohn,
Y. He, and Y. Liu, Eds., Nov. 2020, pp. 1536–1547. [Online]. Available:
https://aclanthology.org/2020.findings-emnlp.139

[16] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim, Q. Liu, E. Zheltonozhskii, T. Y.
Zhuo, T. Wang, O. Dehaene, M. Davaadorj, J. Lamy-Poirier, J. Monteiro,
O. Shliazhko, N. Gontier, N. Meade, A. Zebaze, M.-H. Yee, L. K.
Umapathi, J. Zhu, B. Lipkin, M. Oblokulov, Z. Wang, R. Murthy,
J. Stillerman, S. S. Patel, D. Abulkhanov, M. Zocca, M. Dey, Z. Zhang,
N. Fahmy, U. Bhattacharyya, W. Yu, S. Singh, S. Luccioni, P. Villegas,
M. Kunakov, F. Zhdanov, M. Romero, T. Lee, N. Timor, J. Ding,
C. Schlesinger, H. Schoelkopf, J. Ebert, T. Dao, M. Mishra, A. Gu,
J. Robinson, C. J. Anderson, B. Dolan-Gavitt, D. Contractor, S. Reddy,
D. Fried, D. Bahdanau, Y. Jernite, C. M. Ferrandis, S. Hughes, T. Wolf,
A. Guha, L. von Werra, and H. de Vries, “Starcoder: may the source be
with you!” 2023.

[17] J. von der Mosel, A. Trautsch, and S. Herbold, “On the validity of
pre-trained transformers for natural language processing in the software
engineering domain,” IEEE Transactions on Software Engineering,
vol. 49, no. 4, pp. 1487–1507, 2023.

[18] T. Zhang, B. Xu, F. Thung, S. A. Haryono, D. Lo, and L. Jiang,
“Sentiment analysis for software engineering: How far can pre-trained
transformer models go?” in 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2020, pp. 70–80.

[19] Q. Zhang and B. Wu, “Software defect prediction via transformer,”
in 2020 IEEE 4th Information Technology, Networking, Electronic and
Automation Control Conference (ITNEC), vol. 1, 2020, pp. 874–879.

[20] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training code repre-
sentations with data flow,” arXiv preprint arXiv:2009.08366, 2020.

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[22] D. Colla, M. Delsanto, M. Agosto, B. Vitiello, and D. P. Radicioni,
“Semantic coherence markers: The contribution of perplexity metrics,”
Artificial Intelligence in Medicine, vol. 134, p. 102393, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0933365722001440

[23] J. Salazar, D. Liang, T. Q. Nguyen, and K. Kirchhoff, “Masked
language model scoring,” 2020. [Online]. Available: https://doi.org/10.
18653%2Fv1%2F2020.acl-main.240

[24] C. Kauf and A. Ivanova, “A better way to do masked language model
scoring,” arXiv preprint arXiv:2305.10588, 2023.

[25] S. Bird and E. Loper, “NLTK: The natural language toolkit,” in
Proceedings of the ACL Interactive Poster and Demonstration Sessions,
Jul. 2004, pp. 214–217. [Online]. Available: https://aclanthology.org/
P04-3031

[26] S. Butler, M. Wermelinger, and Y. Yu, “A survey of the forms of
java reference names,” in 2015 IEEE 23rd International Conference on
Program Comprehension, 2015, pp. 196–206.

[27] A. Peruma and C. D. Newman, “Understanding digits in identifier
names: An exploratory study,” in Proceedings of the 1st International
Workshop on Natural Language-Based Software Engineering, ser.
NLBSE ’22, 2023, p. 9–16. [Online]. Available: https://doi.org/10.1145/
3528588.3528657

[28] G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut,
J. Schalkwyk, A. M. Dai, A. Hauth et al., “Gemini: a family of highly
capable multimodal models,” arXiv preprint arXiv:2312.11805, 2023.

[29] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[30] A. Karmakar and R. Robbes, “What do pre-trained code models know
about code?” in 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2021, pp. 1332–1336.

[31] Y. Wan, W. Zhao, H. Zhang, Y. Sui, G. Xu, and H. Jin, “What do
they capture? a structural analysis of pre-trained language models for
source code,” in Proceedings of the 44th International Conference on
Software Engineering, ser. ICSE ’22, 2022, p. 2377–2388. [Online].
Available: https://doi.org/10.1145/3510003.3510050

[32] Z. Yang, J. Shi, J. He, and D. Lo, “Natural attack for pre-trained
models of code,” in Proceedings of the 44th International Conference
on Software Engineering, ser. ICSE ’22, 2022, p. 1482–1493. [Online].
Available: https://doi.org/10.1145/3510003.3510146

[33] J. Zhu, L. Li, L. Yang, X. Ma, and C. Zuo, “Automating method
naming with context-aware prompt-tuning,” in 2023 IEEE/ACM 31st
International Conference on Program Comprehension (ICPC), 2023, pp.
203–214.

[34] J. Lacomis, P. Yin, E. Schwartz, M. Allamanis, C. Le Goues, G. Neubig,
and B. Vasilescu, “Dire: A neural approach to decompiled identifier nam-
ing,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2019, pp. 628–639.

[35] D. G. Feitelson, “Using students as experimental subjects in software
engineering research – a review and discussion of the evidence,” 2015.
[Online]. Available: https://arxiv.org/abs/1512.08409

[36] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. D. Penta, G. Canfora, and
H. C. Gall, “Exploiting natural language structures in software informal
documentation,” IEEE Transactions on Software Engineering, vol. 47,
no. 8, pp. 1587–1604, 2021.

[37] E. R. Russo, A. Di Sorbo, C. A. Visaggio, and G. Canfora,
“Summarizing vulnerabilities’ descriptions to support experts

11

https://doi.org/10.1145/3491140.3528269
https://doi.org/10.1145/3501709.3544288
https://doi.org/10.1145/3501709.3544288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://github.com/SMART-Dal/identifier-renaming
https://aclanthology.org/2020.findings-emnlp.139
https://www.sciencedirect.com/science/article/pii/S0933365722001440
https://www.sciencedirect.com/science/article/pii/S0933365722001440
https://doi.org/10.18653%2Fv1%2F2020.acl-main.240
https://doi.org/10.18653%2Fv1%2F2020.acl-main.240
https://aclanthology.org/P04-3031
https://aclanthology.org/P04-3031
https://doi.org/10.1145/3528588.3528657
https://doi.org/10.1145/3528588.3528657
https://doi.org/10.1145/3510003.3510050
https://doi.org/10.1145/3510003.3510146
https://arxiv.org/abs/1512.08409

during vulnerability assessment activities,” Journal of Systems
and Software, vol. 156, pp. 84–99, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016412121930130X

[38] D. Fucci, G. Scanniello, S. Romano, and N. Juristo, “Need for sleep:
the impact of a night of sleep deprivation on novice developers’
performance,” 2018. [Online]. Available: https://arxiv.org/abs/1805.
02544

[39] OpenAI, “GPT best practices,” https://platform.openai.com/docs/guides/
gpt-best-practices, 2023.

[40] J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names
take longer to comprehend,” in 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2017, pp.
217–227.

[41] S. Butler, “The effect of identifier naming on source code readability and
quality,” in Proceedings of the Doctoral Symposium for ESEC/FSE on
Doctoral Symposium, ser. ESEC/FSE Doctoral Symposium ’09, 2009,
p. 33–34. [Online]. Available: https://doi.org/10.1145/1595782.1595796

[42] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating identifier
naming flaws and code quality: An empirical study,” in 2009 16th
Working Conference on Reverse Engineering, 2009, pp. 31–35.

[43] ——, “Exploring the influence of identifier names on code quality:
An empirical study,” in 2010 14th European Conference on Software
Maintenance and Reengineering, 2010, pp. 156–165.

[44] M. Stegeman, E. Barendsen, and S. Smetsers, “Towards an empirically
validated model for assessment of code quality,” in Proceedings of the
14th Koli Calling International Conference on Computing Education
Research, ser. Koli Calling ’14, 2014, p. 99–108. [Online]. Available:
https://doi.org/10.1145/2674683.2674702

[45] R. P. Buse and W. R. Weimer, “A metric for software readability,” in
Proceedings of the 2008 International Symposium on Software Testing
and Analysis, ser. ISSTA ’08, 2008, p. 121–130. [Online]. Available:
https://doi.org/10.1145/1390630.1390647

[46] A. Peruma, “Towards a model to appraise and suggest identifier names,”
in 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2019, pp. 639–643.

[47] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipatterns:
What they are and how developers perceive them,” Empirical Software
Engineering, vol. 21, pp. 104–158, 2016.

[48] D. G. Feitelson, A. Mizrahi, N. Noy, A. B. Shabat, O. Eliyahu, and
R. Sheffer, “How developers choose names,” IEEE Transactions on
Software Engineering, vol. 48, no. 1, pp. 37–52, 2022.

[49] V. Raychev, M. Vechev, and A. Krause, “Predicting program
properties from ”big code”,” in Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’15, 2015, p. 111–124. [Online]. Available:
https://doi.org/10.1145/2676726.2677009

[50] B. Vasilescu, C. Casalnuovo, and P. Devanbu, “Recovering clear,
natural identifiers from obfuscated js names,” in Proceedings
of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2017, 2017, p. 683–693. [Online].
Available: https://doi.org/10.1145/3106237.3106289

[51] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2015, 2015,
p. 38–49. [Online]. Available: https://doi.org/10.1145/2786805.2786849

[52] R. Bavishi, M. Pradel, and K. Sen, “Context2name: A deep learning-
based approach to infer natural variable names from usage contexts,”
2018.

[53] R.-M. Karampatsis and C. Sutton, “Maybe deep neural networks are the
best choice for modeling source code,” 2019.

[54] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” 2023.

[55] A. Mastropaolo, E. Aghajani, L. Pascarella, and G. Bavota, “An empir-
ical study on code comment completion,” 2021.

[56] F. Liu, G. Li, Y. Zhao, and Z. Jin, “Multi-task learning based pre-
trained language model for code completion,” in Proceedings of the
35th IEEE/ACM International Conference on Automated Software En-
gineering, 2020, pp. 473–485.

12

https://www.sciencedirect.com/science/article/pii/S016412121930130X
https://arxiv.org/abs/1805.02544
https://arxiv.org/abs/1805.02544
https://platform.openai.com/docs/guides/gpt-best-practices
https://platform.openai.com/docs/guides/gpt-best-practices
https://doi.org/10.1145/1595782.1595796
https://doi.org/10.1145/2674683.2674702
https://doi.org/10.1145/1390630.1390647
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1145/3106237.3106289
https://doi.org/10.1145/2786805.2786849

	Introduction
	Background
	Transformers in Software Engineering Applications
	Masked Language Modeling (MLM)
	Pseudo Log-Likelihood and Pseudo Perplexity

	Methods
	Dataset creation process
	Fine-tuning using Masked Language Modeling
	Running inference

	Experiments
	Model and baseline selection
	Experimental setup

	Results and Analysis
	RQ1: Impact of the fine-tuning method
	RQ2: Impact of confidence-based inference on performance
	RQ3: Practical effectiveness of the proposed method

	Threats to Validity
	Related Work
	Effect of identifier names on code readability
	Identifier Renaming

	Conclusions
	References

