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With the increasing usage, scale, and complexity of Deep Learning (dl) models, their rapidly growing energy
consumption has become a critical concern. Promoting green development and energy awareness at different
granularities is the need of the hour to limit carbon emissions of dl systems. However, the lack of standard
and repeatable tools to accurately measure and optimize energy consumption at fine granularity (e.g., at the
api level) hinders progress in this area.

This paper introduces FECoM (Fine-grained Energy Consumption Meter), a framework for fine-
grained dl energy consumption measurement. FECoM enables researchers and developers to profile dl
apis from energy perspective. FECoM addresses the challenges of fine-grained energy measurement using
static instrumentation while considering factors such as computational load and temperature stability. We
assess FECoM’s capability for fine-grained energy measurement for one of the most popular open-source
dl frameworks, namely TensorFlow. Using FECoM, we also investigate the impact of parameter size and
execution time on energy consumption, enriching our understanding of TensorFlow apis’ energy profiles.
Furthermore, we elaborate on the considerations and challenges while designing and implementing a fine-
grained energy measurement tool. This work will facilitate further advances in dl energy measurement and
the development of energy-aware practices for dl systems.
Additional Key Words and Phrases: Energy measurement, Green Artificial Intelligence, Fine-grained energy
measurement

1 INTRODUCTION
Deep Learning (dl)-based solutions are employed in an increasing number of areas concerning our
day-to-day life, such as, in medicine [7, 59, 63], transportation [37, 86, 89], education [58, 64, 87], and
finance [56, 62]. However, the increasing use of dl requires ample computational resources, resulting
in an alarming surge in energy consumption. The extensive use of computational resources causes
significantly increased co2 emissions and financial costs [29]. For instance, training a MegatronLM
model [76] consumes enough energy to power three American households for a year [48]. This
unsustainable trend is continuing; the computational resources required to train a best-in-class ml
model is doubling every 3.4 months [2].

For this reason, it is essential to make software development, specifically using dl, energy-aware,
i.e., develop dl code optimized from the energy consumption perspective, without compromising
models’ accuracy [70]. To achieve this goal, we propose to measure energy consumption for dl
applications at fine granularity (such as at the api level) and identify energy-hungry api calls; so
that we can suggest alternative energy-efficient software versions [29].
Authors’ addresses: Saurabhsingh Rajput, Dalhousie University, Canada, saurabh@dal.ca; TimWidmayer, University College
London, UK, tim.widmayer.20@ucl.ac.uk; Ziyuan Shang, Nanyang Technological University, Singapore, zshang001@e.ntu.
edu.sg; Maria Kechagia, University College London, UK, m.kechagia@ucl.ac.uk; Federica Sarro, University College London,
UK, f.sarro@ucl.ac.uk; Tushar Sharma, Dalhousie University, Canada, tushar@dal.ca.
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2 Rajput, Widmayer, Shang et al.

Software engineering researchers have studied the energy footprints of software programs in
recent years [17, 30, 32, 34]. Broadly, energy measurement techniques are classified into hardware-
based and software-based. Hardware-based techniques use physical devices such as a power monitor
to measure the power consumed by a machine at a given time. However, hardware-based techniques
are considered very difficult in use [15], because of syncing issues, i.e., to sync the start and end
times of the program execution with a hardware device, automatically. Software-based techniques
measure energy by using a set of special-purpose registers, referred to as performance counters
(pmcs), in modern processors. These registers count specific hardware events [45], including power
consumed by hardware components, such as cpu and memory. Most research studies [1, 32, 44]
use software tools such as perf [53] and PowerStat [11] that use pmcs under the hood to measure
energy consumption.

Energy can be measured at different granularities, ranging from coarse-grained system-level to
fine-grained api1 level. System-level measurement considers the overall energy consumption of
the entire machine or computing hardware. A program- or a process-level profiling examines the
energy used by a software application. Function-level measurement profiles the energy usage within
specific code blocks and methods. api-level measurement focuses on the energy footprint of external
frameworks called by the software in the form of api call statements. api-level measurement offers
the finest granularity in attributing energy consumption to specific code entities.

Despite efforts to improve energy-efficiency of source code, we observe many gaps and deficien-
cies in the literature [29]. Georgiou et al. [32] revealed that the documentation of even the most
popular dl frameworks, namely TensorFlow and PyTorch, lack an energy-consumption profile
of their apis. Such an energy consumption profile could motivate software developers to explore
alternative solutions and make software development more energy-efficient [29]. The primary
reason for the lack of energy-aware documentation for dl frameworks is the absence of fine-grained
energy consumption measurement techniques [30]. In fact, the majority of the existing approaches
allow us to measure energy consumption only at the system-level due to the support offered by
hardware and operating system vendors [15].
There have been some efforts to measure energy at a fine-grained level; however, existing

approaches for measuring energy consumption, in general, have several deficiencies. For example,
existing approaches [61, 91] operate at a coarser granularity, measuring entire functions and cannot
be used to measure the energy consumed by at the statement-level, including calls to external
frameworks, libraries, and apis. Furthermore, they support only specific programming languages
such as Java, C/C++, and Fortran for cpu architectures, without considering gpu architectures used
in most deep learning deployments [16].
Software tool vendors have developed relevant tools, such as CodeCarbon [12] and Experiment

Impact Tracker [38], to estimate power consumption and carbon emissions during the training of
dl models. However, these tools focus on the ml program-level granularity, leading to sampling
intervals exceeding 10 seconds, which is not suitable for fine-grained energymeasurements (because
the measured source code entity can complete its execution in a fraction of seconds). Moreover,
they, including other academic studies so far, overlook the overhead introduced by background
processes and temperature fluctuations within the computing environment, resulting in noisy
measurements. Bannour et al. [5] have shown that existing tools consistently under-report energy
consumption and carbon emissions, making them less sensitive to measuring energy at a smaller
scale and, hence, making them unsuitable for measuring energy consumption at a finer granularity.
1An api (i.e., Application Programming Interface) refers to publicly available elements (e.g., interfaces, classes, methods) in
a library or a framework. An api comes with its public reference documentation that explains to the user how a method
should be used, properly. Client applications, such as ml-based programs, call these apis from the dl frameworks e.g.,
TensorFlow and PyTorch, to implement their functionalities.
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Enhancing Energy-Awareness in Deep Learning through Fine-Grained Energy Measurement 3

At present, to the best of our knowledge, there is no convenient (i.e., easily usable), generic (i.e., that
can be applied on various kinds of programs and granularity), and automated noise-free solution
for measuring the energy consumption of custom deep learning code at a fine-grained level, such
as at the api granularity.

This study aims to address the challenge of measuring energy consumption at the api granularity
as a crucial step towards using such a mechanism. To this end, we devise a framework viz. FECoM,
which measures the energy consumed by apis within a dl framework. FECoM generates an
Abstract Syntax Tree (ast) of the input program, applies static instrumentation by using our
patching mechanism, and measures the energy consumption of the desired apis. We empirically
investigate how the size of the parameters of an api call affects energy consumption and execution
time (RQ2). This empirical analysis provides valuable insights into how data size influences energy
consumption, enriching our understanding of the used apis’ energy profile in the context of dl
applications. Though we use the developed method to measure energy consumed by a dl framework
apis, it can be used to measure energy consumption at a code block or even statement-level. Given
the absence of any standard for dl api energy-consumption at a fine-grained level of measurement,
we take a step further and provide a detailed account of challenges and considerations that are vital
for researchers designing energy measurement tools (RQ3). Such considerations will facilitate the
development of more tools and techniques for energy measurement in the field. Our study makes
the following contributions:
• Method and framework. Implementing a generic method and framework, FECoM [71], to accu-

rately measure energy consumption at a fine-grained level. Such a method has been instantiated
for TensorFlow, to show its feasibility in practice. FECoM enables profiling of TensorFlow
apis, offering benefits such as comparing energy efficiency of different configurations, identifying
optimization opportunities, and promoting energy-aware coding practices.

• Static instrumentation tool. Developing a static instrumentation tool, viz. Patcher [24], en-
abling necessary program patching for the energy measurement framework.

• Empirical study. Conducting an empirical study to evaluate and understand the impact of
parameter size on energy consumption for dl apis, as well as systematically examine the execu-
tion reports produced by our FECoM to understand the reasons of failures to measure energy
consumption at a fine-gained granularity.

• Dataset. Creating a dataset [22] comprising energy profiling data at the api granularity for 528
TensorFlow api calls, covering 44% of TensorFlow apis. This dataset covers a diverse range of
domains and includes api calls with varying input parameter sizes.

• Documenting the challenges and their mitigation strategies. Collecting and categorizing
challenges that may arise during the development of an energy measurement tool at fine-grained
granularity to facilitate the development of effective energy measurement tools and provide
insights to researchers and developers in this field. The study also provides a set of mitigation
strategies applicable for each of the identified challenges by systematically mining Stack Overflow
posts.

• Guiding the selection of energy measurement techniques. Proposing a set of criteria to
guide researchers and developers in selecting the most suitable energy measurement technique
for their specific needs, considering factors such as measurement granularity, sampling rate,
language and framework compatibility, hardware support, stability, and automation.

We make our framework FECoM, the dataset, as well as the patching program used for static
instrumentation publicly available [20].
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2 RELATEDWORK
Measuring energy consumption of software systems.A significant number of studies [36, 52, 68,
69] uses physical power meters, such as the Monsoon high voltage power monitor [40], to measure
a system’s energy consumption. These devices physically measure the electrical power consumed
by a given software system. The key benefits of using a hardware power meter are its accuracy
and precision. Another way to measure energy consumption is to use software tools [9, 33, 78, 79].
Recent Intel and amd processors provide the Running Average Power Limit (rapl) interface [90],
which can measure the power consumption of a processor at regular intervals through built-in
performance counters. rapl can measure the power consumption up to intervals of approximately
1 ms, translating to a sampling frequency of 1 kHz [42]. Many tools have been built on top of
rapl, such as the Intel Power Gadget (it has been discontinued from usage) [41], PowerTOP [84]
and Perf [53]. Power modeling is another method that is used to obtain insights into the energy
consumption of software systems [36]. Power modeling techniques estimate energy consumption
by considering factors such as the energy characteristics of the hardware and run-time information.
However, power modeling techniques’ full potential has yet to be unlocked.
Table 1 presents a comprehensive comparison of existing energy measurement techniques,

highlighting their key features and limitations. The comparison features were carefully selected to
demonstrate the need for a more advanced and comprehensive approach to energy measurement
in dl frameworks.
• Granularity. It determines the level of detail at which energy consumption can be analyzed.
While some approaches such as CodeCarbon and FPowerTool provide function-level granular-
ity, others such as JavaIO and Perf operate at the system level. To effectively optimize energy
consumption in dl frameworks, it is essential to have a fine-grained approach that can measure
energy consumption at the api level.

• Sampling rate. It determines the frequency at which energy measurements are taken. A higher
sampling rate allows for more frequent and detailed energy consumption analysis but can lead
to inaccurate measurement due to overheads if not carefully chosen. Most existing approaches
have sampling rates ranging from fractions of milliseconds to seconds.

• Language and architecture support. They are also critical considerations when measuring
energy consumption in dl frameworks. Python is the most widely used language for dl, and
support for cpu, gpu and ram architectures is essential for comprehensive energy analysis. While
some approaches, such as CodeCarbon and Experiment Impact Tracker, support Python and
multiple architectures, others are limited in language and architecture support.

• Stability check. The ability to ensure power and temperature stability during energy measure-
ment is crucial for obtaining accurate and reliable results. Monsoon, a hardware-based approach,
provides both power and temperature stability but lacks the flexibility and ease of use offered by
software-based approaches.

• Automation. The automation of energy measurement is a key feature that can greatly simplify
the process of analyzing and optimizing energy consumption in dl frameworks. Most existing
approaches require manual instrumentation of the code, which can be time-consuming and
error-prone.

Optimizing energy consumption of ML tasks. Previous studies [3, 32, 39, 94] have investigated
the energy consumption of different dl models. Algorithmic optimization is a major approach
that contributes to reducing the energy consumption of dl models. These optimizations often
take place in model pruning, which refers to removing unnecessary connections within a neural
network [35, 93], and quantization, which reduces the precision of the weights and activations
within a neural network by making them quantized and reducing the memory required for a given
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Table 1. Comparison of energy measurement techniques

Approach Granularity Sampling

Rate

Languages Architecture DL Frame-

works

Power sta-

bility

Temperature

stability

Automated

CodeCarbon [12] Program/Function 15s Python CPU(Deprecated),
GPU and RAM

✓ × × ×

FPowerTool [91] Function 1ms Fortran/C/C++ CPU × × × ×
JavaIO [61] System 1ms Java CPU × × × ×
Perf [53] System 1ms n/a CPU × × × ×
PowerTOP [84] System 20s n/a CPU and GPU × × × ×
Experiment Im-
pact Tracker [38]

Program/Function 1s Python CPU and GPU ✓ × × ×

Monsoon [40] Hardware 0.2ms C#/C++ Machine-level × ✓ ✓ ×
FECoM [71] API/Program 500ms Python CPU, GPU and RAM ✓ ✓ ✓ ✓

model. For instance, Han et al. [35] found that the energy consumption of deep neural networks
can be reduced by using a combined technique consisting of model pruning, weight quantization,
and Huffman coding. This approach can reduce the size and computational complexity of the deep
learning models without significant degradation to their performance.
Measuring energy consumption at different granularities. Available hardware and software
tools measure energy consumption at the system level. To improve the granularity of analysis
and recommendations, researchers have attempted to measure the energy consumption at a more
fine-grained level, such as at the process level [49, 61] at best. Bree et al. [8] attempted method
replacement for measuring the energy consumed by the visitor pattern; however, their approach is
unsuitable for measuring any given method’s energy consumption due to the lack of a generalizable
solution. FPowerTool [91] operates at a coarser granularity of function blocks for programming
languages written in C, C++, and Fortran in non-dl programs. However, its biggest drawback is
that it uses a dynamic instrumentation technique that involves injecting tracing code during the
runtime, which would lead to noisy and inaccurate energy measurement data at finer granularities
such as api level. Similarly, CodeCarbon [12] and Experiment Impact Tracker [38] are open-
source software tools designed to monitor and reduce the co2 emissions associated with computing
processes, particularly those involved in dl applications. These tools integrate themselves into
Python codebases and enable the tracking of emissions based on power consumption and location-
dependent carbon intensity. While CodeCarbon and Experiment Impact Tracker can measure
power consumption, and hence co2 emissions at a function-level granularity through the use of
decorators, they have a few drawbacks. Firstly, the process of modifying source code to measure the
power consumption for desired methods is manual in nature. For instance, if users of CodeCarbon
wish to measure the power consumption of TensorFlow api calls, they have to insert the addition
lines-of-code calling the CodeCarbon tool themselves, manually for each TensorFlow api instance.
Secondly, and more importantly, it overlooks the overheads introduced by background processes
and temperature fluctuations while having a sampling rate of 15 seconds, leading to significant noise
in the measured energy consumption. Therefore, to the best of our knowledge, the literature does
not offer any approach that measures energy consumption at the method level for dl frameworks.
Gaps in existing research. The existing literature as shown in Table 1 has two critical lim-

itations. First, existing approaches can measure energy consumption at only the system level
due to support offered by hardware and operating system vendors. There have been efforts to
measure energy consumption at the finer granularity (such as at the function level); however, as
discussed, they lack various requirements such as low sampling rate, stability check, support for
dl framework and languages such as TensorFlow and python, as well as support for cpu, gpu,
and ram architectures. Second, current approaches require manually instrumenting the code to
measure energy consumption. For a software engineer to improve the energy efficiency of a given
code conveniently and efficiently, the engineer must have access to an approach that can automate
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Fig. 1. Architecture of the FECoM framework for energy measurement of individual methods.

the energy measurement process to work at the fine-grained level so that the engineer can take
corrective actions, if needed, early. Our proposed approach addresses the gap by providing an
automated and generic mechanism to measure energy consumption at the method granularity.

3 APPROACH
This section describes the architecture of the Fine-grained Energy Consumption Meter (FECoM)
framework and static instrumentation we devised for fine-grained energy-consumption measure-
ment.

3.1 FECoM Architecture
Figure 1 presents the architecture of the proposed framework, FECoM. FECoM employs static in-
strumentation to measure fine-grained energy consumption. For a given program, FECoM identifies
a set of target api calls and instruments the code around the identified calls. The instrumented code
triggers FECoM’s measurement module, enabling us to isolate the api from the rest of the program
during execution and measure its energy consumption. The measurement module plays a crucial
role in ensuring that the temperature and energy consumption remain stable. It performs the neces-
sary checks to verify these conditions. Once the temperature and energy stability criteria are met,
the measurement module proceeds to execute the api call specified, capturing the corresponding
energy data. In the following, we describe each of FECoM’s components in detail [20].

3.2 Static instrumentation
We developed a tool, referred to as Patcher, to instrument the code to enable energy-consumption
measurement. Patcher operates at both the method and project levels, offering fine-grained control
over energy profiling. In the context of this work, “method” refers to an api call within the code of
a dl project, while “project” encompasses the entire codebase of a dl project hosted in a repository.
Patcher generates an Abstract Syntax Tree (ast) of the input Python script and identifies the

libraries and their aliases used within them. This information allows Patcher to locate the api calls
corresponding to the specified libraries. Patcher allows specifying the library for the analysis. For
instance, if the user wants to measure the energy consumption of the api’s provided by Tensor-
Flow, they specify the name of the library (“TensorFlow” in this case) as an input parameter, and
Patcher automatically identifies all the TensorFlow api calls. Additionally, Patcher identifies class
definitions that utilize the required libraries as base classes and keeps track of objects created from
these classes. This enables the identification of method calls made through these objects, which are
the target calls for energy measurement.
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The instrumentation process inserts two source code statements around the target function calls,
as shown in Listing 1, which act as breakpoints. The first statement, before_execution_INSERTED_-
INTO_SCRIPT, is placed before the original function call; the statement ensures that the machine
has reached a stable state and captures the start time of method execution. The second state-
ment, after_execution_INSERTED_INTO_SCRIPT, is inserted after the function call; this state-
ment records relevant information such as the total execution time and energy consumed. We
provide the list of used parameters and corresponding descriptions in Table 2.
The Project-level script Patcher follows a similar approach as the method-level Patcher by

inserting the same source code statements before and after the entire script, enabling comprehensive
energy-consumption measurement throughout the project’s execution.

train_notes = np.stack([all_notes[key] for key in key_order], axis=1)
start_times_INSERTED_INTO_SCRIPT =
before_execution_INSERTED_INTO_SCRIPT(

experiment_file_path=EXPERIMENT_FILE_PATH,
function_to_run="tensorflow.keras.Input()"

)
inputs = tf.keras.Input(input_shape) #Original API
after_execution_INSERTED_INTO_SCRIPT(

start_times=start_times_INSERTED_INTO_SCRIPT,
experiment_file_path=EXPERIMENT_FILE_PATH,
function_to_run="tensorflow.keras.Input()",
method_object=None,
function_args=[input_shape],
function_kwargs=None)

all_notes = pd.concat(all_notes)
n_notes = len(all_notes)

Listing 1. Sample patched code snippet.

Table 2. Description of the arguments or inserted function in the patched code.

Argument/Function Description

start_times_INSERTED_INTO_SCRIPT Start times determined by before_execution
before_execution_INSERTED-
_INTO_SCRIPT

Patched function added before the original
api call

EXPERIMENT_FILE_PATH Path to store experiment data
function_to_run api signature for analysis
after_execution_INSERTED-
_INTO_SCRIPT

Patched function added after the original api
call

method_object Object in case of a method call e.g., model in
model.compile()

function_args Arguments of the api call
function_kwargs Keyword arguments of the api call

3.2.1 Validation for the static instrumentation tool. To validate Patcher, we drew inspiration from
Automated Program Repair (apr) techniques [88], adapting them to our use case. The validation
process consists of the following steps:
Executability: In the first step, we ensure the executability of the generated patches, confirming
that they execute without any syntactical errors. As Python is an interpreted language, we utilize
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the Pylance language server [57] to validate the patched code for any syntactic or type errors,
ensuring a smooth compilation process.
Automated testing: Next, we conduct automated testing on the patched scripts to verify their
behavior against the original version to ensure that the patches have not introduced any unintended
changes to a project (i.e.,we check if they produce the expected outputs). For this step, we randomly
selected six projects from the set of projects used in our experiment (see Section 4.3); the chosen
projects for evaluation represent approximately one-third of the analyzed projects.
Human evaluation: To further validate the correctness and coverage of the code generated by
Patcher, we conducted a human evaluation. We used the six projects selected from the previous
step and sought volunteers from the Computer Science Department of Dalhousie University with
prior experience developing dl models in Python using TensorFlow. Six graduate students were
chosen to participate, and we assigned two projects to each evaluator, ensuring two evaluators
for each project. The evaluators were provided with the original Python notebook, the converted
Python script from the notebook, the method-level patched script, and the project-level patched
script. They were briefed about their task using a patch template as described in Listing 1, and were
informed about the purpose of the validation without indicating the authorship of Patcher. The
evaluators were then instructed to assess the provided artifacts and document any issues related to
the following criteria:
• Correctness: This assesses whether the generated patch for each method adheres to the patch
template as shown in Listing 1 (i.e., it accurately extracts all the argument values for a given
api call). The evaluators were asked to mark each patched api call as either Correct or Incorrect
based on this criteria. To evaluate, we calculate Correctness accuracy as the ratio of total correct
patches to the total number of patches evaluated.

• Completeness: This evaluates whether the tool accurately identifies all TensorFlow api calls
and appropriately patches all relevant calls. The evaluators were asked to provide the total
number of eligible api calls (i.e., TensorFlow based calls), along with the total number of calls
that were missed by the Patcher (i.e., api calls that should have been patched, but were missed
by the Patcher). To evaluate, we calculate Completeness accuracy as the ratio of total patched
calls to the total number of eligible calls.
The evaluators were asked to fill an anonymous Excel sheet [26] for each project containing

information such as logs and relevant method calls for which they checked the patched code
to verify each of the evaluation criteria. We consolidated the evaluations and checked for any
differences in the evaluation for each project.
Notably, the evaluators reported high accuracy for the patched projects based on the

adopted criteria. Specifically, the Correctness criterion achieved 100% accuracy, while the Com-
pleteness criterion achieved 99.3% accuracy. Patcher missed 1 api call out of expected 159 total
calls. A detailed analysis revealed that these missed instances are api calls made via returned
TensorFlow objects from user-defined functions. The Patcher currently operates on method calls
made by the objects created and used in the same code block. Hence, when a user-defined method
creates and returns an object to a code block that uses the object to invoke a method, it does not
get identified by the Patcher. We aim to address this limitation in the future versions of the Patcher,
by introducing type prediction of the returned objects.

3.3 Pre-measurement Stability Checks
The machine used for the experiments must be stable before executing the api calls and collecting
their energy consumption as suggested by Georgiou et al. [32]. The introduced stability checks
ensure low fluctuation in the hardware’s energy consumption, thus reducing noise and ensuring
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accurate measurements by conducting energy measurement experiments under approximately the
same conditions every time.
We perform two kinds of stability checks as part of the FECoM framework—the temperature

check and the energy stability check. gpu overheating can substantially increase power draw [65],
skewing results. The temperature check ensures that the cpu and gpu temperatures are below
a standard hardware-specific threshold, maintaining uniform thermal conditions. FECoM uses
lm-sensors [51] tool to obtain the cpu temperature and nvidia-smi [18] to obtain gpu temperature.
We follow a key guideline to run as few user processes as possible during the experiment. This
guideline helps us achieve stability from a temperature and energy consumption perspective.

With energy stability check functionality, we ensure that cpu, ram, and gpu energy observations
are not fluctuating. Variability indicates outside processes are consuming significant power, intro-
ducing measurement noise. The check also accounts for overheads from static instrumentation
by ensuring a steady pre-instrumentation state. Fluctuations in energy consumption indicate that
other processes on the machine are consuming considerable energy, and hence, the measured
energy might include considerable noise. To perform the check, we measure and record energy
consumption by the three hardware components (i.e., cpu, ram, and gpu), periodically. We load
the most recent 20 energy data observations for the components. Then, we determine stability
by comparing the coefficient of variation (𝜎

𝜇
) [13] of the data points, to the stable state coefficient

of variation, for each component. We calculate the stable state coefficient one time in no-load
condition i.e., by running only the energy measurement scripts without any other processes on
the experiment machine for approximately 10 minutes. We calculate the coefficient of variation by
dividing the mean by the standard deviation. If the coefficient of variation of the last 20 observations
is smaller than or equal to the stable state coefficient of variation, the machine is deemed to be in
a stable state. If both stable temperature and stable energy are achieved, the machine is ready to
execute the experiments.

3.4 Energy Measurement Module
The energy measurement module [23] executes the selected project, measures the consumed energy,
and documents the observations. We execute each project (and each api call, in turn) ten times to
ensure the reliability of the measurements.
Figure 2 shows a typical power consumption profile of an api call. We measure the energy

consumption by the api between the start (𝑡𝑠 ) and end (𝑡𝑒 ) time of the call execution. Since 𝐸𝑛𝑒𝑟𝑔𝑦 =

𝑃𝑜𝑤𝑒𝑟 × 𝑡𝑖𝑚𝑒 , an api’s energy consumption can be interpreted as the area between the graph
as shown in Figure 2 and the x-axis—or the time integral of power. Let 𝐸𝑡 (𝑚) be the energy
consumed for a given api call at time 𝑡 , where 𝑡𝑠 ≤ 𝑡 < 𝑡𝑒 . This measurement 𝐸𝑡 (𝑚) is then adjusted
by subtracting the stable mean energy consumption of the system, which can be attributed to
background processes, resulting in 𝐸′

𝑡 (𝑚). 𝐸′
𝑡 (𝑚) is equivalent to the area between the mean stable

power and the graph. Wemeasure 𝐸′
𝑡 (𝑚) periodically for different values of 𝑡 and add them to obtain

𝐸 (𝑚) i.e., 𝐸 (𝑚) = ∑𝑡𝑒
𝑡=𝑡𝑠

𝐸′
𝑡 (𝑚). The resulting 𝐸 (𝑚) value is further averaged over 10 repetitions of

the same experiment to obtain the mean energy consumption 𝐸 (𝑚). Throughout this paper, we
will refer to 𝐸 (𝑚) when discussing net energy consumption in our experiments.

We store the raw measurements in JSON format, ensuring their accessibility and reproducibility
via our replication package. The collected energy consumption data include energy consumption
by cpu, ram, and gpu. Additionally, we record timestamps, experiment settings such as wait time if
the machine is unstable, wait time after api call execution, stable state power consumption, gpu
and cpu max allowed temperature, and sizes of arguments passed to the api under measurement.
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Fig. 2. cpu power over time for models.Sequential.fit from images/cnn.

3.5 Tools
We provide below a brief description of the tools that we used for energy consumption and
temperature monitoring.
Intel’s Running Average Power Limit (rapl): is an interface that allows applications to monitor
and control the power consumption of various components, such as the cpu and memory, within
Intel processors. rapl works by measuring the power consumption of the processor at regular
intervals of approximately 1ms [42] and reporting this information. It measures energy consumption
of
• Package (pkg): all cpu components, such as cores, integrated graphics, caches and memory
controllers.

• Core: all the cpu cores.
• Uncore: all caches, integrated graphics and memory controllers.
• dram: random access memory ram attached to the cpu’s memory controller [74].
Since the pkg values include the cpu’s total energy consumption, we will only discuss these in our
analysis similar to other studies [74], and we will refer to them as cpu energy consumption.
Perf: is a command-line tool for collecting performance statistics from Linux systems. Data relating
to energy consumption is collected using Perf’s energy event—a wrapper around Intel’s rapl.
Specifically, the perf stat command is used to gather and report real-time performance counter
statistics from running a command. Though perf stat supports reporting statistics at a maximum
1 ms frequency, a high overhead could result at intervals lower than 100 ms [53].
NVIDIA’s System Management Interface (nvidia-smi) [18]: is a command-line utility that
allows monitoring and controlling the performance of nvidia gpus. It provides detailed real-time
status of the gpu, including its power draw and temperature.
lm-sensors [51]: is a Linux software tool package that enables monitoring of the hardware sensors
on the cpu, which includes temperature sensors. It provides the sensors command-line interface
for retrieving sensor data.
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3.6 Replication Package
The replication package for FECoM is available on GitHub [20]. It contains all the necessary files
and instructions to replicate the experiments and results this paper presents.

4 EXPERIMENTAL SETUP
4.1 ResearchQuestions
The goal of this study is to develop an approach and framework to measure energy consumption at
a fine-grained level (e.g., api level) to understand better the energy profile of apis of dl frameworks
so that it can be subsequently used to make their documentation energy-aware. Towards this goal,
we propose the framework, FECoM (described in Section 3). We formulate the following research
questions (RQs) to evaluate the proposed approach and the framework FECoM.

RQ1: To what extent is FECoM capable of measuring energy consumption at the api level?
In this RQ, we aim to measure the effectiveness of the proposed framework, FECoM. We want
to ensure the correctness of the measured energy through this evaluation.

RQ2: To what extent does input data size have an effect on energy consumption?

With RQ2, we wish to investigate the relationship between the input data provided to the
apis under examination and their energy consumption. Answering this RQ will reveal the
energy profile of apis in relation to their input parameter size, which should become a critical
component of energy-aware api documentation.

RQ3: What are the main challenges and considerations in developing fine-grained energy

measurement tools for dl frameworks?

Verdecchia et al. [85] emphasized the significant scarcity of tools, for example, to measure
energy consumption, in the Green Artificial Intelligence domain. Additionally, Bannour et
al. [5] noted that the existing tools lack sensitivity to measure energy consumption at fine
granularity. However, measuring energy consumption at lower granularities, such as api-
level poses unique challenges compared to coarse-grained measurement. With this research
question, we aim to uncover the key challenges, underlying reasons and considerations that
arise when developing tools measuring energy consumption for fine-grained profiling of dl
frameworks and models. Furthermore, answering this research question will provide insights
and suggestions for researchers and practitioners, and facilitate the development of new tools
and techniques in the field.

4.2 Experimental Design
In this section, we elaborate on the experimental design choices and corresponding rationale for
answering the research questions.

4.2.1 RQ1. Validating the correctness of the measured energy consumption at a fine-grained
granularity is a non-trivial challenge due to the lack of existing tools or benchmarks to measure
energy consumption at the fine-grained level. To overcome the challenge, we measure energy
consumption both at the api level and at the project level, i.e.,wemeasure the total energy consumed
by the whole project and the energy consumed by all the API and method calls belonging to a
framework like TensorFlow. The energy consumed by a project is approximately the sum of
energy consumed by all the methods defined, called (including library/framework methods and
api calls), and executed within the project. Therefore, the sum of the energy consumed by the
measured methods must be less than the total energy consumed by the project. Concretely, we
model the relationship between energy consumed by a project 𝐸 (𝑃) and the methods 𝐸 (𝑚𝑖 ) for
𝑖 ∈ {1, 2, · · · , 𝑛}, in the project, in the following way.
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𝐸 (𝑃) ≈ 𝐸 (𝑀𝑠 ) + 𝐸 (𝑀𝑜 ) =
𝑘∑︁
𝑖=1

𝐸 (𝑚𝑖 ) +
𝑛∑︁

𝑖=𝑘+1
𝐸 (𝑚𝑖 ) (1)

Where methods𝑚𝑖 for 𝑖 ∈ {1, 2, · · · , 𝑘} are in the scope of energy measurement (e.g., TensorFlow
methods and api calls in the considered project code) representing 𝐸 (𝑀𝑠 ) and, hence, measured by
FECoM. The rest of the methods𝑚𝑖 for 𝑖 ∈ {𝑘 + 1, 𝑘 + 2, · · ·𝑛} represent 𝐸 (𝑀𝑜 ) that falls outside
of the scope of FECoM and, hence, we do not measure their energy consumption. The energy
consumed by methods within scope i.e., 𝐸 (𝑀𝑠 ) cannot be greater than the energy consumed by the
entire project. In Equation 1, if the energy consumed by out-of-the-scope methods is negligible, i.e.,
𝐸 (𝑀𝑜 ) ≈ 0, we should observe 𝐸 (𝑃) ≈ 𝐸 (𝑀𝑠 ) if we measure the energy consumed by individual
methods, correctly.

For example, in Listing 1, the energy consumption of the project 𝐸 (𝑃) would include the energy
consumed by the tf.keras.Input() api call, denoted as 𝐸 (𝑚1), as well as the energy consumed by
np.stack(), pd.concat(), and len()methods, denoted as 𝐸 (𝑚2), 𝐸 (𝑚3), and 𝐸 (𝑚4), respectively.
In this case, 𝐸 (𝑀𝑠 ) = 𝐸 (𝑚1) as the tf.keras.Input() api call is a TensorFlow api and hence
within the scope of energy measurement, while 𝐸 (𝑀𝑜 ) = 𝐸 (𝑚2) + 𝐸 (𝑚3) + 𝐸 (𝑚4) as the other three
methods are non-TensorFlow operations and hence outside the scope. Therefore, according to
Equation 1, the total energy consumption of the project can be approximated as 𝐸 (𝑃) ≈ 𝐸 (𝑚1) +
𝐸 (𝑚2) + 𝐸 (𝑚3) + 𝐸 (𝑚4).

We extend the evaluation of our proposed approach by investigating the relationship between
energy consumption and execution time at the api level granularity. Previous research suggests a
linear relationship between energy consumption and execution time [14], or indirectly, execution
frequency [54]. This relationship seems intuitive—the longer or more frequently a task is performed,
the more energy is consumed. This assumption holds when the power 𝑃 remains constant, as energy
consumption 𝐸 is given by 𝐸 = 𝑃 × 𝑡 , where 𝑡 represents the time duration. However, if the power
𝑃 is a function of time 𝑡 , the linear relationship no longer applies. Nevertheless, it is generally
expected that as execution time increases, energy consumption will also increase proportionally.

4.2.2 RQ2. The time complexity of an algorithm, O(𝑛), is a function describing an asymptotic
upper bound of an algorithm’s run-time 𝑡 given an input of size 𝑛 [80]. This implies that the
execution time of an algorithm is a function of its input data size. In Section 4.2.1, we discuss
that energy consumption 𝑦 is the function of execution time i.e., 𝑦 = 𝑓 (𝑡). Therefore, energy
consumption 𝑦 also is a function of input parameter size as given below.

𝑦 = 𝑓 (𝑛) (2)
Though it is intuitive that the energy consumption of an api call depends on the input parameter

size, the relationship between energy consumption and parameter size is not known. This research
question utilizes our proposed method and FECoM to determine the concrete relationship between
these two aspects.
In this experiment, we measure energy consumption by an api call multiple times, changing

the passed parameters’ data size. We determine 𝐸𝐶𝑃𝑈 (𝑛), 𝐸𝑅𝐴𝑀 (𝑛) and 𝐸𝐺𝑃𝑈 (𝑛) i.e., the energy
consumed by CPU, RAM, and GPU, respectively, for various values of 𝑛. We vary the input data
size 𝑛 in increments of 1

10 of the original data. The first run of a method uses 1
10 of the original data,

and this size is incremented by 1
10 for each successive run until the 10𝑡ℎ run uses the entire original

data size. We analyze the method-level energy consumption data from RQ1 and identify 10 of the
most energy-hungry api calls. Similar to the RQ1 setup, we execute each selected api call 10 times,
resulting in 100 observations for each call.
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Fig. 3. RQ3 Pipeline for Stack Overflow Mining

4.2.3 RQ3. This RQ explores and discusses the key considerations as well as challenges that one
may face while designing and developing frameworks and tools similar to FECoM for fine-grained
energy consumption measurement. To compile a comprehensive set of design considerations and
challenges, we diligently documented all the error logs and issues encountered while developing
the FECoM framework [21]. Initially, we carefully reviewed meeting minutes from our development
team comprised of the first three authors, identifying instances where roadblocks were encountered
while developing the framework. Additionally, team members individually reviewed the initial list
and augmented the identified issues. They also added new issues based on their experience working
on this study. We asked them to supplement the issues with additional information, including
instructions to reproduce, error logs, and and error messages.
We used the Open Coding Technique [46], a qualitative data analysis method, to analyze and

categorize the identified issues. This approach enabled us to systematically label and categorize
the collected information, identify emerging themes and patterns, and construct a conceptual
framework from the raw issues. The process involved the following key steps:
(1) Coding process: The initial step involved thoroughly reviewing the collected initial issues and
deconstructing them into smaller segments for close examination. We analyzed these segments
to identify relationships, similarities, and dissimilarities. We assigned appropriate codes to each
segment to facilitate further analysis, enabling us to identify and categorize them systematically
for subsequent analysis. This process was conducted in isolation for each of the team members to
eliminate bias in the coding process.
(2) Iterative process: Open coding is an iterative process that involves revisiting the segments and
individual items multiple times. After an initial round of coding, we searched for new concepts and
patterns by continually refining our coding scheme until we reached data saturation.
(3) Emergent coding: With emergent coding, codes and categories emerged directly from the data
itself, allowing themes and patterns to be identified inductively. This approach prevented us from
imposing preconceived notions and theories, ensuring a data-driven analysis.
(4) Constant comparison: We continuously compared new data with existing codes and categories
throughout the coding process to ensure consistency and identify variations or similarities.
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After completing the process, we obtained issues grouped into multiple categories and subcate-
gories.

To systematically identify mitigation strategies for the identified challenges, we followed a multi-
step approach leveraging both manual analysis and automated techniques. Figure 3 summarizes
the approach; we elaborate on each key step below.
(1) Keyword extraction: We treated each documented challenge as an initial query and used

the state-of-the-art Claude-3 Opus Language Model (llm) api [4] to extract top keyword
queries that are semantically similar to the initial query. We chose Claude-3 for its strong
performance in natural language understanding and generation tasks. However, depending on
the availability and specific requirements, it can be replaced with any other similarly capable
llm. This step helps address the potential Lexical Chasm problem [6], which refers to the
mismatch between developers’ vocabulary and terminology when describing their challenges
and the actual content and language used in relevant documentation or Q&A forums such as
Stack Overflow. By extracting semantically similar keyword queries, we bridge this lexical gap
and improve the chances of finding relevant information in subsequent steps [50].

(2) Corpus construction: We utilized the extracted keyword queries to search for relevant Stack
Overflow posts using the Stack Overflow api provided through the Stack Exchange platform [19].
This process yielded a corpus of total 1, 367, 422 potentially relevant posts for all identified
challenges.

(3) Corpus filtering: To filter out irrelevant posts, we created an Information Retrieval based
search pipeline. This pipeline combines the challenge descriptions with the Stack Overflow
posts using ColBERT [47], a state-of-the-art retrieval model. We constructed a search index of
the Stack Overflow posts using ColBERT, enabling efficient querying and retrieval. Using the
challenge descriptions as search queries, we queried the index and extracted the top 50 most
relevant posts for each challenge. The search index and corpus used in this study are available
as an artifact [72].

(4) Manual analysis: Finally, To ensure the comprehensiveness and reliability of the filtered posts,
the first author manually analyzed the filtered corpus of Stack Overflow posts to identify the
ones discussing challenges and potential mitigation strategies relevant to our context. This
involved reviewing multiple posts for each challenge, extracting relevant mitigation strategies,
and summarizing them. We provide the mapping between the specific posts used for this
analysis and the corresponding identified challenge to facilitate traceability in an Excel sheet
within our replication package [25]. Furthermore, we provide the created index and the post
dataset as part of the replication package [72], empowering users to search for any desired
number of posts based on their specific use cases. Users also have the flexibility to expand the
trained index by incorporating additional posts relevant to their requirements.

After completing this process, we obtained a categorized list of challenges encountered while
developing tools for fine-grained energy measurement and their mitigation strategies. The identi-
fied challenges provide valuable insights into the key considerations and potential pitfalls when
designing and developing such tools. This RQ focuses on identifying and understanding the chal-
lenges themselves rather than prescribing specific solutions, as the effectiveness of the mitigation
strategies may vary depending on the context.

4.3 Repository Selection
The following criteria were used to select a dl project repository for evaluating the RQs.
(1) It should be publicly available on GitHub and popular (i.e., having at least 5, 000 stars).
(2) It should include a good variety of TensorFlow-2-based projects across various dl domains

and should be actively maintained.
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(3) It should be easily reproducible.
Based on these criteria, we chose the dl tutorials repository from the official TensorFlow

documentation [83] (commit: e7f81c2) for our experiments. This repository is publicly available on
GitHub, with over 5.7 thousand stars and 5.1 thousand forks, and offers a wide variety of dl tasks,
including computer vision, natural language processing, and audio processing, each presented as a
self-contained Jupyter notebook. These tutorials extensively utilize TensorFlow’s essential apis.
Moreover, they are designed for easy reproducibility, as each tutorial performs all the steps of the
dl pipeline (i.e., data loading, pre-processing, training, testing) within the notebook without any
additional dependencies. Additionally, the tutorials are continually updated to work with the latest
TensorFlow versions, maintained by a team of more than 800 contributors.

4.4 Experimental Environment
All experiments were conducted on a Ubuntu 22.04 machine equipped with an Intel(R) Xeon(R)
Gold 5317 CPU (24 logical cores, 3.00 GHz), and 125 GB of main memory. For GPU-accelerated
computations, the machine incorporates an nvidia GeForce rtx 3070 Ti gpu [60] with 8 GB
GDDR6X memory. The GPU exhibits an idle power of 18 Watts and maximum power consumption
of 290 Watts. To ensure consistent and reliable results, our experimental setup utilizes Python 3.9
alongside TensorFlow 2.11.0. This combination requires nVIDIA CUDA 11.2 and cuDNN 8.1.0 to
leverage the full capabilities of the GPU and optimize dl computations.

4.5 Settings
4.5.1 Sampling interval. The frequency at which energy measurement samples are captured and
retrieved is an important factor in measuring energy consumption. The frequency of the sampling
interval affects the precision and resolution of the measurements taken. A high-frequency sampling
interval can provide more precise and detailed measurements. However, it may also require more
processing power and resources and generate a larger data volume (leading to more overheads) [53].
However, using a lower frequency sampling interval can also result in situations where energy
consumption readings at api granularity cannot be captured precisely. If a api’s execution time is
shorter than the sampling interval, energy consumption cannot be measured effectively. Thus, this
trade-off needs consideration in selecting a sampling interval frequency.

To determine an appropriate sampling interval, we conducted experiments with FECoM’s baseline
that would denote the overhead using a range of sampling frequencies from 1ms to 1000ms and
analyzed the coefficient of variation (CV) of the energy measurements. CV measures the variability
in the measurements relative to the mean [13]. Figure 4 presents the CV values for CPU, RAM, and
GPU energy measurements across different sampling intervals.
As the figure illustrates, the CV values generally decrease as the sampling interval increases

while stagnating around and after 500ms, indicating that higher sampling intervals result in more
stable and consistent measurements for the considered apis. Very low sampling intervals, such as 1
ms and 10 ms, exhibit significantly higher CVs compared to the chosen 500 ms interval, suggesting
that very high sampling frequencies introduce more noise, variability and hence overhead in the
measurements, which can be detrimental to the accuracy and reliability of the energy consumption
analysis. The 500 ms sampling interval achieves a good balance between measurement stability
(low CV) and granularity. While even higher intervals like 1000 ms show slightly lower CVs, they
may miss capturing the energy consumption of shorter API calls. The 500 ms interval strikes a
reasonable compromise, ensuring stable measurements while still capturing the energy profiles
of the most relevant API calls. This interval aligns with the range of frequencies used in software
energy measurement studies, which typically span from milliseconds to seconds, as shown in
Table 1.

, Vol. 1, No. 1, Article . Publication date: July 2024.



736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

16 Rajput, Widmayer, Shang et al.

Fig. 4. Coefficients of Variation across sampling intervals

Furthermore, users of FECoMhave the flexibility to customize the sampling interval in the FECoM
configuration based on their specific experimental requirements. If finer-grained measurements
are desired for particular use cases, the sampling interval can be adjusted accordingly, taking into
account the potential trade-offs in terms of overhead and data volume.

4.5.2 Machine stability. As discussed in Section 3.3, maintaining the machine’s temperature and
energy stability is crucial to ensure accurate and reliable energy consumption measurements. We
have set conservative temperature thresholds of 55◦C for the CPU and 40◦C for the GPU, well below
the maximum allowed temperatures of 84◦C for the Intel(R) Xeon(R) Gold 5317 cpu [43] and 93◦C
for the nvidia GeForce rtx 3070 GPU [60] as specified in the product documentation. We adopt
best practices from the literature to achieve and maintain stable conditions during measurements.
For the GPU nvidia-smi, enabling persistence mode is crucial as it optimizes GPU performance
by keeping it in a fixed state and CUDA libraries ready for immediate use, minimizing voltage and
frequency changes [10, 66]. Similarly, setting the cpu power policy to performance mode ensures it
operates at maximum frequency [81].
To enhance measurement accuracy, it is essential to minimize background processes on the

machine related to energy measurement. Stopping unnecessary background processes [32] ensures
that only the relevant processes run during the measurement cycle. Additionally, the energy mea-
surement cycle for each api call should only initiate when the machine is in a “stable condition” [32].
This is ensured via the energy stability check discussed in Section 3.3. After each call execution, the
machine should remain idle for a brief period to avoid tail power states [32], ensuring the accuracy
and consistency of the energy consumption measurements.

5 RESULTS
In this section, we present our experimental observations for the considered research questions.

5.1 RQ1. FECoM Effectiveness
To answer RQ1, we measure energy consumption both at the api and the project level. As we
discuss in Section 4.2.1, if the sum of energy consumed by the measured apis is greater than the
energy consumed by the entire project, then the proposed approach is falling short of measuring
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(a) Net energy consumption (b) Total energy consumption

Fig. 5. RQ1. Net and total energy consumption (cpu, gpu, and ram) at project and method levels.

energy consumption at the fine-grained granularity. We use approximate values for the comparison
because energy consumption tools have limited precision [15, 31]. As we discuss in Section 4.5.1,
we use a sampling interval of 500 ms for the perf and nvidia-smi tools. It implies that the energy
consumption of any api with a run time below 500 ms is excluded from the sample of considered
calls, further reducing the sum of method-level energy consumption values.

Figure 5a and Figure 5b show the net and total energy consumed by individual projects, respec-
tively, and all methods in the scope within individual projects for each hardware device (i.e., cpu,
gpu, and ram). Figure 5a shows that 𝐸 (𝑃) > 𝐸 (𝑀𝑠 ) for all analyzed projects for each hardware de-
vice considered in our study. We can observe varying degree of difference between 𝐸 (𝑃) and 𝐸 (𝑀𝑠 )
for different projects. Such a variance stems from different amounts of energy consumed by methods
not in the scope, i.e., 𝐸 (𝑀𝑜 ). For instance, the project images/cnn has 15 TensorFlow methods in
scope that consume 8, 513.61 Joules energy within the gpu; the rest of the energy 1, 801.24 Joules
energy is consumed by out-of-scope 14 methods. Project keras/overfit_and_underfit presents
an intriguing case where we observe 𝐸 (𝑃) >> 𝐸 (𝑀𝑠 ). This difference can be attributed to the
fact that the project imports TensorFlow library in their source code, but it majorly utilizes a
different library, other than TensorFlow for ml tasks. Consequently, while the energy consumption
associated with this external library is reflected in the project-level energy measurement, it remains
unaccounted for in the method-level energy analysis. Given that FECoM targets TensorFlow
methods, energy consumed by functions of other libraries is not accounted for in 𝐸 (𝑀𝑠 ).
We perform statistical tests to determine the significance of the observed differences in energy

consumption between method-level and project-level measurements. To assess the normality of the
data, we conducted the Shapiro-Wilk [75] test at both the method and project levels with 𝛼 = 0.05.
The p-values for cpu were 1.0𝑒−04 and 1.33𝑒−05, for gpu were 3.25𝑒−05 and 1.80𝑒−05, and for ram

, Vol. 1, No. 1, Article . Publication date: July 2024.



834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

18 Rajput, Widmayer, Shang et al.

Fig. 6. RQ1. ram power over time for models.Sequential.fit in images/cnn.

were 0.001 and 0.038, respectively for the method and project levels. The results of the Shapiro-Wilk
test indicate that the data for both the method and project levels are not normally distributed
(𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 < 𝛼). As the data did not meet the normality assumption, we opted for non-parametric
tests. We employed the Wilcoxon signed-rank test [92], which is suitable for paired samples, to
assess whether the sum of method-level energy consumption is less than the project-level energy
consumption for each energy type. We performed the Wilcoxon test using the Scipy [73] library
with the alternative hypothesis set to “greater” that determines whether the distribution underlying
the difference between paired samples (project_level and sum of method_level) is stochastically
greater than a distribution symmetric about zero. Based on the results of the one-tailed Wilcoxon
signed-rank test, we can conclude that there is a statistically significant difference between the
method-level and project-level energy consumption for all energy types (cpu, gpu, and ram). The
p-values for the Wilcoxon signed-rank tests are extremely small(<< 𝛼 = 0.05), with values ranging
from 1.53𝑒−05 to 4.58𝑒−05, thus supporting the alternative hypothesis that the sum of method-level
energy for a project is less than the project-level energy consumption. The above analysis concludes
that the FECoM measures energy consumption at the api granularity correctly.
Figure 5a shows another interesting observation i.e., the presence of negative net ram energy

consumption for some projects. Figure 6 provides an explanation of the observation. The figure
shows a sudden spike in ram power consumption at the beginning of api call execution, followed
by a settling down below the mean stable power. Before executing a function on the gpu, the
input data must be copied from ram (cpu memory) to gpu memory [67]. These extensive data
copying operations could explain the spike in ram power draws at the start of execution. This
spike, followed by a lower ram power, is likely associated with TensorFlow methods utilizing gpu
kernels, which utilize gpu memory VRAM instead of system ram [82]. Comparing the numerical
values of 𝐸𝐶𝑃𝑈 (𝑛) with those of 𝐸𝐺𝑃𝑈 (𝑛) in Figure 5a confirms that gpu energy consumption is
approximately five times higher than cpu energy consumption across all experiments. After the
initial data copying, the cpu and ram enter an idle state, requiring less energy than the stable
state. Consequently, the area below the mean stable power surpasses the area above it, resulting in
negative average energy consumption, as illustrated in Figure 5a.
We extend the evaluation of our proposed approach by investigating the relationship between

energy consumption and execution time at the method-level granularity. To validate the linear
relationship between energy consumption and mean execution time, we compute the Pearson
correlation coefficient. The obtained correlation coefficients 𝜌 for gpu, cpu, and ram are 0.99
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(p-value = 9.34𝑒 − 27), 0.99 (p-value = 6.01𝑒 − 39), and −0.84 (p-value = 3.10𝑒 − 08), respectively.
These values indicate that execution time for gpu and cpu have a strong positive relationship with
energy consumption, while ram exhibits a strong negative relationship. These observations further
confirm the effectiveness of the proposed approach.
FECoM enables new insights into energy consumption patterns in real-world deep learning

code. Consider as an example the TensorFlow program [28] for image classification as shown
in Listing 2; this program loads data, trains a model, evaluates it, and performs inference. Using
FECoM, we can break down the total energy usage and attribute consumption to individual apis.
The data loading operation via fashion_mnist.load_data() is quite efficient, consuming only 1J.
In contrast, model.fit() for training is identified as an energy hotspot, drawing significant power
at 4400J. Evaluation and inference operations exhibit more moderate consumption of 29J and 3J.

Summing the method-level measurements, the TensorFlow apis account for about 4500J energy.
However, FECoM’s project-level view shows the overall program consumes 5990J. This additional
1490J can be ascribed to non-TensorFlow operations such as file I/O and data pre-processing. By
supporting fine-grained profiling, FECoM reveals patterns that arise from contributions of specific
api calls versus other program activities. Developers can use these insights to target optimization
efforts on costly operations such as fit(). FECoM enables drilling down into energy consumption
patterns within real dl code, empowering developers to write greener, more efficient AI applications.

import tensorflow as tf
....

# Energy efficient loading data : 1J
train_images, train_labels = fashion_mnist.load_data()
....

# Energy hotspot - fit consumes maximum energy: 4400J
model.fit(train_images, train_labels, epochs=10)
....

# Evaluation consumes moderate energy : 29J
test_loss, test_acc = model.evaluate(test_images, test_labels)
....

# Low energy inference: 3J
predictions = probability_model.predict(test_images)

....
# Total API-level energy consumption: 4500J
# Project-level energy consumption: 5990J

Listing 2. Example of a TensorFlow code snippet annotated with energy usage

Summary of RQ1: The results provide strong evidence of the effectiveness of FECoM
energy consumption measurements at a fine granularity. FECoM’s effective api-level energy
measurements provide developers with valuable insights that can be leveraged to create more
energy-efficient dl pipelines. By identifying and optimizing energy hotspots, developers
can contribute to the development of greener and more sustainable AI applications.

, Vol. 1, No. 1, Article . Publication date: July 2024.



932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

20 Rajput, Widmayer, Shang et al.

5.2 RQ2. Effect of Input Data Size on Energy Consumption
To answer RQ2, we executed api calls with varying input data sizes. The results are presented
in Figure 7. The scatter plot illustrates the Net energy consumption in Joules against the total
parameter size in megabytes (MB). The figure reveals a linear relationship between input data
size and energy consumption for both the cpu and gpu, indicating that 𝐸𝐶𝑃𝑈 (𝑛) and 𝐸𝐺𝑃𝑈 (𝑛) are
increasing linear functions for this api call. This confirms the hypothesis for RQ2. However, when
considering ram energy consumption as a function of input data size, instead of an increasing linear
function, 𝐸𝑅𝐴𝑀 (𝑛) appears to remain constant.

To validate the linear relationship between energy consumption and input data size, we computed
the Pearson correlation coefficient. The obtained correlation coefficients 𝜌 for gpu, cpu, and ram
are 0.89 (p-value = 4.2𝑒 − 32), 0.88 (p-value = 3.12𝑒 − 30), and 0.19 (p-value = 0.08), respectively.
These values indicate that input data size for gpu and cpu have a strong positive relationship with
energy consumption, while ram exhibits a low positive relationship. This means that as the data
size increases, cpu and gpu energy consumption tends to increase as well. The extremely small
p-values for cpu, and gpu signify the high statistical significance of these correlations. However,
the low correlation exhibited by ram is not statistically significant. The effect sizes, representing
the magnitude of the Pearson correlation coefficients, are substantially large for the gpu and cpu,
indicating a significant relationship between their energy consumption and input data size.

Fig. 7. RQ2. Net energy consumption Vs. method call input size.

5.2.1 Compute-intensive vs memory-intensive apis. To provide a more nuanced analysis, we clas-
sified the apis based on their computational resource usage into compute-intensive or memory-
intensive categories, as well as their lightweight counterparts. To classify the apis, we conducted
an analysis of resource utilization patterns based on metrics runtime and data size for all the apis
in our scope. apis with a runtime greater than 1 second were classified as compute-intensive, while
those with a data size greater than 1 MB were classified as memory-intensive.
Compute-intensive methods: Compute-intensive apis (i.e., apis with runtime > 1 second) form
61% of the total apis. Figure 8 shows the net energy consumption for apis against their execution
runtime. We compute the correlation coefficient separately for compute-intensive methods and
the rest of the methods. For compute-intensive methods, input data size has a strong positive
correlation with cpu (𝜌 = 0.86, p-value = 2.00𝑒 − 06) and gpu (𝜌 = 0.90, p-value = 1.03𝑒 − 07) energy
consumption, with large effect sizes and statistical significance. This suggests that as the input data
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size increases, the energy consumption of cpu and gpu also increases significantly for compute-
intensive methods. However, ram energy consumption shows a moderate negative correlation
(𝜌 = −0.47, p-value = 4.17𝑒 − 02) with input data size, indicating that ram energy consumption
tends to decrease slightly as input data size increases for these methods. For light-weight apis
(runtime <= 1 second), the correlations between input data size and energy consumption are not
statistically significant, with small effect sizes.
Memory-intensive methods: Memory-intensive apis (i.e., apis with argument size > 1 MB)
form 23% of the total apis. The memory-intensive apis show a strong positive correlation between
input data size and cpu (𝜌 = 0.92, p-value = 3.00𝑒 − 03) and gpu (𝜌 = 0.94, p-value = 1.70𝑒 − 03)
energy consumption, with large effect sizes and statistical significance. This suggests that large
data size leads to higher energy consumption for these apis, similar to the compute-intensive
apis. However, the correlation between input data size and ram energy consumption for memory-
intensive apis is not statistically significant. Similarly, for lightweight apis frommemory perspective,
the correlations between input data size and energy consumption for cpu, gpu, and ram are weak
and not statistically significant, with small effect sizes(cpu: 𝜌 = −0.06, p-value = 7.96𝑒 − 01; gpu:
𝜌 = −0.06, p-value = 7.81𝑒 − 01; ram: 𝜌 = 0.16, p-value = 4.53𝑒 − 01).
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Fig. 8. RQ2. Net energy consumption Vs. execution time.

5.2.2 RAM energy consumption. The observed ram energy consumption pattern, where 𝐸𝑅𝐴𝑀 (𝑛)
does not increase with input data size, is consistent across all the apis analyzed in this study,
including both memory-intensive and compute-intensive apis. This can be attributed to the deep
learning context of the projects considered in this study. Deep learning tasks are traditionally
compute-intensive and require gpu acceleration. gpus have their own dedicated memory (VRAM),
and the energy consumption of VRAM is reported as part of the gpu’s energy consumption. As
discussed in RQ1, after the initial data transfer from ram to VRAM, the ram’s role is minimal,
leading to relatively constant energy consumption, irrespective of input data size.

Summary of RQ2: The results show that the energy consumption of cpu and gpu exhibits a
very strong positive correlation with the input data size, particularly for compute-intensive
and memory-intensive apis. However, ram energy consumption remains relatively constant,
irrespective of input data size, due to the deep learning context where gpu memory (VRAM)
plays a more significant role.
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Fig. 9. RQ3. Challenges in fine-grained energy measurement.

5.3 RQ3. Key considerations in Fine-grained Energy Measurement
This research question aims to support developers and researchers working in this field by elabo-
rating on the issues, considerations, challenges one may encounter while developing a tool similar
to FECoM as well as their corresponding mitigation. Figure 9 presents the issues and challenges
(organized into categories/sub-categories) that we obtained by using an open coding process as
discussed in the experiment design Section 4.2.3. We provide an online appendix in the replication
package, with comprehensive details about the design considerations and challenges faced while
developing FECoM, along with supplementary material documenting error logs and issues used in
the open coding process [21]. These issues arose and were addressed inherently during FECoM’s
design and development. Prior to conducting formal experiments, we tested and refined FECoM
extensively by evaluating its functionality on a diverse set of projects. This rigorous verification
was crucial for handling the complexities involved in fine-grained energy measurement. In the rest
of the section, we elaborate on each challenge found by our analysis. We also present potential
mitigation strategies for these challenges curated from Stack Overflow as outlined in Section 4.2.3.

5.3.1 Energy measurement. Issues that hinder effective energy measurement belong to this
category.
Instrumentation challenges: These challenges relate to the implementation of the energy mea-
surement module.
• Instrumentation overhead: Instrumented code has additional instructions that may account for
overhead and, therefore, may impact the performance and energy consumption of the code.
Mitigation: We identify the following alternatives to address the challenge.
– Minimize instrumentation points by focusing on keymethods, loops, or blocks that significantly

impact energy usage.
– Use lightweight instrumentation techniques such as binary instrumentation, sampling profilers,

or hardware performance counters to reduce overhead.
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– Optimize instrumentation logic by avoiding expensive operations, memory allocations, and
locking within instrumented regions.

– Quantify and subtract instrumentation overhead from energy measurements to get accurate
consumption of the target code.

– Avoid instrumentation skew by being aware of potential changes in code behavior due to
heavy instrumentation.

• Noise in measurement: Background processes running on the machine during energy measure-
ment introduce noise and overheads, affecting the accuracy of measured energy.
Mitigation: To mitigate this issue, we suggest the following approaches.
– Run code on an idle system with minimal background processes to reduce noise from unrelated

activity.
– Take a baseline energy measurement of the idle system and subtract it from the code measure-

ments to isolate the code’s energy consumption.
– Use replicate systems to measure baseline energy simultaneously and cancel out correlated

noise.
– Characterize background noise patterns using statistical techniques like auto-correlation and

apply filtering to remove noise [55].
– Take multiple measurements and use robust statistical summaries like the median to mitigate

occasional noise spikes.
Hardware variability: Issues introduced by the heterogeneity in hardware and configurations.
• Hardware configuration: Different hardware configurations can lead to variations in power draw
and hence energy consumption values for the same project.
Mitigation: To achieve accurate energy measurements,
– Use standardized hardware of the same make, model, and configuration of cpu, gpu, ram,

storage, power supply, etc., for all energy measurements.
– Ensure key hardware components are performing consistently by running benchmarks and

replacing underperforming outliers.
– Thoroughly document the exact hardware configuration, including component specs, firmware

versions, and custom settings.
– Ensure a temperature-controlled environment and document ambient temperature.
– Disable power management features such as dynamic voltage/frequency scaling to maintain

consistent behavior.
– Take multiple measurements to characterize the expected range of variation for a given

configuration.
– Avoid concurrent workloads on the measured hardware to minimize interference.

• Calibration issues: Energy measurement tools require calibration to account for hardware varia-
tions.
Mitigation: To mitigate calibration issues stemming from hardware variations, consider the
following approaches:
– Use hardware performance counters such as perf that provide a consistent interface for

performance measurements across systems.
– Employ techniques such as repeating short tests multiple times and keeping the best times to

calibrate timings while accounting for hardware factors.
– For gpus, reduce kernel execution time during calibration by using smaller datasets or multiple

kernel launches to avoid performance counter overflows.
– Store calibrated values for stable energy consumption, maximum allowed temperatures, and
wait times specific to the hardware configuration for reuse.
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– Understand the expected range of variation for your hardware and incorporate that knowledge
into interpreting energy measurements and making decisions.

• gpu usage: The selected subject systems must utilize gpu in an optimized manner. Failing to
ensure this challenge may introduce incorrect and inconsistent energy data collection.
Mitigation: To mitigate this issue, we suggest the following approaches.
– Monitor gpu utilization using tools such as nvidia-smi to get accurate metrics such as Volatile

gpu-Util.
– Ensure the workload is large enough to benefit from gpu acceleration, focusing on datasets
where parallelization outweighs data transfer overhead.

– Optimize kernel design and execution parameters based on the specific gpu architecture,
experimenting with different configurations for optimal performance.

– Use gpu-optimized libraries and functions when available, such as torch.linalg.solve in PyTorch.
– Be aware of potential throttling issues, ensuring the gpu runs within its power limits and the

server provides adequate cooling.
– Profile and optimize I/O bottlenecks, such as loading tensors from the cpu, to maximize gpu

utilization.
– Monitor gpu memory usage and ensure the application’s resource requirements fit within

the available gpu memory, being mindful of limitations when running multiple contexts or
applications concurrently.

Granularity of energy attribution: Issues related to precision limit, and to the required balance
between precision of energy consumption and associated overheads.
• Precision limits: Existing software tools, due to Intel RAPL limitation, do not permit energy
measurements at intervals smaller than 1ms.
Mitigation: Following strategies can be considered to mitigate this issue.
– Be aware of the limited granularity of existing APIs such as GetSystemTime() on Windows,
which may have actual precision limitations despite reporting millisecond precision.

– Understand that instrumentation and tracing memory accesses introduces overhead that limits
achievable granularity. Target reasonable sampling rates based on these constraints.

– Utilize newer hardware capabilities for finer-grained measurement where available, such as
Intel Processor Trace on recent Xeon processors, while being aware of their limitations.

– Set appropriate expectations that perfect nanosecond-level measurements are not feasible in
software. Be pragmatic about the level of precision truly needed for the specific use case.

• Precision overhead balance: Observing energy consumption at a high frequency improves the
precision of observed data; however, such high frequencies also introduce computation overhead
that may introduce noise.
Mitigation: To mitigate this issue, one may consider the following aspects.
– Assume a noise level of around 5% when using gpu power sensors for comparison purposes,

and consider averaging measurements from multiple gpus of the same type to account for
manufacturing tolerances.

– Use oversampling with increased frequency or a higher-resolution ADC to improve signal
stability and precision while verifying signal quality using an oscilloscope.

– Employ noise-reducing algorithms, such as low-pass filters, to smooth fluctuations in the data
and minimize the impact of noise on precision.

– Adjust the sampling interval based on specific application requirements, ensuring it is high
enough to minimize overhead but low enough to provide sufficient accuracy.
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– Increase the number of samples used for analysis by adjusting the frame size to improve
frequency resolution and precision, keeping in mind the limitations imposed by the length of
the data sample.

– Consider the trade-off between latency and complexity when choosing between in-memory
databases and shared-memory IPC for high-frequency data communication, weighing the
advantages of data persistence and service failure recovery against potential latency and
overhead.

5.3.2 Patching. Issues related to source code instrumentation.
Patch generation: This category summarizes the issues and considerations related to patch
generation.
• Correctness of patches: Each identified patch location (in our case, each TensorFlow api) must

be correctly patched to record the correct energy consumption of the api and not introduce new
syntactic or semantic issues.
Mitigation: Consider the following options to ensure the correctness of the generated patches.
– Follow proper format and structure for patches as specified in relevant standards (e.g., RFC

5789 for HTTP PATCH method).
– Use the correct apiVersion for the resource kind being patched when applying patches with

tools such as Kustomize [77].
– Consider using a robust templating engine such as Helm for more complex templating of

patches, combined with Kustomize for resource management, specific config via patches, and
overlays.

– Manually validate generated patches by reviewing the diff between the original and patched
code.

– Write automated tests that apply the patches and verify the patched code still compiles, runs,
and produces the expected output.

– Submit patch changes upstream to the open-source project for review, citing relevant discus-
sions and standards to justify the approach.

– Document the specific versions of compilers, interpreters, and dependencies the patch is
compatible with.

– Fall back to a safe emulation or unoptimized approach using conditional compilation when in
doubt about patch correctness for performance optimizations.

• Patch coverage: Each patch location must be identified correctly to avoid missing code that is
supposed to be patched and measured.
Mitigation: Consider the following strategies to ensure the correctness of the generated patches.
– Examine the patched code to optimize and ensure proper coverage, checking for flags between

instructions, using byte-sized patches, and aligning patches on cache lines to avoid fetching
multiple lines.

– Consider using PC sampling instead of instrumenting code, periodically interrupting the
thread and sampling the program counter (PC) value to provide coverage data with low
overhead.

– If patching source code, insert covered[i]=true; probes at the start of each basic block and
let the compiler optimize them, potentially reducing probe overhead to zero for blocks inside
loops.

– After instrumenting binaries to find call sites, fix the original code, add tests, and use techniques
such as wrapper classes or helper functions to make incorrect usage harder.

– Validate instrumentation correctness by manually reviewing the patched code, ensuring all
desired locations are patched and no unintended code is affected.
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– Be aware that determining how to patch arbitrary code to skip lines is not portable and
may break with compiler or environment changes, as offsets for patching can differ between
compilers and optimization levels.

5.3.3 Execution environment. Environment-related issues that may hinder effective energy
measurement.
Hardware incompatibility: Compatibility issues arise when using framework versions (e.g.,
TensorFlow) that are not compatible with the machine’s hardware or software dependencies.
Mitigation: The following strategies could be considered to mitigate the issue.
• Ensure cuda and cuDNN versions are compatible with the TensorFlow version being used,
referring to tested build configurations and downgrading or upgrading as needed.

• When running TensorFlow in containerized environments, be aware of underlying cuda and
cluster incompatibilities and select the appropriate environment based on the hardware.

• If experiencing issues with TensorFlow-gpu, install a cpu-only variant first to isolate the
problem and determine if it’s related to gpu incompatibilities.

• Manage dependencies carefully when using multiple frameworks with shared dependencies, con-
sidering subdividing the application into different deployables or services to manage framework
requirements separately.

• Investigate kernel parameters or BIOS settings that may resolve hardware-related errors such as
PCIe bus errors, such as setting pci=nommconf to disable message signaled interrupts (MSI).

• Verify that the installed graphics card supports the system configuration, and try removing it to
see if the problem persists if experiencing issues with a specific card.

GPU challenges: Issues related to effective use of gpu fall in this category.
• Memory management: cuda memory allocation errors may arise when a process cannot allocate
sufficient memory during data processing on a gpu.
Mitigation: Consider the following strategies to avoid the issue.
– Configure TensorFlow to allocate gpu memory only as needed during runtime using the

allow_growth option.
– Manually handle the amount of allocated memory by streaming data and never exceeding the

total memory supported by the device.
– Check return values of cudamemory allocation calls such as cudaMalloc to detect cudaError-

MemoryAllocation errors and deallocate memory if needed.
– Use the cudaMemGetInfo function to query the free and total amount of memory available on

the gpu.
– Reduce the batch size of data loaders to process fewer samples at a time and alleviate memory

pressure.
– Select a gpu instance with more memory, such as NVIDIA Tesla P100 (16 GB) or V100 (32 GB),

or use multiple gpus for large workloads.
– Utilize cuda Unified Memory to oversubscribe gpu memory up to the system ram size on

Pascal and newer gpus with cuda 8+.
– Change the scope and lifecycle of objects to avoid continuously creating and destroying them,

pre-allocating a pool of reusable objects to amortize allocation costs and sidestep fragmentation
issues.

• Container issues: Incompatibility of Docker containers with specific gpus and TensorFlow
versions may hinder the replication of a project.
Mitigation: The following considerations may avoid the issue.
– Ensure that the NVIDIA drivers and Container Toolkit are properly set up on the host system,

using the "--gpus all" flag when starting containers.
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– Be aware of compatibility issues between specific gpu models, cuda versions, and deep
learning frameworks, selecting a suitable base image from nvidia/cuda tags.

– If encountering issues with a custom Docker image, try using an official Docker container
provided by the framework developers, such as the TensorFlow gpu images on Docker Hub.

– When building custom Docker images, avoid overwriting or messing up dependencies through
redundant library installations.

– Use version-numbered images instead of the "latest" tag when creating containers to avoid
accidentally upgrading to a newer, potentially incompatible image.

– Be aware that incompatibility issues can also arise from the base OS image used in the
Dockerfile, and upgrading to a newer Docker runtime may be necessary.

5.4 Selecting an Energy Measurement Technique
Based on the findings from RQ3 and the comparative analysis in Table 1, we propose a set of criteria
to help users, researchers, and developers in selecting the most suitable energy measurement
technique for their specific needs. These criteria address key considerations and challenges identified
in fine-grained energy measurement.
• Measurement Granularity: The desired level of granularity in energy measurement is a crucial

factor. For system-level granularity, tools such as PowerTOP, JavaIO, or Perf may suffice. However,
for more fine-grained measurements at the program, function, or API level, tools such as FECoM,
CodeCarbon, FPowerTool, or Experiment Impact Tracker are more appropriate.

• Sampling Rate: The required sampling rate depends on the specific use case and the dynamics of
the system being measured. If a sampling rate in the order of seconds is acceptable, tools such as
CodeCarbon (15s) or PowerTOP can be used. For higher sampling rates in the millisecond range,
FPowerTool, JavaIO, or Perf are suitable options. FECoM offers a balance with a customizable
sampling rate of 500ms, which is suitable for capturing the nuances of energy consumption in
deep learning APIs. Power meters such as monsoon can be used to get sampling rate in the range
of microseconds.

• Language and Framework Compatibility: The programming language and deep learning
framework being used should be considered. For Python projects utilizing popular deep learning
frameworks, FECoM, CodeCarbon, and Experiment Impact Tracker are compatible choices.
FPowerTool caters to Fortran/C/C++ projects, while JavaIO is designed for Java projects.

• Hardware Support: The target hardware architecture is another important factor. Tools such as
FECoM, CodeCarbon, and Experiment Impact Tracker support measurements on cpu, gpu, and
ram. FPowerTool and JavaIO focus on cpu measurements, while PowerTOP covers both cpu and
gpu. For highly accurate hardware-level measurements, specialized solutions such as Monsoon
are available.

• Stability andAutomation: If power and temperature stability are critical requirements, hardware-
based solutions such as Monsoon are preferred. FECoM also offers stability in these aspects. For
users requiring automated energy measurement and reporting, FECoM is currently the only tool
that provides this capability out of the box.
The selection of an energy measurement technique should be a well-considered decision based

on the specific characteristics and requirements of the project at hand. Users are encouraged to
thoroughly assess their needs and evaluate the strengths and limitations of each technique before
making a choice. Factors such as instrumentation overhead, noise mitigation, hardware variability,
and execution environment compatibility should also be carefully assessed to ensure accurate and
reliable energy measurements.
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By considering these criteria and the specific requirements of their projects, users can make
informed decisions about the most suitable energy measurement technique. For example, if fine-
grained measurements at the API level, compatibility with Python and deep learning frameworks,
automated reporting, and stability are priorities, FECoM would be a strong choice. On the other
hand, if system-level measurements with a lower sampling rate are sufficient for a Java project,
JavaIO could be a good fit.

The criteria listed above serve as a guideline to aid users in making informed decisions that align
with their measurement goals and project requirements. It is important to note that while these
criteria provide guidance, the selection of an energy measurement technique should be based on
a comprehensive evaluation of project requirements, trade-offs, and the specific challenges and
considerations discussed in RQ3.

Summary of RQ3: Our experience shows that developing a tool for dl api fine-grained
energy measurement includes several challenges, such as instrumentation overhead, noise,
hardware variability, and gpu usage. It is important to consider the granularity of energy
attribution, striking a balance between precision and overheads. Correctness and cover-
age of generated patches are crucial for accurately recording api energy consumption.
Moreover, the execution environment should be carefully managed to overcome hardware
incompatibility and gpu-related challenges for effective energy measurement.

6 THREATS TO VALIDITY
Internal validity:

Confounds and noise. Several factors could affect a method’s energy measurement through con-
founding. On the machine, multiple processes, including typical operating system processes, run in
the background—scripts and tools for energy measurement, temperature checks, and stable state
checks. All of these processes induce overheads that can skew energy consumption measurements.
We employ several mitigation measures. Firstly, temperature checks are disabled before running
the stable checks, and stable checks are disabled during method execution. This keeps the number
of processes running during execution at a minimum. Secondly, we measure stable state energy
consumption without any compute load on the machine and subtract it from the gross energy
consumption to get net energy consumption.
Measurement precision. Choosing an appropriate sampling interval for measuring energy at regular
intervals is an important design decision. We use a sampling interval of 500 ms. Though considering
a smaller sampling interval would have given us more observations for each experiment, it also
increases the overheads and noises that may lead to incorrect energy consumption values. Given
that our target methods are framework apis that typically last for minutes, if not hours, we chose a
relatively low sampling interval.
Construct validity: Construct validity concerns the accuracy of the measurements and inferences
using those measurements. To ensure accurate energy measurement, the Patcher instruments
the code. The instrumentation, coupled with stability checks, ensures that the measured energy
consumption is indeed consumed by the api under measurement. We validated not only the Patcher
using automated and manual validation, but also the measured energy consumption at the api
granularity.
External validity: External validity deals with the generalizability of the observed results. Given
that the energy consumption is highly dependent on hardware, it may pose a threat to validity.
However, to mitigate this issue, we measure gross and net energy consumption (by reducing the
gross energy consumption with stable state energy consumption).
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7 IMPLICATIONS
7.1 Implications for Researchers
Researchers in the field can build upon the foundation of FECoM to develop hybrid measurement
approaches, especially using the findings from RQ3. Researchers can conduct empirical studies to
gain insights into energy consumption patterns, revealing relationships between model architecture,
hyperparameters, and energy efficiency, contributing to the development of more energy-efficient
dl models and algorithms. Researchers could leverage FECoM to construct detailed energy profiles
of dl models, illuminating optimization opportunities. For example, in RQ2, we showed how FECoM
can be used to gain insights into the relationship between energy consumption and input data
size. These insights are steps towards enriching api documentation of dl frameworks. Through
extensions and new experiments with FECoM, researchers can gain a deeper understanding of
energy dynamics in dl systems.

7.2 Implications for Developers
dl developers can utilize FECoM’s capabilities to measure and optimize energy consumption at
the granularity of framework apis. Developers can pinpoint energy hotspots in their code down
to the api call level by incorporating FECoM into their development workflows. For example,
in RQ1, we observed that for the Autoencoder project [27], the same type of api call “Model.fit”
consumed varying amounts of energy (5656.93 J, 7330.60 J, 133.20 J) based on the context of the call.
This fine-grained profiling allows developers to make informed optimizations such as substituting
inefficient apis, streamlining data pipelines, and adopting energy-aware coding practices. FECoM
ultimately enables developers to build greener, leaner dl applications by illuminating energy
consumption patterns. Its ease of use and integration with popular frameworks such as TensorFlow
can encourage energy awareness among the wider dl developer community.

7.3 Implications for Educators
As dl courses expand, educators can utilize FECoM to instill energy-conscious development habits
among students early on. By exposing students to tools such as FECoM and its fine-grained profiling,
educators highlight the significant energy demands of dl and the need for efficiency. Educators
can prepare the next generation of dl developers to prioritize energy efficiency and build more
sustainable AI systems by integrating FECoM in class projects and assignments to measure and
optimize model energy consumption, providing hands-on experience with Green AI principles.

8 CONCLUSIONS AND FUTUREWORK
In this work, we focused on the critical aspect of energy consumption in deep learning and intro-
duced FECoM, a fine-grained energy measurement framework. FECoM uses static instrumentation
to segregate the execution of an api and to ensure machine’s stability. Our experiments and evalua-
tion have shown that the proposed framework measures consumed energy at the api granularity.
Our empirical analysis investigating the influence of input parameter data size and execution time
on energy consumption reveals that an api’s energy consumption shows a linear relationship with
input data size. Furthermore, we consolidated and categorized various considerations, challenges,
and issues we faced throughout the design and development of the framework. Addressing these
challenges will guide future efforts in creating fine-grained energy measurement tools. In the
future, we would like to use the proposed framework to extend our empirical analysis to inves-
tigate additional aspects related to the energy profile of dl framework apis. Exploring the role
of hyper-parameters and data quality on fine-grained energy consumption will further enhance
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energy profiling capabilities. Additionally, we plan to extend the application of FECoM to other
popular dlframeworks like PyTorch for a comprehensive analysis of energy-efficient models.
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